Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Acta Neurochir (Wien) ; 166(1): 22, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236374

RESUMO

BACKGROUND: The role of reduced intracranial compliance (ICC) in the outcome after foramen magnum decompression (FMD) was demonstrated in adults with Chiari malformation Type 1 (CMI). However, similar observations from children treated for CMI are missing. METHODS: We reviewed pediatric cases of CMI referred to FMD between 2006 and 2022. Children with clinical and/or radiological signs suggesting reduced ICC (Group A) underwent overnight measurements of the pulsatile intracranial pressure (ICP): mean ICP wave amplitude (MWA) served as a surrogate marker of ICC. Children with more typical symptoms of CMI (Group B) underwent FMD without preoperative ICC estimation. This study presents the clinical, radiological, and outcome differences between these groups. RESULTS: Sixty-four children (mean age 11.1 ± 4.3 years) underwent FMD: In Group A (n = 30), the finding of reduced ICC as estimated from preoperative ICP measurement resulted in CSF diversion (ventriculoperitoneal shunt) before FMD in 11 children. Two patients required shunt due to complications after FMD (total shunt rate 43%). In Group B (n = 34) treated with FMD without preoperative ICC estimation, five children (15%) required shunting due to complications. In Group A, we found a significantly higher frequency of headache, nausea, fatigue, and dizziness. The outcome assessed by the modified Chicago Chiari Outcome Scale (mean follow-up 83 ± 57 months) was comparable between the groups, but the complication rate after FMD was significantly lower in Group A (7% vs. 32%; p = 0.011). The number of procedures (ICP measurement, FMD, shunt, re-do FMD, shunt revisions) was significantly higher in Group A (2.6 ± 0.9 vs. 1.5 ± 1.1 per patient; p < 0.001). CONCLUSION: In symptomatic children with CMI, the preoperative estimation of ICC from the overnight measurement of pulsatile ICP was more reliable for identifying those with reduced ICC than clinical and radiological assessment alone. When children with abnormally reduced ICC were identified and treated with CSF diversion before FMD, the complication rate was significantly reduced.


Assuntos
Malformação de Arnold-Chiari , Adolescente , Criança , Humanos , Malformação de Arnold-Chiari/diagnóstico por imagem , Malformação de Arnold-Chiari/cirurgia , Tontura , Fadiga , Forame Magno , Cefaleia
2.
Neurocrit Care ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811514

RESUMO

BACKGROUND: Numerous trials have addressed intracranial pressure (ICP) management in neurocritical care. However, identifying its harmful thresholds and controlling ICP remain challenging in terms of improving outcomes. Evidence suggests that an individualized approach is necessary for establishing tolerance limits for ICP, incorporating factors such as ICP waveform (ICPW) or pulse morphology along with additional data provided by other invasive (e.g., brain oximetry) and noninvasive monitoring (NIM) methods (e.g., transcranial Doppler, optic nerve sheath diameter ultrasound, and pupillometry). This study aims to assess current ICP monitoring practices among experienced clinicians and explore whether guidelines should incorporate ancillary parameters from NIM and ICPW in future updates. METHODS: We conducted a survey among experienced professionals involved in researching and managing patients with severe injury across low-middle-income countries (LMICs) and high-income countries (HICs). We sought their insights on ICP monitoring, particularly focusing on the impact of NIM and ICPW in various clinical scenarios. RESULTS: From October to December 2023, 109 professionals from the Americas and Europe participated in the survey, evenly distributed between LMIC and HIC. When ICP ranged from 22 to 25 mm Hg, 62.3% of respondents were open to considering additional information, such as ICPW and other monitoring techniques, before adjusting therapy intensity levels. Moreover, 77% of respondents were inclined to reassess patients with ICP in the 18-22 mm Hg range, potentially escalating therapy intensity levels with the support of ICPW and NIM. Differences emerged between LMIC and HIC participants, with more LMIC respondents preferring arterial blood pressure transducer leveling at the heart and endorsing the use of NIM techniques and ICPW as ancillary information. CONCLUSIONS: Experienced clinicians tend to personalize ICP management, emphasizing the importance of considering various monitoring techniques. ICPW and noninvasive techniques, particularly in LMIC settings, warrant further exploration and could potentially enhance individualized patient care. The study suggests updating guidelines to include these additional components for a more personalized approach to ICP management.

3.
J Clin Monit Comput ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031230

RESUMO

PURPOSE: An FDA-approved non-invasive intracranial pressure (ICP) monitoring system enables the assessment of ICP waveforms by revealing and analyzing their morphological variations and parameters associated with intracranial compliance, such as the P2/P1 ratio and time-to-peak (TTP). The aim of this study is to characterize intracranial compliance in healthy volunteers across different age groups. METHODS: Healthy participants, both sexes, aged from 9 to 74 years old were monitored for 5 min in the supine position at 0º. Age was stratified into 4 groups: children (≤ 7 years); young adults (18 ≤ age ≤ 44 years); middle-aged adults (45 ≤ age ≤ 64 years); older adults (≥ 65 years). The data obtained was the non-invasive ICP waveform, P2/P1 ratio and TTP. RESULTS: From December 2020 to February 2023, 188 volunteers were assessed, of whom 104 were male, with a median (interquartile range) age of 41 (29-51), and a median (interquartile range) body mass index of 25.09 (22.57-28.04). Men exhibited lower values compared to women for both the P2/P1 ratio and TTP (p < 0.001). There was a relative rise in both P2/P1 and TTP as age increased (p < 0.001). CONCLUSIONS: The study revealed that the P2/P1 ratio and TTP are influenced by age and sex in healthy individuals, with men displaying lower values than women, and both ratios increasing with age. These findings suggest potential avenues for further research with larger and more diverse samples to establish reference values for comparison in various health conditions. TRIAL REGISTRATION: Brazilian Registry of Clinical Trials (RBR-9nv2h42), retrospectively registered 05/24/2022. UTN: U1111-1266-8006.

4.
J Clin Monit Comput ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844603

RESUMO

Neurocritical patients frequently exhibit abnormalities in cerebral hemodynamics (CH) and/or intracranial compliance (ICC), all of which significantly impact their clinical outcomes. Transcranial Doppler (TCD) and the cranial micro-deformation sensor (B4C) are valuable techniques for assessing CH and ICC, respectively. However, there is a scarcity of data regarding the predictive value of these techniques in determining patient outcomes. We prospectively included neurocritical patients undergoing intracranial pressure (ICP) monitoring within the first 5 days of hospital admission for TCD and B4C assessments. Comprehensive clinical data were collected alongside parameters obtained from TCD (including the estimated ICP [eICP] and estimated cerebral perfusion pressure [eCPP]) and B4C (measured as the P2/P1 ratio). These parameters were evaluated individually as well as in combination. The short-term outcomes (STO) of interest were the therapy intensity levels (TIL) for ICP management recommended by the Seattle International Brain Injury Consensus Conference, as TIL 0 (STO 1), TIL 1-3 (STO 2) and death (STO 3), at the seventh day after last data collection. The dataset was randomly separated in test and training samples, area under the curve (AUC) was used to represent the noninvasive techniques ability on the STO prediction and association with ICP. A total of 98 patients were included, with 67% having experienced severe traumatic brain injury and 15% subarachnoid hemorrhage, whilst the remaining patients had ischemic or hemorrhagic stroke. ICP, P2/P1, and eCPP demonstrated the highest ability to predict early mortality (p = 0.02, p = 0.02, and p = 0.006, respectively). P2/P1 was the only parameter significant for the prediction of STO 1 (p = 0.03). Combining B4C and TCD parameters, the highest AUC was 0.85 to predict death (STO 3), using P2/P1 + eCPP, whereas AUC was 0.72 to identify ICP > 20 mmHg using P2/P1 + eICP. The combined noninvasive neuromonitoring approach using eCPP and P2/P1 ratio demonstrated improved performance in predicting outcomes during the early phase after acute brain injury. The correlation with intracranial hypertension was moderate, by means of eICP and P2/P1 ratio. These results support the need for interpretation of this information in the ICU and warrant further investigations for the definition of therapy strategies using ancillary tests.

5.
J Clin Monit Comput ; 38(4): 773-782, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38355918

RESUMO

Intracranial hypertension (IH) is a life-threating condition especially for the brain injured patient. In such cases, an external ventricular drain (EVD) or an intraparenchymal bolt are the conventional gold standard for intracranial pressure (ICPi) monitoring. However, these techniques have several limitations. Therefore, identifying an ideal screening method for IH is important to avoid the unnecessary placement of ICPi and expedite its introduction in patients who require it. A potential screening tool is the ICP wave morphology (ICPW) which changes according to the intracranial volume-pressure curve. Specifically, the P2/P1 ratio of the ICPW has shown promise as a triage test to indicate normal ICP. In this study, we propose evaluating the noninvasive ICPW (nICPW-B4C sensor) as a screening method for ICPi monitoring in patients with moderate to high probability of IH. This is a retrospective analysis of a prospective, multicenter study that recruited adult patients requiring ICPi monitoring from both Federal University of São Paulo and University of São Paulo Medical School Hospitals. ICPi values and the nICPW parameters were obtained from both the invasive and the noninvasive methods simultaneously 5 min after the closure of the EVD drainage. ICP assessment was performed using a catheter inserted into the ventricle and connected to a pressure transducer and a drainage system. The B4C sensor was positioned on the patient's scalp without the need for trichotomy, surgical incision or trepanation, and the morphology of the ICP waves acquired through a strain sensor that can detect and monitor skull bone deformations caused by changes in ICP. All patients were monitored using this noninvasive system for at least 10 min per session. The area under the curve (AUC) was used to describe discriminatory power of the P2/P1 ratio for IH, with emphasis in the Negative Predictive value (NPV), based on the Youden index, and the negative likelihood ratio [LR-]. Recruitment occurred from August 2017 to March 2020. A total of 69 patients fulfilled inclusion and exclusion criteria in the two centers and a total of 111 monitorizations were performed. The mean P2/P1 ratio value in the sample was 1.12. The mean P2/P1 value in the no IH population was 1.01 meanwhile in the IH population was 1.32 (p < 0.01). The best Youden index for the mean P2/P1 ratio was with a cut-off value of 1.13 showing a sensitivity of 93%, specificity of 60%, and a NPV of 97%, as well as an AUC of 0.83 to predict IH. With the 1.13 cut-off value for P2/P1 ratio, the LR- for IH was 0.11, corresponding to a strong performance in ruling out the condition (IH), with an approximate 45% reduction in condition probability after a negative test (ICPW). To conclude, the P2/P1 ratio of the noninvasive ICP waveform showed in this study a high Negative Predictive Value and Likelihood Ratio in different acute neurological conditions to rule out IH. As a result, this parameter may be beneficial in situations where invasive methods are not feasible or unavailable and to screen high-risk patients for potential invasive ICP monitoring.Trial registration: At clinicaltrials.gov under numbers NCT05121155 (Registered 16 November 2021-retrospectively registered) and NCT03144219 (Registered 30 September 2022-retrospectively registered).


Assuntos
Lesões Encefálicas , Hipertensão Intracraniana , Pressão Intracraniana , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Hipertensão Intracraniana/diagnóstico , Estudos Retrospectivos , Monitorização Fisiológica/métodos , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico , Estudos Prospectivos , Curva ROC , Idoso
6.
BMC Neurol ; 23(1): 416, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990305

RESUMO

BACKGROUND: Idiopathic intracranial hypertension is a disease characterized by increased intracranial cerebrospinal fluid volume and pressure without evidence of other intracranial pathology. Dural sinuses are rigid structures representing a privileged low-pressure intracranial compartment. Rigidity of dural sinus ensures that the large physiologic fluctuations of cerebrospinal fluid pressure associated with postural changes or to Valsalva effect cannot be transmitted to the sinus. An abnormal dural sinus collapsibility, especially when associated with various anatomical sinus narrowing, has been proposed as a key factor in the pathogenesis of idiopathic intracranial hypertension. This pathogenetic model is based on an excessive collapsibility of the dural sinuses that leads to the triggering of a self-limiting venous collapse positive feedback-loop between the cerebrospinal fluid pressure, that compresses the sinus, and the increased dural sinus pressure upstream, that reduces the cerebrospinal fluid reabsorption rate, increasing cerebrospinal fluid volume and pressure at the expense of intracranial compliance and promoting further sinus compression. Intracranial compliance is the ability of the craniospinal space to accept small volumetric increases of one of its compartments without appreciable intracranial pressure rise. In idiopathic intracranial hypertension, a condition associated with a reduced rate of CSF reabsorption leading to its volumetric expansion, a pathologically reduced IC precedes and accompanies the rise of ICP. Syncope is defined as a transient loss of consciousness due to a transient cerebral hypoperfusion characterized by rapid onset, short duration, and spontaneous complete recovery. A transient global cerebral hypoperfusion represents the final mechanism of syncope determined by cardiac output and/or total peripheral resistance decrease. There are many causes determining low cardiac output including reflex bradycardia, arrhythmias, cardiac structural disease, inadequate venous return, and chronotropic and inotropic incompetence. Typically, syncopal transient loss of consciousness is mainly referred to an extracranial mechanism triggering a decrease in cardiac output and/or total peripheral resistance. Conversely, the association of syncope with a deranged control of intracranial compliance related to cerebral venous outflow disorders has been only anecdotally reported. CASE PRESENTATION: We report on a 57-year-old woman with daily recurrent orthostatic hypotension syncope and idiopathic intracranial hypertension-related headaches, which resolved after lumbar puncture with cerebrospinal fluid subtraction. CONCLUSIONS: A novel mechanism underlying the triggering of orthostatic syncope in the presence of intracranial hypertension-dependent reduced intracranial compliance is discussed.


Assuntos
Hipertensão Intracraniana , Pseudotumor Cerebral , Feminino , Humanos , Pessoa de Meia-Idade , Pseudotumor Cerebral/complicações , Punção Espinal , Hipertensão Intracraniana/complicações , Síncope , Reflexo
7.
Childs Nerv Syst ; 39(1): 185-195, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36098768

RESUMO

INTRODUCTION: Telemetric intracranial pressure measurement (tICPM) offers new opportunities to acquire objective information in shunted and non-shunted patients. The sensor reservoir (SR) provides tICPM modality at a decent sampling rate as an integrated component of the CSF shunt system. The aim of this study is to perform tICPM during a defined protocol of maneuvers in an outpatient setting as feasibility study including either shunt-dependent patients or candidates for possible shunt therapy. METHODS: A total of 17 patients received a SR and were investigated within a protocol of maneuver measurements involving different body postures (90°, 10°, 0°, and - 10°), breathing patterns (hypo- and hyperventilation), and mild venous congestion (Valsalva, Jugular vein compression), while the latter two were performed in lying postures (10° and 0°). The cohort included 11 shunted and 6 non-shunted (stand-alone-SR) patients. All measurements were evaluated using an ICP-analysis software (ICPicture, Miethke, Germany) looking at ICP changes and amplitude (AMP) characteristics. RESULTS: The shunted patient group consisted of 11 patients (median age: 15.8 years; range: 4-35.2 years) with either a primary shunt (n=9) and 2 patients received a shunt after stand-alone-SR tICPM. Six patients were enrolled with a stand-alone SR (median age 11.9 years, range 3.6-17.7 years). In the stand-alone SR group, maneuver related ICP and AMP changes were more sensitive compared to shunted patients. Postural maneuvers caused significant ICP changes in all body positions in both groups. The highest ICP values were seen during Valsalva maneuver, provoked by the patients themselves. In the stand-alone group, significant higher ICP values during hyperventilation were observed compared to shunted individuals. In shunted patients, a significant correlation between ICP and AMP was observed only during hyperventilation maneuver, while this correlation was additionally seen in Valsalva and jugular vein compression in stand-alone patients. CONCLUSION: SR-related tICPM is helpful to objectify diagnostic evaluation in patients with CSF dynamic disturbances. The defined protocol did result in a wide range of ICP changes with promising potential for effective outpatient tICPM investigation. Since the correlation of ICP and AMP was observed during mild venous congestion maneuvers it appears to be specifically helpful for the evaluation of intracranial compliance. Further investigations of maneuver-related tICPM in a larger population, including variable pathologies, are needed to further establish the protocol in the clinical practice.


Assuntos
Hidrocefalia , Hiperemia , Humanos , Adolescente , Pré-Escolar , Criança , Pressão Intracraniana , Pacientes Ambulatoriais , Hiperventilação , Hidrocefalia/cirurgia , Monitorização Fisiológica
8.
Neurocrit Care ; 39(2): 399-410, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36869208

RESUMO

BACKGROUND: Critical closing pressure (CrCP) and resistance-area product (RAP) have been conceived as compasses to optimize cerebral perfusion pressure (CPP) and monitor cerebrovascular resistance, respectively. However, for patients with acute brain injury (ABI), the impact of intracranial pressure (ICP) variability on these variables is poorly understood. The present study evaluates the effects of a controlled ICP variation on CrCP and RAP among patients with ABI. METHODS: Consecutive neurocritical patients with ICP monitoring were included along with transcranial Doppler and invasive arterial blood pressure monitoring. Internal jugular veins compression was performed for 60 s for the elevation of intracranial blood volume and ICP. Patients were separated in groups according to previous intracranial hypertension severity, with either no skull opening (Sk1), neurosurgical mass lesions evacuation, or decompressive craniectomy (DC) (patients with DC [Sk3]). RESULTS: Among 98 included patients, the correlation between change (Δ) in ICP and the corresponding ΔCrCP was strong (group Sk1 r = 0.643 [p = 0.0007], group with neurosurgical mass lesions evacuation r = 0.732 [p < 0.0001], and group Sk3 r = 0.580 [p = 0.003], respectively). Patients from group Sk3 presented a significantly higher ΔRAP (p = 0.005); however, for this group, a higher response in mean arterial pressure (change in mean arterial pressure p = 0.034) was observed. Exclusively, group Sk1 disclosed reduction in ICP before internal jugular veins compression withholding. CONCLUSIONS: This study elucidates that CrCP reliably changes in accordance with ICP, being useful to indicate ideal CPP in neurocritical settings. In the early days after DC, cerebrovascular resistance seems to remain elevated, despite exacerbated arterial blood pressure responses in efforts to maintain CPP stable. Patients with ABI with no need of surgical procedures appear to remain with more effective ICP compensatory mechanisms when compared with those who underwent neurosurgical interventions.


Assuntos
Lesões Encefálicas , Hipertensão Intracraniana , Humanos , Pressão Intracraniana/fisiologia , Pressão Sanguínea/fisiologia , Pressão Arterial/fisiologia , Circulação Cerebrovascular/fisiologia
9.
J Clin Monit Comput ; 37(3): 753-760, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399214

RESUMO

Analysis of intracranial pressure waveforms (ICPW) provides information on intracranial compliance. We aimed to assess the correlation between noninvasive ICPW (NICPW) and invasively measured intracranial pressure (ICP) and to assess the NICPW prognostic value in this population. In this cohort, acute brain-injured (ABI) patients were included within 5 days from admission in six Intensive Care Units. Mean ICP (mICP) values and the P2/P1 ratio derived from NICPW were analyzed and correlated with outcome, which was defined as: (a) early death (ED); survivors on spontaneous breathing (SB) or survivors on mechanical ventilation (MV) at 7 days from inclusion. Intracranial hypertension (IHT) was defined by ICP > 20 mmHg. A total of 72 patients were included (mean age 39, 68% TBI). mICP and P2/P1 values were significantly correlated (r = 0.49, p < 0.001). P2/P1 ratio was significantly higher in patients with IHT and had an area under the receiving operator curve (AUROC) to predict IHT of 0.88 (95% CI 0.78-0.98). mICP and P2/P1 ratio was also significantly higher for ED group (n = 10) than the other groups. The AUROC of P2/P1 to predict ED was 0.71 [95% CI 0.53-0.87], and the threshold P2/P1 > 1.2 showed a sensitivity of 60% [95% CI 31-83%] and a specificity of 69% [95% CI 57-79%]. Similar results were observed when decompressive craniectomy patients were excluded. In this study, P2/P1 derived from noninvasive ICPW assessment was well correlated with IHT. This information seems to be as associated with ABI patients outcomes as ICP.Trial registration: NCT03144219, Registered 01 May 2017 Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/NCT03144219 .


Assuntos
Lesões Encefálicas Traumáticas , Hipertensão Intracraniana , Adulto , Humanos , Encéfalo , Hipertensão Intracraniana/diagnóstico , Pressão Intracraniana , Prognóstico
10.
Entropy (Basel) ; 25(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36832634

RESUMO

Intracranial pressure (ICP) monitoring is commonly used in the follow-up of patients in intensive care units, but only a small part of the information available in the ICP time series is exploited. One of the most important features to guide patient follow-up and treatment is intracranial compliance. We propose using permutation entropy (PE) as a method to extract non-obvious information from the ICP curve. We analyzed the results of a pig experiment with sliding windows of 3600 samples and 1000 displacement samples, and estimated their respective PEs, their associated probability distributions, and the number of missing patterns (NMP). We observed that the behavior of PE is inverse to that of ICP, in addition to the fact that NMP appears as a surrogate for intracranial compliance. In lesion-free periods, PE is usually greater than 0.3, and normalized NMP is less than 90% and p(s1)>p(s720). Any deviation from these values could be a possible warning of altered neurophysiology. In the terminal phases of the lesion, the normalized NMP is higher than 95%, and PE is not sensitive to changes in ICP and p(s720)>p(s1). The results show that it could be used for real-time patient monitoring or as input for a machine learning tool.

11.
Magn Reson Med ; 85(1): 197-208, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783240

RESUMO

PURPOSE: Intracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal pressure hydrocephalus and other forms of communicating hydrocephalus. A noninvasive method to estimate the spinal cerebrospinal fluid (CSF) pulse wave velocity (PWV) as a measure of compliance was developed using a multiband cine phase-contrast MRI sequence and a foot-to-foot algorithm. METHODS: We used computational simulations to estimate the accuracy of the MRI acquisition and transit-time algorithm. In vitro measurements were performed to investigate the reproducibility and accuracy of the measurements under controlled conditions. In vivo measurements in 20 healthy subjects and 2 patients with normal pressure hydrocephalus were acquired to show the technical feasibility in a clinical setting. RESULTS: Simulations showed a mean deviation of the calculated CSF PWV of 3.41% ± 2.68%. In vitro results were in line with theory, showing a square-root relation between PWV and transmural pressure and a good reproducibility with SDs of repeated measurements below 5%. Mean CSF PWV over all healthy subjects was 5.83 ± 3.36 m/s. The CSF PWV measurements in the patients with normal pressure hydrocephalus were distinctly higher before CSF shunt surgery (33.80 ± 6.75 m/s and 31.31 ± 7.82 m/s), with a decrease 5 days after CSF shunt surgery (15.69 ± 3.37 m/s). CONCLUSION: This study evaluates the feasibility of CSF PWV measurements using a multiband cine phase-contrast MRI sequence. In vitro and in vivo measurements showed that this method is a potential tool for the noninvasive estimation of intraspinal compliance.


Assuntos
Hidrocefalia de Pressão Normal , Análise de Onda de Pulso , Algoritmos , Líquido Cefalorraquidiano/diagnóstico por imagem , Humanos , Hidrocefalia de Pressão Normal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Reprodutibilidade dos Testes
12.
Childs Nerv Syst ; 37(6): 1883-1893, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33884480

RESUMO

INTRODUCTION: Paediatric ventriculomegaly without obvious signs or symptoms of raised intracranial pressure (ICP) is often interpreted as resulting from either relative brain atrophy, arrested "benign" hydrocephalus, or "successful" endoscopic third ventriculostomy (ETV). We hypothesise that the typical ICP "signature" found in symptomatic hydrocephalus can be present in asymptomatic or oligosymptomatic children, indicating pressure-compensated, but active hydrocephalus. METHODS: A total of 37 children fulfilling the mentioned criteria underwent computerised ICP overnight monitoring (ONM). Fifteen children had previous hydrocephalus treatment. ICP was analysed for nocturnal dynamics of ICP, ICP amplitudes (AMP), magnitude of slow waves (SLOW), and ICP/AMP correlation index RAP. Depending on the ONM results, children were either treated or observed. The ventricular width was determined at the time of ONM and at 1-year follow-up. RESULTS: The recordings of 14 children (group A) were considered normal. In the 23 children with pathologic recordings (group B), all ICP values and dependent variables (AMP, SLOW) were significantly higher, except for RAP. In group B, 12 of 15 children had received a pre-treatment and 11 of 22 without previous treatment. All group B children received treatment for hydrocephalus and showed a significant reduction of frontal-occipital horn ratio at 1 year. During follow-up, a positive neurological development was seen in 74% of children of group A and 100% of group B. CONCLUSION: Ventriculomegaly in the absence of signs and symptoms of raised ICP was associated in 62% of cases to pathological ICP dynamics. In 80% of pre-treated cases, ETV or shunt failure was found. Treating children with abnormal ICP dynamics resulted in an outcome at least as favourable as in the group with normal ICP dynamics. Thus, asymptomatic ventriculomegaly in children deserves further investigation and, if associated with abnormal ICP dynamics, should be treated in order to provide a normalised intracranial physiology as basis for best possible long-term outcome.


Assuntos
Hidrocefalia , Hipertensão Intracraniana , Criança , Humanos , Hidrocefalia/cirurgia , Pressão Intracraniana , Monitorização Fisiológica , Resultado do Tratamento , Ventriculostomia
13.
Acta Neurochir (Wien) ; 163(7): 2015-2023, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33389123

RESUMO

BACKGROUND: Although measurement of intracranial pressure (ICP) has occasionally been utilized in children with craniosynostosis (CSS), data on parameters of pulsatile ICP in CSS are still lacking, and the role of pulsatile ICP measurements in the management of CSS is not well established. METHODS: From our department's database, we retrieved the data from children in whom the measurement of static and pulsatile ICP was a part of the diagnostic work-up in different clinical situations related to CSS. Both clinical and ICP data were retrospectively reviewed and analyzed. RESULTS: We identified 49 children with CSS, median age 4.4 years (range 0.2-18.9), in whom a total of 67 diagnostic ICP measurements were undertaken between 2002 and 2014. The CSS was syndromal in 23 cases. The rationale for ICP measurement was a question of indication for cranial vault expansion surgery (CVES) in 12 patients (Group 1), of its timing in 10 patients (Group 2), of suspected abnormally elevated ICP or hydrocephalus in 11 patients (Group 3), of indication for repeated CVES in 13 patients (Group 4), or shunt dysfunction in three patients (Group 5). The average mean ICP for the whole cohort was 15.1 ± 5.5 mmHg and mean wave amplitude (MWA) 5.3 ± 2.2 mmHg. There was no significant difference in ICP parameters when compared between Groups 1-5. Fundoscopy revealed papilledema in five out of 32 children (15.6%). There were significantly higher parameters of pulsatile ICP (MWA) in patients with papilledema, but no statistically significant difference in parameters of static ICP. CONCLUSIONS: In this cohort of pediatric patients with CSS presenting with various diagnostic challenges, we found the diagnostic measurement of static and pulsatile ICP useful in selecting the optimal treatment modality and timing of surgery. Papilledema was associated with elevated pulsatile ICP, a parameter that in previous studies has been shown to correlate with impaired intracranial compliance.


Assuntos
Craniossinostoses , Hipertensão Intracraniana , Pressão Intracraniana , Adolescente , Criança , Pré-Escolar , Craniossinostoses/complicações , Craniossinostoses/cirurgia , Humanos , Lactente , Hipertensão Intracraniana/diagnóstico , Hipertensão Intracraniana/etiologia , Hipertensão Intracraniana/cirurgia , Estudos Retrospectivos , Crânio
14.
Neurocrit Care ; 30(2): 340-347, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30251075

RESUMO

BACKGROUND: An external ventricular drain (EVD) is the gold standard for measurement of intracranial pressure (ICP) and allows for drainage of cerebrospinal fluid (CSF). Different causes of elevated ICP, such as CSF outflow obstruction or cerebral swelling, respond differently to CSF drainage. This is a widely recognized but seldom quantified distinction. We sought to define an index to characterize the response to CSF drainage in neurocritical care patients. METHODS: We studied consecutive patients admitted to the neurointensive care unit who had an EVD. The EVD was closed for 30 min prior to assessment. We documented pre-drainage ICP, opened EVD to drainage allowing CSF to drain until it ceased, and recorded post-drainage ICP at EVD closure. We calculated the pressure equalization (PE) ratio as the difference between pre-drainage ICP and post-drainage ICP divided by the difference between pre-drainage ICP and EVD height. RESULTS: We studied 60 patients (36 traumatic brain injury [TBI], 24 non-TBI). As expected, TBI patients had more signs of cerebral swelling on CT and smaller ventricles. Although TBI patients had significantly higher pre-drainage ICP (26 ± 10 mm Hg) than non-TBI patients (19 ± 5 mm Hg, p < 0.001) they drained less CSF (7 cc vs. 4 cc, p < 0.01). PE ratio was substantially higher in non-TBI than in TBI patients (0.86 ± 0.36 vs. 0.43 ± 0.31, p < 0.0001), indicating that non-TBI patients were better able to equalize pressure with EVD height than TBI patients. CONCLUSIONS: PE ratio reflects the ability to equalize pressure with the preset height of the EVD and differs substantially between TBI and non-TBI patients. A high PE ratio likely indicates CSF outflow obstruction effectively treated by CSF diversion, while a lower PE ratio occurs when cerebral swelling predominates. Further studies could assess whether the PE ratio would be useful as a surrogate marker for cerebral edema or the state of intracranial compliance.


Assuntos
Edema Encefálico/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Derivações do Líquido Cefalorraquidiano , Cuidados Críticos , Pressão Intracraniana/fisiologia , Monitorização Neurofisiológica , Adulto , Idoso , Edema Encefálico/etiologia , Edema Encefálico/cirurgia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Acta Neurochir Suppl ; 126: 247-253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29492570

RESUMO

OBJECTIVE: The amplitude of intracranial pressure (ICP) can be measured by ICP monitoring. Phase-contrast magnetic resonance imaging (PCMRI) can quantify blood and cerebrospinal fluid (CSF) flows. The aim of this work was to investigate intracranial compliance at rest by combining baseline ICP monitoring and PCMRI in hydrocephalus patients. MATERIALS AND METHODS: ICP monitoring was performed before infusion testing to quantify ΔICP_rest at the basal condition in 33 suspected hydrocephalus patients (74 years). The day before, patients had had a PCMRI to assess total cerebral blood flow (tCBF), intracranial blood volume change (stroke volume SVblood), and cervical CSF volume change (the stroke volume CSV). Global (blood and CSF) intracranial volume change (ΔIVC) during each cardiac cycle (CC) was calculated. Finally, Compliance: C_rest = ΔIVC/ΔICP_rest was calculated. The data set was postprocessed by two operators according to blind analysis. RESULTS: Bland-Altman plots showed that measurements presented no significant difference between the two operators. ΔICP_rest = 2.41 ± 1.21 mmHg, tCBF = 469.89 ± 127.54 mL/min, SVblood = 0.82 ± 0.32 mL/cc, CSV = 0.50 ± 0.22 mL/cc, ΔIVC = 0.44 ± 0.22 mL, and C_rest = 0.23 ± 0.15 mL/mmHg. There are significant relations between SVblood and CSV and also SVblood and tCBF. CONCLUSIONS: During "basal" condition, the compliance amplitude of the intracranial compartment is heterogeneous in suspected hydrocephalus patients, and its value is lower than expected! This new parameter could represent new information, complementary to conventional infusion tests. We hope that this information can be applied to improve the selection of patients for shunt surgery.


Assuntos
Encéfalo/fisiopatologia , Líquido Cefalorraquidiano , Circulação Cerebrovascular/fisiologia , Hidrocefalia/fisiopatologia , Pressão Intracraniana/fisiologia , Monitorização Fisiológica , Idoso , Idoso de 80 Anos ou mais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Volume Sanguíneo Cerebral , Complacência (Medida de Distensibilidade)/fisiologia , Feminino , Hemodinâmica , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrodinâmica , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
16.
Acta Neurochir (Wien) ; 160(2): 219-224, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29273948

RESUMO

BACKGROUND: The intracranial pressure (ICP) curve with its different peaks has been extensively studied, but the exact physiological mechanisms behind its morphology are still not fully understood. Both intracranial volume change (ΔICV) and transmission of the arterial blood pressure have been proposed to shape the ICP curve. This study tested the hypothesis that the ICP curve correlates to intracranial volume changes. METHODS: Cine phase contrast magnetic resonance imaging (MRI) examinations were performed in neuro-intensive care patients with simultaneous ICP monitoring. The MRI was set to examine cerebral arterial inflow and venous cerebral outflow as well as flow of cerebrospinal fluid over the foramen magnum. The difference in total flow into and out from the cranial cavity (Flowtot) over time provides the ΔICV. The ICP curve was compared to the Flowtot and the ΔICV. Correlations were calculated through linear and logarithmic regression. Student's t test was used to test the null hypothesis between paired samples. RESULTS: Excluding the initial ICP wave, P1, the mean R 2 for the correlation between the ΔICV and the ICP was 0.75 for the exponential expression, which had a higher correlation than the linear (p = 0.005). The first ICP peaks correlated to the initial peaks of Flowtot with a mean R 2 = 0.88. CONCLUSION: The first part, or the P1, of the ICP curve seems to be created by the first rapid net inflow seen in Flowtot while the rest of the ICP curve seem to correlate to the ΔICV.


Assuntos
Pressão Arterial/fisiologia , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Pressão Intracraniana/fisiologia , Crânio/diagnóstico por imagem , Adulto , Feminino , Forame Magno , Humanos , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Tomografia Computadorizada por Raios X
17.
J Neurosurg Pediatr ; 34(3): 293-300, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968616

RESUMO

OBJECTIVE: Reduced intracranial compliance (ICC) may be an important factor in the pathophysiology of Chiari malformation type I (CM-I). However, direct measurement of ICC is controversial because of its invasiveness, particularly in children. Instead, ICC may be estimated from continuous measurements of intracranial pressure (ICP), where the metric mean wave amplitude (MWA) has been found to be more useful as a surrogate marker of ICC than mean ICP. This observational study investigated the distribution of MWA and mean ICP in symptomatic children with CM-I, as well as their association with clinical and radiological findings. METHODS: From a consecutive series of children treated for CM-I at a single institution between 2006 and 2023, the authors analyzed ICP scores in those who underwent an overnight preoperative ICP recording in which MWA was calculated. Clinical and radiological data were retrieved from the patient records. RESULTS: Thirty-seven children (mean age 12.4 ± 3.6 years) with symptomatic CM-I were identified. From the overnight ICP measurements, the average MWA was 5.2 ± 1.3 mm Hg: 56% of children had an abnormal MWA (> 5 mm Hg) and 33% had a borderline MWA (4-5 mm Hg). In contrast, the average mean ICP was 9.7 ± 4.1 mm Hg: 8% of children had an abnormal mean ICP (> 15 mm Hg) and 41% had a borderline mean ICP (10-15 mm Hg). Thus, more children were found to have an abnormal MWA than an abnormal mean ICP (p < 0.001). MWA was significantly higher in the subgroup of children with medullary compression in the foramen magnum, as seen on MRI, than in those without (5.6 ± 1.0 mm Hg vs 4.7 ± 1.4 mm Hg, p = 0.03), whereas a similar difference was not observed for mean ICP (9.9 ± 4.6 mm Hg vs 9.7 ± 3.7 mm Hg, p = 0.889). CONCLUSIONS: In this cohort of symptomatic children with CM-I, MWA was more frequently abnormal than mean ICP, with a clinically significant discrepancy in half of the patients. Moreover, MWA was significantly higher in patients with medullary compression. Based on these findings, the authors' interpretation is that in children with CM-I, the ICC may be reduced, as indicated by increased MWA, even though the mean ICP is within normal thresholds.


Assuntos
Malformação de Arnold-Chiari , Pressão Intracraniana , Humanos , Malformação de Arnold-Chiari/fisiopatologia , Malformação de Arnold-Chiari/diagnóstico por imagem , Malformação de Arnold-Chiari/cirurgia , Malformação de Arnold-Chiari/complicações , Criança , Feminino , Masculino , Pressão Intracraniana/fisiologia , Adolescente , Estudos Retrospectivos , Pré-Escolar
18.
Brain Spine ; 4: 103327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39281851

RESUMO

Background: Spaceflights influence intracranial compliance (ICC). P2/P1 ratio, from the intracranial pressure (ICP) waveform, provides information about ICC. Additionally, non-invasive methods for ICC monitoring are needed for spaceflights. Furthermore, astronauts try to maintain good levels of cardiorespiratory fitness before and during spaceflights, not only to sustain exploratory missions, but also to prevent diseases in extreme environments. Objective: to correlate cardiorespiratory fitness levels with the P2/P1 ratio during a microgravity analog [-6° head-down tilt (HDT)]. Method: 34 individuals (11 women), mean age of 31.7 (±6.3) years and BMI 24.2 (±3.2) performed a cardiopulmonary exercise testing (CPET) with an incremental protocol on a cycle ergometer to determine the cardiopulmonary fitness through peak relative oxygen uptake (VO2 peak) of each individual. On the second test, which was conducted in an interval of 15 days of the CPET, participants remained for 30 min at HDT with P2/P1 ratio acquired using a non-invasive strain gauge sensor. The average of the last 5 min was used for analysis. The mean P2/P1 ratio and relative VO2 peak were correlated using the Spearman test. Results: Volunteers presented 1.05 ± 0.2 of P2/P1 ratio and VO2 peak of 47.5 ± 7.6 mL/kg/min. The Spearman test indicated a negative and low correlation between the P2/P1 ratio and VO2 peak (ρ = -0.388; p = 0.023). Conclusion: The study suggests that the better the cardiorespiratory fitness, the better ICC in a weightlessness simulation.

19.
Surg Neurol Int ; 15: 283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246761

RESUMO

Background: Blood pressure management is extremely important to prevent cerebral hypoxia and influence the outcome of critically ill patients. In medicine, precise instruments are essential to increase patient safety in the intensive care unit (ICU), including intracranial compliance (ICC) monitoring. A new technology developed by Brain4care, makes it possible to analyze the waveform of intracranial pressure (ICP) non-invasively associated with ICC, and this instrument was used in the patient for monitoring. Case Description: A 40-year-old male underwent aortic endocarditis surgery involving 182-min extracorporeal circulation and 9-min aortic clamping. Post-surgery, he exhibited a seizure bilateral mydriasis, followed by isochoric pupils and rapid foot movements. Neuroprotection measures were applied in the ICU, with noninvasive ICC monitoring initiated to assess intervention effectiveness. Conclusion: The non-invasive measurement of ICP can help clinical decision-making regarding the optimization of adapted protocols for neuroprotection in the ICU.

20.
Sci Rep ; 14(1): 6493, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499758

RESUMO

Intracranial compliance (ICC) refers to the change in intracranial volume per unit change in intracranial pressure (ICP). Magnetic resonance elastography (MRE) quantifies brain stiffness by measuring the shear modulus. Our objective is to investigate the relationship between ICC and brain stiffness through fluid-structure interaction (FSI) simulation, and to explore the feasibility of using MRE to assess ICC based on brain stiffness. This is invaluable due to the clinical importance of ICC, as well as the fast and non-invasive nature of the MRE procedure. We employed FSI simulation in hydrocephalus patients with aqueductal stenosis to non-invasively calculate ICP which is the basis of the calculation of ICC and FSI-based brain stiffness. The FSI simulated parameters used have been validated with experimental data. Our results showed that there is no relationship between FSI simulated-based brain stiffness and ICC in hydrocephalus patients. However, MRE-based brain stiffness may be sensitive to changes in intracranial fluid dynamic parameters such as cerebral perfusion pressure (CPP), cerebral blood flow (CBF), and ICP, as well as to mechano-vascular changes in the brain, which are determining parameters in ICC assessment. Although optimism has been found regarding the assessment of ICC using MRE-based brain stiffness, especially for acute-onset brain disorders, further studies are necessary to clarify their direct relationship.


Assuntos
Técnicas de Imagem por Elasticidade , Hidrocefalia , Humanos , Técnicas de Imagem por Elasticidade/métodos , Estudos de Viabilidade , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Hidrocefalia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA