Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Immunity ; 47(1): 51-65.e7, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28666573

RESUMO

Activation of the pseudokinase mixed lineage kinase domain-like (MLKL) upon its phosphorylation by the protein kinase RIPK3 triggers necroptosis, a form of programmed cell death in which rupture of cellular membranes yields release of intracellular components. We report that MLKL also associated with endosomes and controlled the transport of endocytosed proteins, thereby enhancing degradation of receptors and ligands, modulating their induced signaling and facilitating the generation of extracellular vesicles. This role was exerted on two quantitative grades: a constitutive one independent of RIPK3, and an enhanced one, triggered by RIPK3, where the association of MLKL with the endosomes was enhanced, and it was found to bind endosomal sorting complexes required for transport (ESCRT) proteins and the flotillins and to be excluded, together with them, from cells within vesicles. We suggest that release of phosphorylated MLKL within extracellular vesicles serves as a mechanism for self-restricting the necroptotic activity of this protein.


Assuntos
Apoptose/imunologia , Endossomos/metabolismo , Vesículas Extracelulares/metabolismo , Necrose/imunologia , Proteínas Quinases/metabolismo , Linhagem Celular , Humanos , Mutação/genética , Fosforilação , Engenharia de Proteínas , Proteínas Quinases/genética , Transporte Proteico , Proteômica , RNA Interferente Pequeno/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais
2.
J Cell Sci ; 136(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36744428

RESUMO

Proper control of epidermal growth factor receptor (EGFR) signaling is important for maintaining cellular homeostasis. Given that EGFR signaling occurs at the plasma membrane and endosomes following internalization, endosomal trafficking of EGFR spatiotemporally regulates EGFR signaling. In this process, leucine-rich repeat kinase 1 (LRRK1) has multiple roles in kinase activity-dependent transport of EGFR-containing endosomes and kinase-independent sorting of EGFR into the intraluminal vesicles (ILVs) of multivesicular bodies. Active, phosphorylated EGFR inactivates the LRRK1 kinase activity by phosphorylating Y944. In this study, we demonstrate that LRRK1 facilitates EGFR dephosphorylation by PTP1B (also known as PTPN1), an endoplasmic reticulum (ER)-localized protein tyrosine phosphatase, at the ER-endosome contact site, after which EGFR is sorted into the ILVs of endosomes. LRRK1 is required for the PTP1B-EGFR interaction in response to EGF stimulation, resulting in the downregulation of EGFR signaling. Furthermore, PTP1B activates LRRK1 by dephosphorylating pY944 on the contact site, which promotes the transport of EGFR-containing endosomes to the perinuclear region. These findings provide evidence that the ER-endosome contact site functions as a hub for LRRK1-dependent signaling that regulates EGFR trafficking.


Assuntos
Endossomos , Receptores ErbB , Humanos , Células HeLa , Endossomos/metabolismo , Receptores ErbB/metabolismo , Retículo Endoplasmático/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Proteico/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo
3.
J Cell Sci ; 135(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35445263

RESUMO

The endosomal sorting complex required for transport (ESCRT)-III mediates budding and abscission of intraluminal vesicles (ILVs) into multivesicular endosomes. To further define the role of the yeast ESCRT-III-associated protein Mos10 (also known as Vps60) in ILV formation, we screened for new interaction partners by using stable isotope labeling of amino acids in cell culture (SILAC) and mass spectrometry. Here, we focused on the newly identified interaction partner Vps68. Our data suggest that Vps68 cooperates with ESCRT-III in ILV formation. The deletion of VPS68 caused a sorting defect similar to that of the SNF7 deletion strain when the cargo load was high. The composition of ESCRT-III was altered, the level of core components was higher and the level of associated proteins was lower in the VPS68 deletion strain. Our data further indicate that at some point in the functional cycle of ESCRT-III, Snf7 could be replaced by Mos10. Vps68 has an unusual membrane topology. Two of its potential membrane helices are amphipathic helices that localize to the luminal side of the endosomal membrane. Based on this membrane topology, we propose that Vps68 and ESCRT-III cooperate in the abscission step by weakening the luminal and cytosolic leaflets of the bilayer at the abscission site.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas de Saccharomyces cerevisiae , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35050379

RESUMO

During endosome maturation, neutral sphingomyelinase 2 (nSMase2, encoded by SMPD3) is involved in budding of intraluminal vesicles (ILVs) into late endosomes or multivesicular bodies (MVBs). Fusion of these with the plasma membrane results in secretion of exosomes or small extracellular vesicles (sEVs). Here, we report that nSMase2 activity controls sEV secretion through modulation of vacuolar H+-ATPase (V-ATPase) activity. Specifically, we show that nSMase2 inhibition induces V-ATPase complex assembly that drives MVB lumen acidification and consequently reduces sEV secretion. Conversely, we further demonstrate that stimulating nSMase2 activity with the inflammatory cytokine TNFα (also known as TNF) decreases acidification and increases sEV secretion. Thus, we find that nSMase2 activity affects MVB membrane lipid composition to counteract V-ATPase-mediated endosome acidification, thereby shifting MVB fate towards sEV secretion. This article has an associated First Person interview with the first author of the paper.


Assuntos
Exossomos , ATPases Vacuolares Próton-Translocadoras , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Exossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Corpos Multivesiculares/metabolismo , Transporte Proteico , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(14): 8032-8043, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32193339

RESUMO

Ehrlichia chaffeensis, a cholesterol-rich and cholesterol-dependent obligate intracellular bacterium, partially lacks genes for glycerophospholipid biosynthesis. We found here that E. chaffeensis is dependent on host glycerolipid biosynthesis, as an inhibitor of host long-chain acyl CoA synthetases, key enzymes for glycerolipid biosynthesis, significantly reduced bacterial proliferation. E. chaffeensis cannot synthesize phosphatidylcholine or cholesterol but encodes enzymes for phosphatidylethanolamine (PE) biosynthesis; however, exogenous NBD-phosphatidylcholine, Bodipy-PE, and TopFluor-cholesterol were rapidly trafficked to ehrlichiae in infected cells. DiI (3,3'-dioctadecylindocarbocyanine)-prelabeled host-cell membranes were unidirectionally trafficked to Ehrlichia inclusion and bacterial membranes, but DiI-prelabeled Ehrlichia membranes were not trafficked to host-cell membranes. The trafficking of host-cell membranes to Ehrlichia inclusions was dependent on both host endocytic and autophagic pathways, and bacterial protein synthesis, as the respective inhibitors blocked both infection and trafficking of DiI-labeled host membranes to Ehrlichia In addition, DiI-labeled host-cell membranes were trafficked to autophagosomes induced by the E. chaffeensis type IV secretion system effector Etf-1, which traffic to and fuse with Ehrlichia inclusions. Cryosections of infected cells revealed numerous membranous vesicles inside inclusions, as well as multivesicular bodies docked on the inclusion surface, both of which were immunogold-labeled by a GFP-tagged 2×FYVE protein that binds to phosphatidylinositol 3-phosphate. Focused ion-beam scanning electron microscopy of infected cells validated numerous membranous structures inside bacteria-containing inclusions. Our results support the notion that Ehrlichia inclusions are amphisomes formed through fusion of early endosomes, multivesicular bodies, and early autophagosomes induced by Etf-1, and they provide host-cell glycerophospholipids and cholesterol that are necessary for bacterial proliferation.


Assuntos
Ehrlichia chaffeensis/metabolismo , Ehrlichiose/patologia , Corpos de Inclusão/metabolismo , Fosfatidilcolinas/metabolismo , Vacúolos/microbiologia , Animais , Autofagossomos/metabolismo , Membrana Celular/metabolismo , Cães , Ehrlichia chaffeensis/citologia , Ehrlichia chaffeensis/patogenicidade , Ehrlichiose/sangue , Ehrlichiose/microbiologia , Endossomos/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Corpos de Inclusão/ultraestrutura , Microscopia Intravital , Microscopia Eletrônica de Varredura , Células THP-1 , Imagem com Lapso de Tempo , Vacúolos/ultraestrutura
6.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108446

RESUMO

Extracellular vesicles (EVs) are membrane vesicles released into the extracellular milieu by cells of various origins. They contain different biological cargoes, protecting them from degradation by environmental factors. There is an opinion that EVs have a number of advantages over synthetic carriers, creating new opportunities for drug delivery. In this review, we discuss the ability of EVs to function as carriers for therapeutic nucleic acids (tNAs), challenges associated with the use of such carriers in vivo, and various strategies for tNA loading into EVs.


Assuntos
Exossomos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Sistemas de Liberação de Medicamentos , Comunicação Celular , Exossomos/metabolismo
7.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499644

RESUMO

Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.


Assuntos
Ceramidas , Vesículas Extracelulares , Ceramidas/metabolismo , Transporte Proteico , Vesículas Extracelulares/metabolismo , Transporte Biológico , Lisossomos
8.
J Cell Sci ; 130(16): 2707-2721, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28705836

RESUMO

The endosomal protein-sorting machineries play vital roles in diverse physiologically important cellular processes. Much of the core membrane-sorting apparatus is conserved in evolution, such as retromer, which is involved in the recycling of a diverse set of cargoes via the retrograde trafficking route. Here, in an RNAi-based loss-of-function study, we identified that suppression of SNX12 leads to a severe blockage in CIM6PR (also known as IGF2R) transport and alters the morphology of the endocytic compartments. We demonstrate that SNX12 is involved in the early phase of CIM6PR transport, and mediates receptor recycling upstream of the other well-established SNX components of retromer. Ultra-structural analysis revealed that SNX12 resides on tubulo-vesicular structures, despite it lacking a BAR domain. Furthermore, we illustrate that SNX12 plays a key role in intraluminal vesicle formation and in the maturation of a subpopulation of early endosomes into late endosomes, thereby regulating selective endocytic transport of cargo for degradation. This study therefore provides evidence for the existence of early endosomal subpopulations that have differential roles in the sorting of the cargoes along endocytic degradative pathways.


Assuntos
Endocitose/genética , Endossomos/metabolismo , Nexinas de Classificação/fisiologia , Transporte Biológico/genética , LDL-Colesterol/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Humanos , Redes e Vias Metabólicas/genética , Transporte Proteico/genética , Proteólise , Estabilidade de RNA , Nexinas de Classificação/genética , Vesículas Transportadoras/metabolismo
9.
Mol Ther ; 25(6): 1269-1278, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28412169

RESUMO

Exosomes represent an attractive vehicle for the delivery of biomolecules. However, mechanisms for loading functional molecules into exosomes are relatively unexplored. Here we report the use of the evolutionarily conserved late-domain (L-domain) pathway as a mechanism for loading exogenous proteins into exosomes. We demonstrate that labeling of a target protein, Cre recombinase, with a WW tag leads to recognition by the L-domain-containing protein Ndfip1, resulting in ubiquitination and loading into exosomes. Our results show that Ndfip1 expression acts as a molecular switch for exosomal packaging of WW-Cre that can be suppressed using the exosome inhibitor GW4869. When taken up by floxed reporter cells, exosomes containing WW-Cre were capable of inducing DNA recombination, indicating functional delivery of the protein to recipient cells. Engineered exosomes were administered to the brain of transgenic reporter mice using the nasal route to test for intracellular protein delivery in vivo. This resulted in the transport of engineered exosomes predominantly to recipient neurons in a number of brain regions, including the olfactory bulb, cortex, striatum, hippocampus, and cerebellum. The ability to engineer exosomes to deliver biologically active proteins across the blood-brain barrier represents an important step for the development of therapeutics to treat brain diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos/metabolismo , Engenharia Genética , Transporte Proteico , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Vesículas Extracelulares/metabolismo , Expressão Gênica , Engenharia Genética/métodos , Integrases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Absorção Nasal , Permeabilidade , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
Cell Biol Int ; 41(5): 484-494, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28185357

RESUMO

The dynamin-like protein, Vps1, is a GTPase involved in cargo sorting and membrane remodeling in multiple cellular trafficking pathways. Recently, Vps1 has been shown to genetically interact with ESCRT subunits. We tested the hypothesis that the functional connection of Vps1 with some of these subunits of ESCRT complexes occurs via a physical interaction. By utilizing the yeast two-hybrid system, we revealed that Vps1 physically interacts with the ESCRT-II subunits, Vps22 and Vps36, and the ESCRT-III subunit Vps24. We found that Vps1 and ESCRT-II components colocalize with Pep12, an endosomal marker. Additionally, loss of Vps1 or depletion of the GTPase activity of Vps1 results in a moderate defect in Cps1 targeting to the vacuole. Here, we discussed the potential implications of Vps1 and ESCRT interaction and their roles in the endosome-to-vacuole traffic. In summary, yeast dynamin interacts with ESCRT II and III complexes, and it functions in Cps1 trafficking toward the vacuole.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/química , Modelos Biológicos , Mutação/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/química
11.
Adv Exp Med Biol ; 998: 3-19, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936729

RESUMO

Exosomes are extracellular vesicles of 50-150 nm in diameter secreted by basically all cell types. They mediate micro-communication among cells, tissues, and organs under both healthy and disease conditions by virtue of their ability to deliver macromolecules to target cells. Research on exosomes is a rapidly growing field, however many aspects of their biogenesis and functions still await a complete clarification. In our review we summarize most recent findings regarding biogenesis, structure, and functions of exosomes. In addition, an overview regarding the role of exosomes in both infectious and non-infectious diseases is provided. Finally, the use of exosomes as biomarkers and delivery tools for therapeutic molecules is addressed. Considering the body of literature data, exosomes have to be considered key components of the intercellular communication in both health and disease.


Assuntos
Exossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais , Animais , Biomarcadores/metabolismo , Portadores de Fármacos , Exossomos/efeitos dos fármacos , Exossomos/patologia , Humanos , Biogênese de Organelas , Transdução de Sinais/efeitos dos fármacos
12.
Cell Mol Neurobiol ; 36(3): 327-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26983829

RESUMO

Accumulation of toxic amyloid oligomers, a key feature in the pathogenesis of amyloid-related diseases, results from an imbalance between generation and clearance of amyloidogenic proteins. Cell biology has brought to light the key roles of multivesicular endosomes (MVEs) and their intraluminal vesicles (ILVs), which can be secreted as exosomes, in amyloid generation and clearance. To better understand these roles, we have investigated a relevant physiological model of amyloid formation in pigment cells. These cells have tuned their endosomes to optimize the formation of functional amyloid fibrils from the premelanosome protein (PMEL) and to avoid potential accumulation of toxic species. The functional amyloids derived from PMEL reveal striking analogies with the generation of Aß peptides. We have recently strengthened these analogies using extracellular vesicles as reporters of the endosomal processes that regulate PMEL melanogenesis. We have shown that in pigmented cells, apolipoprotein E (ApoE) is associated with ILVs and exosomes, and regulates the formation of PMEL amyloid fibrils in endosomes. This process secures the generation of amyloid fibrils by exploiting ILVs as amyloid-nucleating platforms. This physiological model of amyloidogenesis could shed new light on the roles of MVEs and exosomes in conditions with pathological amyloid metabolism, such as Alzheimer's disease.


Assuntos
Amiloide/metabolismo , Exossomos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteínas E/metabolismo , Endossomos/metabolismo , Humanos , Melaninas/biossíntese
13.
Lab Med ; 54(2): 115-125, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36065158

RESUMO

Exosomes are nanoscale vesicles derived from endocytosis, formed by fusion of multivesicular bodies with membranes and secreted into the extracellular matrix or body fluids. Many studies have shown that exosomes can be present in a variety of biological fluids, such as plasma, urine, saliva, amniotic fluid, ascites, and sweat, and most types of cells can secrete exosomes. Exosomes play an important role in many aspects of human development, including immunity, cardiovascular diseases, neurodegenerative diseases, and neoplasia. Urine can be an alternative to blood or tissue samples as a potential source of disease biomarkers because of its simple, noninvasive, sufficient, and stable characteristics. Therefore, urinary exosomes have valuable potential for early screening, monitoring disease progression, prognosis, and treatment. The method for isolating urinary exosomes has been perfected, and exosome proteomics is widely used. Therefore, we review the potential use of urinary exosomes for disease diagnosis and summarize the related literature.


Assuntos
Líquidos Corporais , Exossomos , Humanos , Biomarcadores , Proteômica/métodos , Saliva
14.
J Extracell Vesicles ; 12(4): e12319, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37021404

RESUMO

Membrane lipids play vital roles in small extracellular vesicle (sEV) biogenesis. However, the function of various lipids in the biogenesis of sEVs is still poorly understood. Phosphoinositolphosphates (PIPs), a group of the most critical lipids in vesicle transport, can undergo rapid conversion in response to a variety of cell signals, which in turn influence the generation of vesicles. Due to the challenge in detecting the low amount of PIP content in biological samples, the function of PIPs in sEVs has been insufficiently investigated. Here, we employed an LC-MS/MS method to detect the levels of PIPs in sEVs. We revealed phosphatidylinositol-4-phosphate (PI4P) was the main PI-monophosphate in macrophage-derived sEVs. The release of sEVs was regulated in a time-dependent manner and correlated with the PI4P level during the lipopolysaccharide (LPS) stimulation. In terms of mechanism, within 10 h of LPS treatment, the LPS-induced production of type I interferon inhibited the expression of PIP-5-kinase-1-gamma, which increased the PI4P content on multivesicular bodies (MVBs) and recruited RAB10, member RAS oncogene family, to promote sEV generation. When LPS stimulation was extended to 24 h, the heat shock protein family A member 5 (HSPA5) expression level was elevated. PI4P interacted with HSPA5 on the Golgi or endoplasmic reticulum away from MVBs, which disrupted the continuous fast sEV release. In conclusion, the present study demonstrated an inducible sEV release model response to LPS treatment. The inducible release may be due to PI4P regulating the generation of intraluminal vesicles secreted as sEVs.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Transporte Biológico
15.
Mol Ther Nucleic Acids ; 27: 535-546, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35036064

RESUMO

Tumor cells actively release large quantities of exosomes, which pivotally participate in the regulation of cancer biology, including head and neck cancer (HNC). Exosome biogenesis and release are complex and elaborate processes that are considered to be similar to the process of exocyst-mediated vesicle delivery. By analyzing the expression of exocyst subunits and their role in patients with HNC, we aimed to identify exocyst and its functions in exosome biogenesis and investigate the molecular mechanisms underlying the regulation of exosome transport in HNC cells. We observed that exocysts were highly expressed in HNC cells and could promote exosome secretion in these cells. In addition, downregulation of exocyst expression inhibited HN4 cell proliferation by reducing exosome secretion. Interestingly, immunofluorescence and electron microscopy revealed the accumulation of multivesicular bodies (MVBs) after the knockdown of exocyst. Autophagy, the major pathway of exosome degradation, is not activated by this intracellular accumulation of MVBs, but these MVBs are consumed when autophagy is activated under the condition of cell starvation. Rab11a, a small GTPase that is involved in MVB fusion, also interacted with the exocyst. These findings suggest that the exocyst can regulate exosome biogenesis and participate in the malignant behavior of tumor cells.

16.
Front Cell Infect Microbiol ; 12: 855797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389174

RESUMO

Entamoeba histolytica, the causative agent of human amoebiasis, exhibits a continuous membrane remodelling to exert its virulence properties. During this dynamic process, the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is a key player, particularly in phagocytosis, a virulence hallmark of this parasite. In addition to ESCRT, other molecules contribute to membrane remodelling, including the EhADH adhesin, EhRabs, actin, and the lysobisphosphatidic acid (LBPA). The endocytosis of a prey or molecules induces membrane invaginations, resulting in endosome and multivesicular bodies (MVBs) formation for cargo delivery into lysosomes. Alternatively, some proteins are recycled or secreted. Most of these pathways have been broadly characterized in other biological systems, but poorly described in protozoan parasites. Here, we encompass 10 years of ESCRT research in E. histolytica, highlighting the role of the ESCRT-I and ESCRT-III components and the EhADH and EhVps4-ATPase accessory proteins during phagocytosis. In particular, EhADH exhibits a multifunctional role along the endocytic pathway, from cargo recognition to endosome maturation and lysosomal degradation. Interestingly, the interaction of EhADH with EhVps32 seems to shape a concurrent route to the conventional one for MVBs biogenesis, that could optimize their formation. Furthermore, this adhesin is secreted, but its role in this event remains under study. Other components from the endosomal pathway, such as EhVps23 and LBPA, are also secreted. A proteomic approach performed here, using an anti-LBPA antibody, revealed that some proteins related to membrane trafficking, cellular transport, cytoskeleton dynamics, and transcriptional and translational functions are secreted and associated to LBPA. Altogether, the accumulated knowledge around the ESCRT machinery in E. histolytica, points it out as a dynamic platform facilitating the interaction of molecules participating in different cellular events. Seen as an integrated system, ESCRTs lead to a better understanding of E. histolytica phagocytosis.


Assuntos
Entamoeba histolytica , Humanos , Entamoeba histolytica/metabolismo , Proteômica , Endossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fagocitose
17.
Curr Drug Res Rev ; 14(3): 188-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35490434

RESUMO

Colorectal cancer (CRC) is common cancer that is one of the leading causes of cancerrelated deaths around the world. The creation of new biomarkers for this disease is an important public health strategy for lowering the disease's mortality rate. According to new research, exosomes may be important sources of biomarkers in CRC. Exosomes are nanometer-sized membrane vesicles (30-200 nm) secreted by normal and cancer cells that transport RNA and proteins between cells and are thought to help with intercellular communication. Exosomes have been linked to CRC initiation and progression, and some differentially expressed RNAs and proteins in exosomes have been identified as potential cancer detection candidates. As a result, studying the relationship between exosomes and CRC may aid in the development of new biomarkers for the disease. This article discusses the importance of exosomes as biomarkers in the diagnosis of CRC, as well as their use in the treatment of CRC metastasis, chemoresistance, and recrudescence. The benefits and drawbacks of using exosomes as tumour markers are also discussed.


Assuntos
Neoplasias Colorretais , Exossomos , MicroRNAs , Humanos , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
18.
Front Cell Dev Biol ; 10: 837574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309938

RESUMO

Dendritic cells are the most powerful antigen-presenting cells of the immune system. They present exogenous antigens associated with Major Histocompatibility Complex (MHC) Class II molecules through the classical pathway to stimulate CD4+ T cells, or with MHC-I to activate CD8+ T lymphocytes through the cross-presentation pathway. DCs represent one of the main cellular targets during infection by Toxoplasma gondii. This intracellular parasite incorporates essential nutrients, such as cholesterol, to grow and proliferate inside a highly specialized organelle, the parasitophorous vacuole (PV). While doing so, T. gondii modulates the host immune response through multiple interactions with proteins and lipids. Cholesterol is an important cellular component that regulates cellular physiology at the structural and functional levels. Although different studies describe the relevance of cholesterol transport for exogenous antigen presentation, the molecular mechanism underlying this process is not defined. Here, we focus our study on the inhibitor U18666A, a drug widely used to arrest multivesicular bodies biogenesis that interrupts cholesterol trafficking and changes the lipid composition of intracellular membranes. Upon bone marrow-derived DC (BMDC) treatment with U18666A, we evidenced a drastic disruption in the ability to present exogenous soluble and particulate antigens to CD4+ and CD8+ T cells. Strikingly, the presentation of T. gondii-associated antigens and parasite proliferation were hampered in treated cells. However, neither antigen uptake nor BMDC viability was significantly affected by the U18666A treatment. By contrast, this drug altered the transport of MHC-I and MHC-II molecules to the plasma membrane. Since U18666A impairs the formation of MVBs, we analyzed in T. gondii infected BMDCs the ESCRT machinery responsible for the generation of intraluminal vesicles. We observed that different MVBs markers, including ESCRT proteins, were recruited to the PV. Surprisingly, the main ESCRT-III component CHMP4b was massively recruited to the PV, and its expression level was upregulated upon BMDC infection by T. gondii. Finally, we demonstrated that BMDC treatment with U18666A interrupted cholesterol delivery and CHMP4b recruitment to the PV, which interfered with an efficient parasite replication. Altogether, our results highlight the importance of cholesterol trafficking and MVBs formation in DCs for optimal antigen presentation and T. gondii proliferation.

19.
Pract Lab Med ; 26: e00241, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34258353

RESUMO

OBJECTIVES: Exosomes are small lipid bilayer vesicles that are defined by their endocytic origin and size range of 30-140 nm. They are constantly produced by different cell types, by both healthy and abnormal cells, and can be isolated from almost all body fluids.Little information exists in isolating exosomes from plasma due to the complexity of its content and the presence of contaminating plasma proteins. DESIGN AND METHODS: We carried-out liquid chromatography-mass spectrometry (LC-MS/MS) analyses of plasma-derived vesicles from 4 healthy donors obtained by 2 coupled methodologies: Ultracentrifugation (UC) coupled with size-exclusion chromatography (SEC) to isolate and subsequently enrich exosomes.We compared the proteins detected by UC alone and UC coupled with SEC. RESULTS: In the coupled UC + SEC methodology we found 52.25% more proteins enriched in exosomes as CD9, Annexins, YWHAZ (14-3-3 family) and others, than by using UC alone. There is also a reduction of 98.8% of contaminating plasma proteins by coupling UC and SEC in comparison to using UC alone. CONCLUSIONS: We conclude that exosomes can be successfully isolated from plasma using a very simple combination of standard methods, which could largely improve the proteomics profiling of plasma exosomes.

20.
Acta Pharm Sin B ; 11(9): 2783-2797, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589397

RESUMO

Exosomes are cell-derived nanovesicles with diameters from 30 to 150 nm, released upon fusion of multivesicular bodies with the cell surface. They can transport nucleic acids, proteins, and lipids for intercellular communication and activate signaling pathways in target cells. In cancers, exosomes may participate in growth and metastasis of tumors by regulating the immune response, blocking the epithelial-mesenchymal transition, and promoting angiogenesis. They are also involved in the development of resistance to chemotherapeutic drugs. Exosomes in liquid biopsies can be used as non-invasive biomarkers for early detection and diagnosis of cancers. Because of their amphipathic structure, exosomes are natural drug delivery vehicles for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA