Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(4): 814-830, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38293733

RESUMO

Mycoplasma belong to the genus Mollicutes and are notable for their small genome sizes (500-1300 kb) and limited biosynthetic capabilities. They exhibit pathogenicity by invading various cell types to survive as intracellular pathogens. Adhesion is a crucial prerequisite for successful invasion and is orchestrated by the interplay between mycoplasma surface adhesins and specific receptors on the host cell membrane. Invasion relies heavily on clathrin- and caveolae-mediated internalization, accompanied by multiple activated kinases, cytoskeletal rearrangement, and a myriad of morphological alterations, such as membrane invagination, nuclear hypertrophy and aggregation, cytoplasmic edema, and vacuolization. Once mycoplasma successfully invade host cells, they establish resilient sanctuaries in vesicles, cytoplasm, perinuclear regions, and the nucleus, wherein specific environmental conditions favor long-term survival. Although lysosomal degradation and autophagy can eliminate most invading mycoplasmas, some viable bacteria can be released into the extracellular environment via exocytosis, a crucial factor in the prolonging infection persistence. This review explores the intricate mechanisms by which mycoplasma invades host cells and perpetuates their elusive survival, with the aim of highlighting the challenge of eradicating this enigmatic bacterium.


Assuntos
Infecções por Mycoplasma , Mycoplasma , Humanos , Mycoplasma/metabolismo , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/metabolismo , Infecções por Mycoplasma/microbiologia , Adesinas Bacterianas/metabolismo , Endocitose , Autofagia
2.
Infect Immun ; 92(2): e0047423, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38179975

RESUMO

Staphylococcus aureus is a leading cause of medical device-associated biofilm infections. This is influenced by the ability of S. aureus biofilm to evade the host immune response, which is partially driven by the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that treatment of human monocyte-derived macrophages (HMDMs) with IL-10 enhanced biofilm formation, suggesting that macrophage anti-inflammatory programming likely plays an important role during the transition from planktonic to biofilm growth. To identify S. aureus genes that were important for intracellular survival in HMDMs and how this was affected by IL-10, transposon sequencing was performed. The size of the S. aureus essential genome was similar between unstimulated HMDMs and the outgrowth control (18.5% vs 18.4%, respectively, with 54.4% overlap) but increased to 22.5% in IL-10-treated macrophages, suggesting that macrophage polarization status exerts differential pressure on S. aureus. Essential genes for S. aureus survival within IL-10-polarized HMDMs were dominated by negative regulatory pathways, including nitrogen and RNA metabolism, whereas S. aureus essential genes within untreated HMDMs were enriched in biosynthetic pathways such as purine and pyrimidine biosynthesis. To explore how IL-10 altered the macrophage intracellular metabolome, targeted metabolomics was performed on HMDMs from six individual donors. IL-10 treatment led to conserved alterations in distinct metabolites that were increased (dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, and acetyl-CoA) or reduced (fructose-6-phosphate, aspartic acid, and ornithine) across donors, whereas other metabolites were variable. Collectively, these findings highlight an important aspect of population-level heterogeneity in human macrophage responsiveness that should be considered when translating results to a patient population.IMPORTANCEOne mechanism that Staphylococcus aureus biofilm elicits in the host to facilitate infection persistence is the production of the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that exposure of human monocyte-derived macrophages (HMDMs) to IL-10 promotes S. aureus biofilm formation and programs intracellular bacteria to favor catabolic pathways. Examination of intracellular metabolites in HMDMs revealed heterogeneity between donors that may explain the observed variability in essential genes for S. aureus survival based on nutrient availability for bacteria within the intracellular compartment. Collectively, these studies provide novel insights into how IL-10 polarization affects S. aureus intracellular survival in HMDMs and the importance of considering macrophage heterogeneity between human donors as a variable when examining effector mechanisms.


Assuntos
Interleucina-10 , Infecções Estafilocócicas , Humanos , Interleucina-10/genética , Staphylococcus aureus/metabolismo , Macrófagos , Citocinas/metabolismo , Anti-Inflamatórios , Infecções Estafilocócicas/microbiologia , Biofilmes
3.
Curr Issues Mol Biol ; 46(2): 1556-1566, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38392218

RESUMO

The virulence of Mycobacterium tuberculosis (M. tuberculosis) is related to many factors, including intracellular survival, cell wall permeability, and cell envelope proteins. However, the biological function of the M. tuberculosis membrane protein Rv1476 remains unclear. To investigate the potential role played by Rv1476, we constructed an Rv1476 overexpression strain and found that overexpression of Rv1476 enhanced the intracellular survival of M. tuberculosis, while having no impact on the growth rate in vitro. Stress experiments demonstrated that the Rv1476 overexpression strain displayed increased susceptibility to different stresses compared to the wild-type strain. Transcriptome analysis showed that Rv1476 overexpression causes changes in the transcriptome of THP-1 cells, and differential genes are mainly enriched in cell proliferation, fatty acid degradation, cytokine-cytokine receptor interaction, and immune response pathways. Rv1476 overexpression inhibited the expression of some anti-tuberculosis-related genes, such as CCL1, IL15, IL16, ISG15, GBP5, IL23, ATG2A, IFNß, and CSF3. Altogether, we conclude that Rv1476 may play a critical role for M. tuberculosis in macrophage survival.

4.
Microb Pathog ; 193: 106754, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897361

RESUMO

B. parapertussis is a bacterium that causes whooping cough, a severe respiratory infection disease, that has shown an increased incidence in the population. Upon transmission through aerosol droplets, the initial steps of host colonization critically depend on the bacterial adhesins. We here described BPP0974, a B. parapertussis protein that exhibits the typical domain architecture of the large repetitive RTX adhesin family. BPP0974 was found to be retained in the bacterial membrane and secreted into the culture medium. This protein was found overexpressed in the avirulent phase of B. parapertussis, the phenotype proposed for initial host colonization. Interestingly, BPP0974 was found relevant for the biofilm formation as well as involved in the bacterial attachment to and survival within the respiratory epithelial cells. Taken together, our results suggest a role for BPP0974 in the early host colonization and pathogenesis of B. parapertussis.


Assuntos
Adesinas Bacterianas , Aderência Bacteriana , Biofilmes , Bordetella parapertussis , Células Epiteliais , Biofilmes/crescimento & desenvolvimento , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Bordetella parapertussis/genética , Bordetella parapertussis/metabolismo , Humanos , Células Epiteliais/microbiologia , Viabilidade Microbiana , Coqueluche/microbiologia , Regulação Bacteriana da Expressão Gênica , Linhagem Celular
5.
Mol Divers ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096353

RESUMO

Tuberculosis (TB) remains a critical health threat, particularly with the emergence of multidrug-resistant strains. This demands attention from scientific communities and healthcare professionals worldwide to develop effective treatments. The enhanced intracellular survival (Eis) protein is an acetyltransferase enzyme of Mycobacterium tuberculosis that functions by adding acetyl groups to aminoglycoside antibiotics, which interferes with their ability to bind to the bacterial ribosome, thereby preventing them from inhibiting protein synthesis and killing the bacterium. Therefore, targeting this protein accelerates the chance of restoring the aminoglycoside drug activity, thereby reducing the emergence of drug-resistant TB. For this, we have screened 406,747 natural compounds from the Coconut database against Eis protein. Based on MM/GBSA rescoring binding energy, the top 5 most prominent natural compounds, viz. CNP0187003 (- 96.14 kcal/mol), CNP0176690 (- 93.79 kcal/mol), CNP0136537 (- 92.31 kcal/mol), CNP0398701 (- 91.96 kcal/mol), and CNP0043390 (- 91.60 kcal/mol) were selected. These compounds exhibited the presence of a substantial number of hydrogen bonds and other significant interactions confirming their strong binding affinity with the Eis protein during the docking process. Subsequently, the MD simulation of these compounds exhibited that the Eis-CNP0043390 complex was the most stable, followed by Eis-CNP0187003 and Eis-CNP0176690 complex, further verified by binding free energy calculation, principal component analysis (PCA), and Free energy landscape analysis. These compounds demonstrated the most favourable results in all parameters utilised for this investigation and may have the potential to inhibit the Eis protein. There these findings will leverage computational techniques to identify and develop a natural compound inhibitor as an alternative for drug-resistant TB.

6.
J Fish Dis ; 47(7): e13949, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555527

RESUMO

Aeromonas hydrophila is not a traditional intracellular bacterium. However, previous studies revealed that pathogenic A. hydrophila B11 could temporarily survive for at least 24 h in fish phagocytes, and the regulation of intracellular survival in bacteria was associated with regulators of the LuxR-type. The mechanisms of luxR08110 on the A. hydrophila's survival in macrophages were investigated using comprehensive transcriptome analysis and biological phenotype analysis in this study. The results showed that after luxR08110 was silenced, the intracellular survival ability of bacteria was significantly diminished. Comparative transcriptome analysis revealed that luxR08110 was a critical regulator of A. hydrophila, which regulated the expression of over 1200 genes, involving in bacterial flagellar assembly and chemotaxis, ribosome, sulphur metabolism, glycerolipid metabolism, and other mechanisms. Further studies confirmed that after the inhibition of expression of luxR08110, the motility, chemotaxis and adhesion of A. hydrophila significantly decreased. Moreover, compared with the wild-type strain, the survival rates of silencing strain were all considerably reduced under both H2O2 and low pH stress conditions. According to both transcriptome analysis and phenotypic tests, the luxR08110 of A. hydrophila could act as global regulator in bacteria intracellular survival. This regulator regulated intracellular survival of A. hydrophila mainly through two ways. One way is to regulate bacterial flagellar synthesis and further affects the motility, chemotaxis and adhesion of bacteria. The other way is to regulate sulphur and glycerolipid metabolisms, thus affecting bacterial energy production and the ability to resist environmental stress.


Assuntos
Aeromonas hydrophila , Perfilação da Expressão Gênica , Aeromonas hydrophila/fisiologia , Aeromonas hydrophila/genética , Perfilação da Expressão Gênica/veterinária , Animais , Transativadores/genética , Transativadores/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transcriptoma , Doenças dos Peixes/microbiologia
7.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474006

RESUMO

The lipopolysaccharide (LPS) that resides on the outermost surface and protects Gram-negative bacteria from host defenses is one of the key components leading to Salmonella infection, particularly the endotoxic lipid A domain of LPS. Lipid A modifications have been associated with several genes such as the arnT that encodes 4-amino-4-deoxy-L-arabinose transferase, which can be critical for bacteria to resist cationic antimicrobial peptides and interfere with host immune recognition. However, the association of arnT with virulence is not completely understood. Thus, this study aimed to elucidate the interrelationship of the major lipid A modification gene arnT with Salmonella Typhimurium virulence. We observed that the arnT-deficient S. Typhimurium (JOL2943), compared to the wild type (JOL401), displayed a significant decrease in several virulence phenotypes such as polymyxin B resistance, intracellular survival, swarming, and biofilm and extracellular polymeric substance (EPS) production. Interestingly, the cell-surface hydrophobicity, adhesion, and invasion characteristics remained unaffected. Additionally, LPS isolated from the mutant induced notably lower levels of endotoxicity-related cytokines in RAW and Hela cells and mice, particularly IL-1ß with a nine-fold decrease, than WT. In terms of in vivo colonization, JOL2943 showed diminished presence in internal organs such as the spleen and liver by more than 60%, while ileal infectivity remained similar to JOL401. Overall, the arnT deletion rendered the strain less virulent, with low endotoxicity, maintained gut infectivity, and reduced colonization in internal organs. With these ideal characteristics, it can be further explored as a potential attenuated Salmonella strain for therapeutics or vaccine delivery systems.


Assuntos
Lipídeo A , Salmonella typhimurium , Humanos , Animais , Camundongos , Salmonella typhimurium/genética , Lipídeo A/química , Lipopolissacarídeos/química , Virulência , Matriz Extracelular de Substâncias Poliméricas , Células HeLa , Proteínas de Bactérias/genética
8.
Vet Microbiol ; 293: 110089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678845

RESUMO

Brucellosis is a zoonotic disease that affects wild and domestic animals. It is caused by members of the bacterial genus Brucella. Guanylate-binding protein 1 (GBP1) is associated with microbial infections. However, the role of GBP1 during Brucella infection remains unclear. This investigation aimed to identify the association of GBP1 with brucellosis. Results showed that Brucella infection induced GBP1 upregulation in RAW 264.7 murine macrophages. Small interfering GBP1 targeting RNAs were utilized to explore how GBP1 regulates the survival of Brucella intracellularly. Results revealed that GBP1 knockdown promoted Brucella's survival ability, activated Nod-like receptor (NLR) containing a pyrin domain 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammatory corpuscles, and induced pro-inflammatory cytokines IFN-γ and IL-1ß. Furthermore, Brucella stimulated the expression of GBP1 in bone marrow-derived macrophages (BMDMs) and mice. During the inhibition of GBP1 in BMDMs, the intracellular growth of Brucella increased. In comparison, GBP1 downregulation enhanced the accumulation of Brucella-induced reactive oxygen species (ROS) in macrophages. Overall, the data indicate a significant role of GBP1 in regulating brucellosis and suggest the function underlying its suppressive effect on the survival and growth of Brucella intracellularly.


Assuntos
Brucelose , Proteínas de Ligação ao GTP , Macrófagos , Animais , Camundongos , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Macrófagos/microbiologia , Brucelose/microbiologia , Células RAW 264.7 , Brucella/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL
9.
Cells ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38920649

RESUMO

Mycobacterium tuberculosis causes 6.4 million cases of tuberculosis and claims 1.6 million lives annually. Mycobacterial adhesion, invasion of host cells, and subsequent intracellular survival are crucial for the infection and dissemination process, yet the cellular mechanisms underlying these phenomena remain poorly understood. This study created a Bacillus Calmette-Guérin (BCG) transposon library using a MycomarT7 phage carrying a Himar1 Mariner transposon to identify genes related to mycobacteria adhesion and invasion. Using adhesion and invasion model screening, we found that the mutant strain B2909 lacked adhesion and invasion abilities because of an inactive fadD18 gene, which encodes a fatty-acyl CoA ligase, although the specific function of this gene remains unclear. To investigate the role of FadD18, we constructed a complementary strain and observed that fadD18 expression enhanced the colony size and promoted the formation of a stronger cord-like structure; FadD18 expression also inhibited BCG growth and reduced BCG intracellular survival in macrophages. Furthermore, FadD18 expression elevated levels of the proinflammatory cytokines IL-6, IL-1ß, and TNF-α in infected macrophages by stimulating the NF-κB and MAPK signaling pathways. Overall, the FadD18 plays a key role in the adhesion and invasion abilities of mycobacteria while modulating the intracellular survival of BCG by influencing the production of proinflammatory cytokines.


Assuntos
Citocinas , Mycobacterium tuberculosis , Citocinas/metabolismo , Macrófagos/microbiologia , Macrófagos/metabolismo , Mycobacterium bovis , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Humanos , NF-kappa B/metabolismo , Viabilidade Microbiana , Aderência Bacteriana
10.
Virulence ; 15(1): 2322961, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38443331

RESUMO

Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.


Assuntos
Infecções por Bartonella , Bartonella , Humanos , Evasão da Resposta Imune , Apoptose , Biofilmes , Proteínas de Membrana
11.
Vet Microbiol ; 298: 110224, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39153287

RESUMO

B. abortus is a facultative intracellular bacterium that replicates within macrophages. Intracellular survival is one of the important indexes to evaluate the virulence of Brucella. Ferroptosis is a type of programmed cell death induced by the accumulation of free iron, reactive oxygen species (ROS), and toxic lipid peroxides, play roles on cancers, cardiovascular diseases, and inflammatory diseases. In this study, we found that Brucella rough strain RB51 induced ferroptosis on macrophages with reduced levels of host glutathione and glutathione peroxidase 4 (Gpx4), together with increased ferrous iron, lipid peroxidation, and ROS. The inhibitor ferrostatin-1 significantly reduced the ferroptosis of RB51-infected macrophages, confirming that ferroptosis occurred during infection with Brucella RB51. Furthermore, we found that RB51 infection induced ferroptosis is regulated by P53-Slc7a11-Gpx4/GSH signal pathway. Inhibiting P53 decreased the levels of ROS and lipid peroxidation, while the levels of Slc7a11, Gpx4 and GSH were rescued. More importantly, inhibiting ferroptosis by different ferroptosis inhibitors increased the intracellular survival of Brucella RB51, indicating ferroptosis functions on the attenuation of Brucella intracellular survival. Collectively, our observations demonstrate that Brucella RB51 infection induces ferroptosis on macrophages, which is regulated by P53-Slc7a11-Gpx4/GSH signal pathway and functions on the attenuation of intracellular survival of Brucella.

12.
Front Microbiol ; 15: 1423995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035445

RESUMO

Streptococcus pneumoniae is a major pathogen responsible for severe complications in patients with prior influenza A virus (IAV) infection. We have previously demonstrated that S. pneumoniae exhibits increased intracellular survival within IAV-infected cells. Fluoroquinolones (FQs) are widely used to treat pneumococcal infections. However, our prior work has shown that S. pneumoniae can develop intracellular FQ persistence, a phenomenon triggered by oxidative stress within host cells. This persistence allows the bacteria to withstand high FQ concentrations. In this study, we show that IAV infection enhances pneumococcal FQ persistence during intracellular survival within pneumocytes, macrophages, and neutrophils. This enhancement is partly due to increased oxidative stress induced by the viral infection. We find that this phenotype is particularly pronounced in autophagy-proficient host cells, potentially resulting from IAV-induced blockage of autophagosome-lysosome fusion. Moreover, we identified several S. pneumoniae genes involved in oxidative stress response that contribute to FQ persistence, including sodA (superoxide dismutase), clpL (chaperone), nrdH (glutaredoxin), and psaB (Mn+2 transporter component). Our findings reveal a novel mechanism of antibiotic persistence promoted by viral infection within host cells. This underscores the importance of considering this phenomenon when using FQs to treat pneumococcal infections, especially in patients with concurrent influenza A infection.

13.
Pathogens ; 12(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38133312

RESUMO

Yersinia pseudotuberculosis is an extracellular foodborne pathogen and usually causes self-limiting diarrhea in healthy humans. MgtC is known as a key subversion factor that contributes to intramacrophage adaptation and intracellular survival in certain important pathogens. Whether MgtC influences the fitness of Y. pseudotuberculosis is unclear. According to in silico analysis, MgtC in Y. pseudotuberculosis might share similar functions with other bacterial pathogens, such as Salmonella. Studies indicated that MgtC was clearly required for Y. pseudotuberculosis growth in vitro and bacterial survival in macrophages under Mg2+ starvation. Transcriptome analysis by RNA-seq indicated that 127 differentially expressed genes (DEGs) (fold change > 2 and p < 0.001) were discovered between wild-type PB1+ and mgtC mutant inside macrophages. However, a lack of MgtC only moderately, albeit significantly, reduced the virulence of Y. pseudotuberculosis in mice. Overall, this study provides additional insights for the role of MgtC in Y. pseudotuberculosis.

14.
Mem. Inst. Oswaldo Cruz ; 107(4): 486-493, June 2012. ilus, graf
Artigo em Inglês | LILACS | ID: lil-626442

RESUMO

Corynebacterium pseudodiphtheriticum is a well-known human pathogen that mainly causes respiratory disease and is associated with high mortality in compromised hosts. Little is known about the virulence factors and pathogenesis of C. pseudodiphtheriticum. In this study, cultured human epithelial (HEp-2) cells were used to analyse the adherence pattern, internalisation and intracellular survival of the ATCC 10700 type strain and two additional clinical isolates. These microorganisms exhibited an aggregative adherence-like pattern to HEp-2 cells characterised by clumps of bacteria with a "stacked-brick" appearance. The differences in the ability of these microorganisms to invade and survive within HEp-2 cells and replicate in the extracellular environment up to 24 h post infection were evaluated. The fluorescent actin staining test demonstrated that actin polymerisation is involved in the internalisation of the C. pseudodiphtheriticum strains. The depolymerisation of microfilaments by cytochalasin E significantly reduced the internalisation of C. pseudodiphtheriticum by HEp-2 cells. Bacterial internalisation and cytoskeletal rearrangement seemed to be partially triggered by the activation of tyrosine kinase activity. Although C. pseudodiphtheriticum strains did not demonstrate an ability to replicate intracellularly, HEp-2 cells were unable to fully clear the pathogen within 24 h. These characteristics may explain how some C. pseudodiphtheriticum strains cause severe infection in human patients.


Assuntos
Humanos , Aderência Bacteriana/fisiologia , Corynebacterium/patogenicidade , Células Epiteliais/microbiologia , Corynebacterium/fisiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA