Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Med Res Rev ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180410

RESUMO

Drug safety is a paramount concern in the field of drug development, with researchers increasingly focusing on the bidirectional regulation of gut microbiota in this context. The gut microbiota plays a crucial role in maintaining drug safety. It can influence drug transport processes in the body through various mechanisms, thereby modulating their efficacy and toxicity. The main mechanisms include: (1) The gut microbiota directly interacts with drugs, altering their chemical structure to reduce toxicity and enhance efficacy, thereby impacting drug transport mechanisms, drugs can also change the structure and abundance of gut bacteria; (2) bidirectional regulation of intestinal barrier permeability by gut microbiota, promoting the absorption of nontoxic drugs and inhibiting the absorption of toxic components; (3) bidirectional regulation of the expression and activity of transport proteins by gut microbiota, selectively promoting the absorption of effective components or inhibiting the absorption of toxic components. This bidirectional regulatory role enables the gut microbiota to play a key role in maintaining drug balance in the body and reducing adverse reactions. Understanding these regulatory mechanisms sheds light on novel approaches to minimize toxic side effects, enhance drug efficacy, and ultimately improve drug safety. This review systematically examines the bidirectional regulation of gut microbiota in drug transportation from the aforementioned aspects, emphasizing their significance in ensuring drug safety. Furthermore, it offers a prospective outlook from the standpoint of enhancing therapeutic efficacy and reducing drug toxicity, underscoring the importance of further exploration in this research domain. It aims to provide more effective strategies for drug development and treatment.

2.
Eur J Nutr ; 63(5): 1487-1500, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38748287

RESUMO

PURPOSE: Dietary fiber (DF) has a good application prospect in effectively restoring the integrity of the intestinal mucosal barrier. Ginseng-DF has good physicochemical properties and physiological activity and shows positive effects in enhancing immunity. The aim of this study was to investigate the protective effect of Ginseng-DF on intestinal mucosal barrier injury induced by cyclophosphamide (CTX) in immunosuppressed mice and its possible mechanism. METHODS: The effects of Gginseng-DF on immune function in mice were studied by delayed-type hypersensitivy, lymphocyte proliferation assay and NK cytotoxicity assay, the T lymphocyte differentiation and intestinal barrier integrity were analyzed by flow cytometry and western blot. RESULTS: Ginseng-DF (2.5% and 5%) could attenuate the inhibition of DTH response by CTX, promote the transformation and proliferation of lymphocytes, and stimulate NK effector cell activity. At the same time, Ginseng-DF could restore the proportion of CD4+/CD8+ T lymphocytes induced by CTX to different extents, improved spleen tissue damage, promoted the secretion of immunoglobulin IgG, and enhanced body immunity. More importantly, Ginseng-DF could up-regulate the contents of TNF-α, IFN-γ, IL-6 and IL-1ß in serum and intestine of immunosuppressed mice to maintain the balance between Th1/Th2 cytokines, and improve the permeability of intestinal mucosal barrier. Meanwhile, Ginseng-DF could reduce intestinal epithelial cell apoptosis and improve intestinal adaptive immunity in CTX-induced immunosuppressed mice by regulating MAPK/NF-κB signaling pathway. CONCLUSION: Ginseng-DF can be used as a safe dietary supplement to enhance body immunity and reduce intestinal mucosal injury caused by CTX.


Assuntos
Ciclofosfamida , Mucosa Intestinal , NF-kappa B , Panax , Transdução de Sinais , Animais , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Camundongos , NF-kappa B/metabolismo , Panax/química , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Hospedeiro Imunocomprometido/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Citocinas/metabolismo
3.
J Gastroenterol Hepatol ; 39(7): 1299-1309, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38646884

RESUMO

BACKGROUND AND AIM: Circular RNA (circRNA) has been found to mediate ulcerative colitis (UC) progression by regulating intestinal mucosal barrier function. However, the role of circSOD2 in UC process and its underlying molecular mechanism still need to be further elucidated. METHODS: Lipopolysaccharide (LPS)-induced Caco2 cells were used to mimic UC cell models. CircSOD2, miR-378g, and Snail1 levels were determined by quantitative real-time PCR. Cell viability was detected using MTT assay, and inflammatory cytokine levels were measured using ELISA. The intestinal mucosal barrier function was evaluated by testing transepithelial electrical resistance and fluorescein isothiocyanate (FITC)-dextran permeability. Snail1 and tight junction-related markers (Zo-1 and Claudin2) protein levels were examined using western blot. The interaction between miR-378g and circSOD2 or Snail1 was confirmed by dual-luciferase reporter assay. Dextran sulfate sodium (DSS) was used to induce UC rat models in vivo. RESULTS: CircSOD2 was overexpressed in UC patients, and its knockdown significantly increased cell viability, transepithelial electrical resistance, and tight junction-related protein expression, while reduced inflammation cytokine levels and the permeability of FITC-dextran in LPS-induced Caco2 cells. In terms of mechanism, circSOD2 sponged miR-378g to positively regulate Snail1 expression. MiR-378g inhibitor reversed the effect of circSOD2 knockdown on intestinal mucosal barrier injury and Snail1 expression in LPS-induced Caco2 cells. In DSS-induced UC rat models, circSOD2 knockdown also could repair the intestinal mucosal barrier injury through regulating miR-378g/Snail1 axis. CONCLUSION: CircSOD2 could destroy intestinal mucosal barrier function in LPS-induced Caco2 cells and DSS-induced UC rats by miR-378g/Snail1 axis.


Assuntos
Colite Ulcerativa , Mucosa Intestinal , MicroRNAs , Fatores de Transcrição da Família Snail , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Células CACO-2 , Animais , RNA Circular/genética , RNA Circular/metabolismo , RNA Circular/fisiologia , Masculino , Modelos Animais de Doenças , Ratos , Ratos Sprague-Dawley , Lipopolissacarídeos , Permeabilidade , Expressão Gênica , Função da Barreira Intestinal
4.
Biol Pharm Bull ; 47(5): 1043-1053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38811190

RESUMO

Mogroside, the main component of Siraitia grosvenorii (Swingle) C. Jeffrey (Cucurbitaceae) is a natural product with hypoglycemic and intestinal microbiota regulating properties. However, whether the alteration of intestinal microbiota is associated with the antidiabetic effect of mogroside remains poorly understood. This study investigated the mechanism underlying the hypoglycemic effect of mogroside in regulating intestinal flora and attenuating metabolic endotoxemia. Kunming mice with type 2 diabetes mellitus (T2DM) induced by high-fat diet and intraperitoneal injection of streptozotocin were randomly divided into model, pioglitazone (2.57 mg/kg) and mogroside (200, 100, and 50 mg/kg) groups. After 28 d of administration, molecular changes related to glucose metabolism and metabolic endotoxemia in mice were evaluated. The levels of insulin receptor substrate-1 (IRS-1), cluster of differentiation 14 (CD14) and toll-like receptor 4 (TLR4) mRNAs were measured, and the composition of intestinal microflora was determined by 16s ribosomal DNA (rDNA) sequencing. The results showed that mogroside treatment significantly improved hepatic glucose metabolism in T2DM mice. More importantly, mogroside treatment considerably reduced plasma endotoxin (inhibition rate 65.93%, high-dose group) and inflammatory factor levels, with a concomitant decrease in CD14 and TLR4 mRNA levels. Moreover, mogroside treatment reduced the relative abundance of Firmicutes and Proteobacteria (the inhibition rate of Proteobacteria was 85.17% in the low-dose group) and increased the relative abundance of Bacteroidetes (growth rate up to 40.57%, high-dose group) in the intestines of diabetic mice. This study reveals that mogroside can relieve T2DM, regulating intestinal flora and improving intestinal mucosal barrier, indicating that mogroside can be a potential therapeutic agent or intestinal microbiota regulator in the treatment of T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipoglicemiantes , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/sangue , Camundongos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Glicemia/efeitos dos fármacos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Endotoxemia/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo
5.
J Therm Biol ; 123: 103935, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39098059

RESUMO

Climate change is an increasing concern of stakeholders worldwide. The intestine is severely impacted by the heat stress. This study aimed to investigate the alleviating effects of methionine on the intestinal damage induced by heat stress in mice. The mice were divided into four groups: control group (C), methionine deficiency group (MD), methionine + heat stress group (MH), and methionine deficiency + heat stress group (MDH). Histopathological techniques, PAS-Alcian blue staining, immunohistochemistry method, biochemical quantification method, ELISA, and micro method were used to study the changes in the intestinal mucosal morphology, the number of goblet cells, the expression of tight junction proteins, the peroxide product contents and antioxidant enzyme activities, the intestinal mucosal damage, the content of immunoglobulins and HSP70, the activity of Na+/K+-ATPase. The results showed that methionine can improve intestinal mucosal morphology (increase the villi height, V/C value, and muscle layer thickness, decrease crypt depth), increase the expression of tight junction proteins (Claudin-1, Occludin, ZO-1) and the content of DAO, decrease the content of intestinal mucosa damage markers (ET, FABP2) and peroxidation products (MDA), increase the activity of antioxidant enzymes (GR, GSH-Px, SOD), the number of goblet cells, the contents of immunoglobulins (sIgA, IgA, IgG, IgM) and stress protein (HSP70), and the activity of Na+/K+-ATPase. It is suggested that methionine can alleviate intestinal damage in heat-stressed mice.


Assuntos
Resposta ao Choque Térmico , Mucosa Intestinal , Metionina , Animais , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Resposta ao Choque Térmico/efeitos dos fármacos , Masculino , Proteínas de Junções Íntimas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo
6.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203732

RESUMO

Despite Bacillus species having been extensively utilized in the food industry and biocontrol as part of probiotic preparations, limited knowledge exists regarding their impact on intestinal disorders. In this study, we investigated the effect of Bacillus licheniformis ZW3 (ZW3), a potential probiotic isolated from camel feces, on dextran sulfate sodium (DSS)-induced colitis. The results showed ZW3 partially mitigated body weight loss, disease activity index (DAI), colon shortening, and suppressed immune response in colitis mice, as evidenced by the reduction in the levels of the inflammatory markers IL-1ß, TNF-α, and IL-6 (p < 0.05). ZW3 was found to ameliorate DSS-induced dysfunction of the colonic barrier by enhancing mucin 2 (MUC2), zonula occluden-1 (ZO-1), and occludin. Furthermore, enriched beneficial bacteria Lachnospiraceae_NK4A136_group and decreased harmful bacteria Escherichia-Shigella revealed that ZW3 improved the imbalanced gut microbiota. Abnormally elevated uric acid levels in colitis were further normalized upon ZW3 supplementation. Overall, this study emphasized the protective effects of ZW3 in colitis mice as well as some potential applications in the management of inflammation-related diseases.


Assuntos
Bacillus licheniformis , Bacillus , Colite , Probióticos , Animais , Camundongos , Colite/induzido quimicamente , Colite/terapia , Camelus , Homeostase , Probióticos/farmacologia , Probióticos/uso terapêutico
7.
J Sci Food Agric ; 104(5): 2728-2743, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37989715

RESUMO

BACKGROUND: Citrus pulp (CP) is rich in pectin, and studies have shown that pectin possesses antioxidant, anti-inflammatory, and gut microbiota-regulating properties. However, the application of CP in aquafeed is limited. In this study, the effect of dietary inclusion of CP on the intestinal health of largemouth bass (Micropterus salmoides) was investigated. Juveniles of similar size (6.95 ± 0.07 g) were fed isonitrogenous and isoenergetic diets containing different levels of CP (0%, 3%, 6%, 9%, 12%, or 15%) for 58 days. RESULTS: As the level of CP in the feed for largemouth bass increased, the fish's growth performance and intestinal health initially improved and then declined. Adding low doses of CP (≤9%) to the feed had no significant impact on the growth performance of large-mouth black bass, whereas high doses of CP (>9%) significantly reduced their growth performance. Adding 6%, 9%, or 12% of CP to that feed enhanced the expression of genes related to tight junctions, anti-inflammatory activity, anti-apoptotic activity, and antioxidant activity in the intestines of largemouth bass. It reduced intestinal inflammation and improved intestinal nutrient absorption, intestinal mucosal barrier function, and intestinal antioxidant capacity. Moreover, it improved the α-diversity, structure, and function of the intestinal flora. The addition of 6% CP had the most beneficial effect on the intestinal health of largemouth bass. On the other hand, the addition of 15% CP had adverse effects on the intestinal antioxidant capacity and intestinal mucosal barrier function of largemouth bass. CONCLUSION: Adding 6-9% CP to the feed for largemouth bass can improve their intestinal health without having a significant impact on their growth performance. CP could serve as a novel prebiotic and immunostimulant ingredient in aquafeed. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Bass , Animais , Antioxidantes/metabolismo , Bass/genética , Bass/metabolismo , Dieta/veterinária , Intestinos , Anti-Inflamatórios/metabolismo , Pectinas/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4499-4509, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307786

RESUMO

This study explores the effects and mechanisms of Modified Xiaoyao Powder on the intestinal barrier and intestinal flora in mice with metabolic associated fatty liver disease(MAFLD) based on the " gut-liver axis". Sixty male C57BL/6 mice were randomly divided into the normal group, model group, bifidobacterium tetrad tablet group(SQ), and Modified Xiaoyao Powder groups with low,medium and high doses(XL, XM, XH), with 10 mice in each group. All the mice were administrated with a high-fat diet to build the MAFLD model except the normal group and then treated with related drugs for 12 weeks. Body mass, liver wet weight, and liver index were detected. Serum aspartate aminotransferase(AST), alanine aminotransferase(ALT), total cholesterol(TC), triacylglycerol(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), and lipopolysaccharide(LPS)levels were detected using the biochemical kits. The contents of tumor necrosis factor-α(TNF-α) and interleukin(IL-6) in the liver were tested simultaneously. The morphological changes of the liver and intestine were observed using hematoxylin-eosin(HE) staining and oil red O staining. The goblet cells in the ileum were detected by periodic acid Schiff and alcian blue stain(AB-PAS) staining.The expression of zonula occludens-1(ZO-1), recombinant occludin(occludin), and recombinant claudin 1(claudin-1) in ileum and colon were detected by immunohistochemistry and Western blot. The changes of intestinal flora in mice were analyzed by 16S rRNA gene sequencing. The results showed that compared with the normal group, body weight, liver wet weight and liver index in the model group increased. The contents of TC, TG, ALT, AST, LDL-C, and LPS in the serum of the model group increased, while HDL-C decreased. Meanwhile, the contents of TNF-α and IL-6 in liver tissue increased and liver lipid accumulation increased, indicating successful model induction. Compared with the model group, body weight, liver wet weight, and liver index were decreased in XM,XH groups and SQ group. Serum levels of TC, TG, LDL-C, ALT and AST in XM group and SQ group were significantly decreased,and HDL-C levels were increased. The levels of IL-6, TNF-α in liver tissue and serum LPS in the XL, XM groups and SQ group were significantly decreased. The protein expression of claudin-1, occludin and ZO-1 in XL, XM groups and SQ group were increased. The analysis of intestinal flora showed that compared with the model group, Modified Xiaoyao Powder with a medium dose could significantly improve the richness and diversity of intestinal flora in mice. At the phylum level, the Firmicutes/Bacteroidetes(F/B) ratio decreased; at the genus level, Lactobacillus, Brautella, Bacteroides, and Ackermannia increased, while Prevotella, Desulfovibrio and Turicibacter decreased. The main differential species were Odorbacteraceaeae and Peptostreptococcaceae. In conclusion, Modified Xiaoyao Powder could inhibit inflammation, regulate intestinal flora homeostasis, and promote the repair of the intestinal mucosal barrier in mice with MAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Fígado , Camundongos Endogâmicos C57BL , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Pós , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Humanos , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Ocludina/metabolismo , Ocludina/genética , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Triglicerídeos/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1762-1773, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812188

RESUMO

The study aimed to investigate the therapeutic effects of the n-butanol extract of Pulsatilla Decoction(BEPD) on ulcerative colitis(UC) via the bone morphogenetic protein(BMP) signaling pathway. C57BL/6 mice were divided into six groups: control, model, mesalazine, and BEPD low-, medium-, and high-dose groups. Except for the control group, the rest groups were treated with 3% dextran sulfate sodium(DSS) freely for seven consecutive days to establish the UC mouse model, followed by treatment with different concentrations of BEPD and mesalazine by gavage. The murine body weight and disease activity index(DAI) were recorded. After the mice were sacrificed, their colon tissues were collected for histological analysis. Alcian blue/periodic acid-Schiff(AB/PAS) staining was used to detect the number and mucus secretion status of goblet cells; immunohistochemistry was performed to measure the expression of ki67, cleaved caspase-3, mucin 2(Muc2), and matrix metalloproteinase-9(MMP9) in colon tissues; and immunofluorescence was used to analyze the expression of tight junction proteins in colon tissues, and enzyme linked immunosorbent assay(ELISA) was employed to quantify the levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1ß, and IL-6. Western blot was conducted to evaluate the expression of BMP pathway-related proteins in mouse colon tissues. Quantitative real-time PCR(qRT-PCR) was performed to measure the expression of genes related to goblet cell differentiation in mouse colon tissues. In addition, this study also examined the protective effect and underlying mechanism of BEPD-containing serum on lipopolysaccharide(LPS)-induced barrier damages in LS174T goblet cells in vitro. The results showed that BEPD significantly alleviated UC symptoms in mice, restored goblet cell diffe-rentiation function, promoted Muc2 secretion and tight junction protein expression, and suppressed inflammatory factor secretion while activating the BMP signaling pathway. Therefore, BEPD may exert its therapeutic effects on UC by activating the BMP signaling pathway, providing a new strategy for drug intervention in UC.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Pulsatilla , Transdução de Sinais , Animais , Transdução de Sinais/efeitos dos fármacos , Camundongos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Pulsatilla/química , Humanos , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética
10.
Synapse ; 77(5): e22274, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37211869

RESUMO

d-Galactose (d-gal) and l-glutamate (l-glu) impair learning and memory. The mechanism of interaction between the gut microbiome and brain remains unclear. In this study, a model of cognitive impairment was induced in tree shrews by intraperitoneal (ip) injection of d-gal (600 mg/kg/day), intragastric (ig) administration with l-glu (2000 mg/kg/day), and the combination of d-gal (ip, 600 mg/kg/day) and l-glu (ig, 2000 mg/kg/day). The cognitive function of tree shrews was tested by the Morris water maze method. The expression of Aß1-42 proteins, the intestinal barrier function proteins occludin and P-glycoprotein (P-gp), and the inflammatory factors NF-κB, TLR2, and IL-18 was determined by immunohistochemistry. The gut microbiome was analyzed by 16SrRNA high-throughput sequencing. After administering d-gal and l-glu, the escape latency increased (p < .01), and the times of crossing the platform decreased (p < .01). These changes were greater in the combined administration of d-gal and l-glu (p < .01). The expression of Aß1-42 was higher in the perinuclear region of the cerebral cortex (p < .01) and intestinal cell (p < .05). There was a positive correlation between the cerebral cortex and intestinal tissue. Moreover, the expression of NF-κB, TLR2, IL-18, and P-gp was higher in the intestine (p < .05), while the expression of occludin and the diversity of gut microbes were lower, which altered the biological barrier of intestinal mucosal cells. This study indicated that d-gal and l-glu could induce cognitive impairment, increase the expression of Aß1-42 in the cerebral cortex and intestinal tissue, decrease the gut microbial diversity, and alter the expression of inflammatory factors in the mucosal intestines. The dysbacteriosis may produce inflammatory cytokines to modulate neurotransmission, causing the pathogenesis of cognitive impairment. This study provides a theoretical basis to explore the mechanism of learning and memory impairment through the interaction of microbes in the gut and the brain.


Assuntos
Disfunção Cognitiva , Galactose , Animais , Galactose/toxicidade , Galactose/metabolismo , Ácido Glutâmico/metabolismo , Interleucina-18/efeitos adversos , Interleucina-18/metabolismo , NF-kappa B/metabolismo , Tupaiidae/metabolismo , Ocludina/metabolismo , Receptor 2 Toll-Like/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/patologia , Aprendizagem em Labirinto
11.
Crit Rev Food Sci Nutr ; 63(28): 9136-9162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35466839

RESUMO

The importance of the "gut-liver axis" in the pathogenesis of liver diseases has been revealed recently; which promotes the process of developing preventive and therapeutic strategies. However, considering that there are still many challenges in the medical treatment of liver diseases, potential preventive dietary intervention may be a good alternative choice. Plant-based foods have received much attention due to their reported health-promoting effects in targeting multiple pathways involved in the pathogenesis of liver diseases as well as the relative safety for general use. Based on the PubMed and Web of Science databases, this review emphatically summarizes the plant-based foods and their chemical constituents with reported effects to impact the LPS/TLR4 signaling pathway of gut-liver axis of various liver diseases, reflecting their health benefits in preventing/alleviating liver diseases. Moreover, some plant-based foods with potential gut-liver effects are specifically analyzed from the reported studies and conclusions. This review intends to provide readers an overview of the current progress in the field of this research topic. We expect to see more hepatoprotective measures for alleviating the current prevalence of liver diseases.


Assuntos
Microbioma Gastrointestinal , Hepatopatias , Humanos , Estudos Prospectivos , Fígado , Hepatopatias/prevenção & controle
12.
Eur J Neurol ; 30(11): 3440-3450, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36263629

RESUMO

BACKGROUND AND PURPOSE: Changes in gut microbiota composition, enteric inflammation, impairments of the intestinal epithelial barrier and neuroplastic changes in the enteric nervous system have been reported in Parkinson's disease (PD) patients and could contribute to the onset of both neurological and gastrointestinal symptoms. However, their mutual interplay has rarely been investigated. This study evaluated, in an integrated manner, changes in faecal microbiota composition, morphofunctional alterations of colonic mucosal barrier and changes of inflammatory markers in blood and stools of PD patients. METHODS: Nineteen PD patients and nineteen asymptomatic subjects were enrolled. Blood lipopolysaccharide binding protein (LBP, marker of altered intestinal permeability) and interleukin-1ß (IL-1ß) levels, as well as stool IL-1ß and tumour necrosis factor (TNF) levels, were evaluated. Gut microbiota analysis was performed. Epithelial mucins, collagen fibres, claudin-1 and S100-positive glial cells as markers of an impairment of the intestinal barrier, mucosal remodelling and enteric glial activation were evaluated on colonic mucosal specimens collected during colonoscopy. RESULTS: Faecal microbiota analysis revealed a significant difference in the α-diversity in PD patients compared to controls, while no differences were found in the ß-diversity. Compared to controls, PD patients showed significant chenags in plasma LBP levels, as well as faecal TNF and IL-1ß levels. The histological analysis showed a decrease in epithelial neutral mucins and claudin-1 expression and an increased expression of acidic mucins, collagen fibres and S100-positive glial cells. CONCLUSIONS: Parkinson's disease patients are characterized by enteric inflammation and increased intestinal epithelial barrier permeability, as well as colonic mucosal barrier remodelling, associated with changes in gut microbiota composition.

13.
J Nanobiotechnology ; 21(1): 222, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438752

RESUMO

Ulcerative colitis (UC) is currently the most common inflammatory bowel disease (IBD). Due to its diverse and complex causes, there is no cure at present, and researchers are constantly exploring new therapies. In recent years, nano-selenium particle(SeNP) has attracted wide attention due to excellent biological activities. Therefore, in this study, for the first time, we used a natural polysaccharide, Eucommia ulmoides polysaccharide (EUP), modified SeNP to get EUP-SeNP with a size of about 170 nm, and its effect on 3% dextran sulphate sodium (DSS) induced colitis was explored. Our results showed that colon intestinal histology, intestinal mucosal barrier, inflammatory cytokines and intestinal microbiome composition were changed after EUP-SeNP treatment in colitis mice. Specifically, it was also shown that oral treatment of EUP-SeNP could relieve the degree of DSS-induced colitis in mice by restoring weight loss, reducing disease activity index (DAI), enhancing colon antioxidant capacity and regulating intestinal microbiome composition. In addition, we verified the mechanism in intestinal epithelial cell lines, showing that EUP-SeNP inhibited LPS-induced activation of the TRL-4/NF-κB signaling pathway in intestinal epithelial cell lines. To some extend, our study provides therapeutic reference for the treatment of IBD.


Assuntos
Colite , Eucommiaceae , Doenças Inflamatórias Intestinais , Selênio , Animais , Camundongos , Selênio/farmacologia , Selênio/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
14.
Pharmacology ; 108(3): 286-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023725

RESUMO

INTRODUCTION: Nonsteroidal anti-inflammatory drug (NSAID)-induced small intestinal damage is a serious and escalating clinical problem without effective treatment. Lafutidine (LAF) is a novel histamine H2 receptor antagonist with a mucosal protective action. This study aimed to investigate the protective effect of LAF on indomethacin (IND)-induced enteropathy in rats. METHODS: Rats were treated with LAF for 10 days with concomitant IND treatment on the final 5 days. Changes in metabolism and hematological and biochemical parameters were measured, and intestinal damage was blindly scored. Intestinal mucosal tissue and luminal contents were collected for transcriptome and microbiota sequencing. Intestinal inflammation and barrier function were also evaluated. RESULTS: LAF treatment prevented anorexia and weight loss in rats and ameliorated reductions in hemoglobin, hematocrit, total protein, and albumin levels. LAF reduced the severity of IND-induced intestinal damage including macroscopic and histopathological damage score. Transcriptome sequencing results indicated that LAF might have positive effects on intestinal inflammation and the intestinal mucosal barrier. Further research revealed that LAF decreased neutrophil infiltration, and IL-1ß and TNF-α expression in intestinal tissue. Besides, the treatment increased mucus secretion, MUC2, Occludin, and ZO-1 expression, and decreased serum D-lactate levels. LAF treatment also ameliorates microbial dysbiosis in small intestine induced by IND and increased the abundance of Lactobacillus acidophilus. CONCLUSION: LAF may protect against NSAID enteropathy via enhancing the intestinal mucosal barrier, inhibiting inflammation, and regulating microbiota.


Assuntos
Enteropatias , Microbiota , Ratos , Animais , Indometacina/toxicidade , Intestino Delgado , Anti-Inflamatórios não Esteroides/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mucosa Intestinal , Enteropatias/induzido quimicamente
15.
J Dairy Sci ; 106(12): 9644-9662, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641289

RESUMO

Long-term feeding of a high-concentrate diet can induce subacute ruminal acidosis (SARA) in ruminants, which further leads to systemic inflammatory response. However, few studies have examined the effects of feeding a high-concentrate diet on the hindgut of ruminants. The purpose of this study was to investigate the effects of a high-concentrate diet on the composition of gut microbiota in colonic contents, inflammatory response, and barrier damage in the colon tissue of ruminants. A total of 12 healthy multiparous lactating Hu sheep were randomly allotted into the following 2 groups: a high-concentrate (HC) group (concentrate:forage = 7:3) and a low-concentrate (LC) group (concentrate:forage = 3:7). All sheep were fitted with ruminal fistulas. The formal feeding experiment lasted for 8 wk. After the feeding experiment, rumen fluid, portal vein blood, hepatic vein blood, colonic contents, and colon tissue samples were collected. The results showed that feeding the HC diet induced SARA in Hu sheep and significantly reduced pH in the colonic contents. The abundances of Firmicutes, Verrucomicrobiota, and Actinobacteriota decreased significantly, whereas those of Bacteroidota, Spirochaetota, and Fibrobacterota significantly increased in colonic contents. At the genus level, the relative abundances of 29 genera were significantly altered depending on the different type of diets. Analysis of the 10 bacterial genera with high relative abundance revealed that feeding the HC diet significantly reduced the abundance of UCG-005, Christensenellaceae R-7 group, UCG-010-norank, Monoglobus, [Eubacterium] coprostanoligenes group_norank, and Alistipes, whereas the abundances of Rikenellaceae RC9 gut group, Treponema, Bacteroides, and Prevotella increased. Compared with the LC group, feeding the HC diet significantly increased the concentration of LPS in rumen fluid, portal vein blood, hepatic vein blood, and colonic contents, and significantly upregulated the mRNA expression levels of proinflammatory cytokines in colon tissue, including TNF-α, IL-1ß, IL-6, and IL-8, indicating the occurrence of inflammatory response in the colon tissue. In addition, the structure of colonic epithelial cells was loose, the intercellular space became larger, epithelial cells were exfoliated, and the mRNA and protein abundances of ZO-1, occludin, claudin-1, claudin-3, and claudin-4 were significantly decreased in the HC group, which was consistent with the results of immunohistochemistry. Furthermore, feeding the HC diet increased the ratios of DNA methylation and chromatin compaction in the promoter regions of occludin and claudin-1, which in turn inhibited their transcriptional expression. Therefore, the present study demonstrated that feeding an HC diet induced SARA in Hu sheep, altered the composition and structure of the microbial community in the colonic contents, induced an inflammatory response, and disrupted the intestinal mucosal barrier in the colonic tissue.


Assuntos
Regulação da Expressão Gênica , Doenças dos Ovinos , Feminino , Animais , Ovinos , Lactação , Claudina-1/metabolismo , Ocludina/análise , Ocludina/metabolismo , Rúmen/metabolismo , Inflamação/veterinária , Inflamação/metabolismo , Dieta/veterinária , Colo/metabolismo , Ruminantes/metabolismo , RNA Mensageiro/metabolismo , Concentração de Íons de Hidrogênio , Ração Animal/análise
16.
Ecotoxicol Environ Saf ; 262: 115342, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567104

RESUMO

Waste plastics are degraded into microplastics (MPs), which are easily accumulated in the human body through digestive tracts, via the food chain. Alcohol is a widely consumed chemical throughout the world with the ability to alter the intestinal barrier. For this reason, this study was aimed to investigate exact relevance between alcohol consumption and organ distributions of MPs in an ethanol feeding animal model characterized by disrupted intestinal mucosal barriers. In this study, C57BL/6 mice were separated into control, control + MP, ethanol (EtOH), and EtOH + MP groups. Mice in the EtOH group ingested a Lieber-DeCarli diet containing EtOH. Mice in the MP groups ingested 0.1 mg/kg fluorophore polymerized polystyrene microplastics via oral gavage polystyrene MPs via oral gavage. The EtOH + MP group showed higher MP accumulation in the liver than the control + MP group. The same pattern was observed in the intestines, spleen, and brain. This pattern was more prominent in the intestines, with the EtOH + MP group showing the most severe damage due to EtOH ingestion. This result suggests that the intestinal mucosa disruption caused by EtOH ingestion exacerbates MP accumulation in the organs. Moreover, hepatic steatosis was more severe in the EtOH + MP group than in the EtOH group, suggesting the secondary manifestation mediated by MP accumulation. This study reports a novel MP accumulation pattern in the body by providing novel insights into alcohol-induced gut permeability and microplastics toxicity from the perspective of gut-liver axis.

17.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629009

RESUMO

Chronic psychological stress affects the health of humans and animals (especially females or pregnant bodies). In this study, a stress-induced model was established by placing eight-week-old female and pregnant mice in centrifuge tubes for 4 h to determine whether chronic stress affects the intestinal mucosal barrier and microbiota composition of pregnant mice. Compared with the control group, we found that norepinephrine (NE), corticosterone (CORT), and estradiol (E2) in plasma increased significantly in the stress group. We then observed a decreased down-regulation of anti-inflammatory cytokines and up-regulation of pro-inflammatory cytokines, which resulted in colonic mucosal injury, including a reduced number of goblet cells, proliferating cell nuclear antigen-positive cells, caspase-3, and expression of tight junction mRNA and protein. Moreover, the diversity and richness of the colonic microbiota decreased in pregnant mice. Bacteroidetes decreased, and pernicious bacteria were markedly increased. At last, we found E2 protects the intestinal epithelial cells after H2O2 treatment. Results suggested that 25 pg/mL E2 provides better protection for intestinal barrier after chronic stress, which greatly affected the intestinal mucosal barrier and altered the colonic microbiota composition.


Assuntos
Peróxido de Hidrogênio , Intestinos , Humanos , Gravidez , Feminino , Animais , Camundongos , Estrogênios , Inflamação , Citocinas
18.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768559

RESUMO

Ulcerative colitis (UC) is a chronic, relapsing, and nonspecific inflammatory bowel disease (IBD). Phillygenin (PHI), a natural bioactive ingredient, isolated from Forsythiae Fructus, exhibits anti-inflammatory, anti-oxidative, and hepatoprotective activities. However, few reports provide direct evidence on the efficacy of PHI in improving colitis mice. The present study elucidated that the symptoms of DSS-induced colitis mice were alleviated after PHI administration, including body weight loss, the disease activity index, colon length shortening, colonic pathological damage, splenomegaly, and hepatomegaly. PHI treatment improved the intestinal mucosal barrier by protecting goblet cells, promoting gene expressions of Clca1, Slc26a3, and Aqp8, increasing tight junction proteins (TJs), and reducing epithelial cell apoptosis. In addition, the levels of oxidative stress (MPO, SOD, and MDA) and inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-10) were reversed by PHI in colitis mice. According to transcriptome and network pharmacology analysis, inflammatory pathway might be an important mechanism for PHI to improve colitis. Western blotting displayed that the PHI inhibited the activation of tyrosine kinase Src mediated by TLR4, and then reduced the phosphorylation of downstream proteins p38, JNK, and NF-κB in colitis mice. In summary, our results suggested that PHI might be an appropriate and effective drug candidate to protect colitis.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Antiporters/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/patologia , Sulfato de Dextrana/toxicidade , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais , Transportadores de Sulfato/metabolismo , Receptor 4 Toll-Like/metabolismo , Genes src , Proteínas Quinases Ativadas por Mitógeno/metabolismo
19.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446938

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD), and its pathogenesis is related to intestinal mucosal barrier damage and gut microbiota imbalance. Protopine (PRO), an isoquinoline alkaloid, is one of the main anti-inflammatory ingredients of traditional Chinese medicine Macleaya cordata(Willd.) R. Br. This study investigated the effects of PRO on the intestinal mucosal barrier and gut microbiota in dextran sodium sulfate (DSS)-induced colitis mice. C57BL/6J mice were treated with 3% DSS in drinking water to induce acute colitis, while PRO was administered orally once daily for 7 days. The results showed that PRO administration significantly alleviated the symptoms of DSS-induced colitis in mice and inhibited the expression of inflammation-related genes. In addition, PRO restored the integrity of the intestinal barrier in colitis mice by restoring colonic mucin secretion and promoting the expression of tight junction proteins. Furthermore, PRO alleviated the DSS-induced gut microbiota dysbiosis by decreasing the abundance of Proteobacteria, Escherichia-Shigella and Enterococcus, as well as enhancing the abundance of beneficial bacteria, such as Firmicutes and Akkermansia. These findings suggested that PRO effectively alleviated DSS-induced ulcerative colitis by suppressing the expression of inflammation-related genes, maintaining the intestinal mucosal barrier and regulating the intestinal microbiota.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Camundongos , Camundongos Endogâmicos C57BL , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Dextranos , Inflamação , Colo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
20.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903391

RESUMO

This study aims to evaluate the effect of berberine-based carbon quantum dots (Ber-CDs) on improving 5-fluorouracil (5-FU)-induced intestinal mucositis in C57BL/6 mice, and explored the mechanisms behind this effect. Thirty-two C57BL/6 mice were divided into four groups: normal control (NC), 5-FU-induced intestinal mucositis model (5-FU), 5-FU + Ber-CDs intervention (Ber-CDs), and 5-FU + native berberine intervention (Con-CDs). The Ber-CDs improved body weight loss in 5-FU-induced mice with intestinal mucositis compared to the 5-FU group. The expressions of IL-1ß and NLRP3 in spleen and serum in Ber-CDs and Con-Ber groups were significantly lower than those in the 5-FU group, and the decrease was more significant in the Ber-CDs group. The expressions of IgA and IL-10 in the Ber-CDs and Con-Ber groups were higher than those in the 5-FU group, but the up-regulation was more significant in the Ber-CDs group. Compared with the 5-FU group, the relative contents of Bifidobacterium, Lactobacillus and the three main SCFAs in the colon contents were significantly increased the Ber-CDs and Con-Ber groups. Compared with the Con-Ber group, the concentrations of the three main short-chain fatty acids in the Ber-CDs group were significantly increased. The expressions of Occludin and ZO-1 in intestinal mucosa in the Ber-CDs and Con-Ber groups were higher than those in the 5-FU group, and the expressions of Occludin and ZO-1 in the Ber-CDs group were more higher than that in the Con-Ber group. In addition, compared with the 5-FU group, the damage of intestinal mucosa tissue in the Ber-CDs and Con-Ber groups were recovered. In conclusion, berberine can attenuate intestinal barrier injury and oxidative stress in mice to mitigate 5-fluorouracil-induced intestinal mucositis, moreover, the above effects of Ber-CDs were more significant than those of native berberine. These results suggest that Ber-CDs may be a highly effective substitute for natural berberine.


Assuntos
Berberina , Enteropatias , Mucosite , Pontos Quânticos , Animais , Camundongos , Mucosite/induzido quimicamente , Fluoruracila/farmacologia , Berberina/farmacologia , Ocludina/metabolismo , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo , Enteropatias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA