Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.626
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(47): e2315701120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37972069

RESUMO

The extent and ecological significance of intraspecific functional diversity within marine microbial populations is still poorly understood, and it remains unclear if such strain-level microdiversity will affect fitness and persistence in a rapidly changing ocean environment. In this study, we cultured 11 sympatric strains of the ubiquitous marine picocyanobacterium Synechococcus isolated from a Narragansett Bay (RI) phytoplankton community thermal selection experiment. Thermal performance curves revealed selection at cool and warm temperatures had subdivided the initial population into thermotypes with pronounced differences in maximum growth temperatures. Curiously, the genomes of all 11 isolates were almost identical (average nucleotide identities of >99.99%, with >99% of the genome aligning) and no differences in gene content or single nucleotide variants were associated with either cool or warm temperature phenotypes. Despite a very high level of genomic similarity, sequenced epigenomes for two strains showed differences in methylation on genes associated with photosynthesis. These corresponded to measured differences in photophysiology, suggesting a potential pathway for future mechanistic research into thermal microdiversity. Our study demonstrates that present-day marine microbial populations can harbor cryptic but environmentally relevant thermotypes which may increase their resilience to future rising temperatures.


Assuntos
Synechococcus , Synechococcus/metabolismo , Ecótipo , Temperatura , Temperatura Baixa , Nucleotídeos/metabolismo , Água do Mar/microbiologia
2.
Proc Natl Acad Sci U S A ; 120(4): e2119970120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649420

RESUMO

The Devonian trilobite Walliserops carries a remarkable anterior cephalic trident posing a challenge to functional interpretation. A unique teratological specimen of Walliserops trifurcatus showing four, rather than three tines, is inconsistent with possible hypotheses connecting the trident to feeding techniques and suggests a sexually selected function. Malformations in a variety of living organisms support this conclusion. Morphometric comparisons to similar structures used for intraspecific combat in dynastine beetles show that the trident occupies a comparable shape space consistent with the hypothesis that it was a sexual combat weapon, the oldest reported example of its kind. This lends further credibility to the idea that some trilobites may have been strongly sexually dimorphic.


Assuntos
Artrópodes , Besouros , Animais , Fósseis , Pesos e Medidas Corporais
3.
Proc Natl Acad Sci U S A ; 120(48): e2306723120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37956437

RESUMO

Anthropogenic climate change has significantly altered the flowering times (i.e., phenology) of plants worldwide, affecting their reproduction, survival, and interactions. Recent studies utilizing herbarium specimens have uncovered significant intra- and inter-specific variation in flowering phenology and its response to changes in climate but have mostly been limited to animal-pollinated species. Thus, despite their economic and ecological importance, variation in phenological responses to climate remain largely unexplored among and within wind-pollinated dioecious species and across their sexes. Using both herbarium specimens and volunteer observations of cottonwood (Populus) species, we examined how phenological sensitivity to climate varies across species, their ranges, sexes, and phenophases. The timing of flowering varied significantly across and within species, as did their sensitivity to spring temperature. In particular, male flowering generally happened earlier in the season and was more sensitive to warming than female flowering. Further, the onset of flowering was more sensitive to changes in temperature than leaf out. Increased temporal gaps between male and female flowering time and between the first open flower date and leaf out date were predicted for the future under two climate change scenarios. These shifts will impact the efficacy of sexual reproduction and gene flow among species. Our study demonstrates significant inter- and intra-specific variation in phenology and its responses to environmental cues, across species' ranges, phenophases, and sex, in wind-pollinated species. These variations need to be considered to predict accurately the effects of climate change and assess their ecological and evolutionary consequences.


Assuntos
Flores , Reprodução , Humanos , Animais , Flores/fisiologia , Folhas de Planta , Sexo , Plantas , Mudança Climática , Estações do Ano , Temperatura
4.
Proc Natl Acad Sci U S A ; 119(15): e2113870119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377818

RESUMO

Mutualisms are foundational components of ecosystems with the capacity to generate biodiversity through adaptation and coevolution and give rise to essential services such as pollination and seed dispersal. To understand how mutualistic interactions shape communities and ecosystems, we must identify the mechanisms that underlie their functioning. One mechanism that may drive mutualisms to vary in space and time is the unique behavioral types, or personalities, of the individuals involved. Here, our goal was to examine interindividual variation in the seed dispersal mutualism and identify the role that different personalities play. In a field experiment, we observed individual deer mice (Peromyscus maniculatus) with known personality traits predating and dispersing seeds in a natural environment and classified all observed interactions made by individuals as either positive or negative. We then scored mice on a continuum from antagonistic to mutualistic and found that within a population of scatter hoarders, some individuals are more mutualistic than others and that one factor driving this distinction is animal personality. Through this empirical work, we provide a conceptual advancement to the study of mutualism by integrating it with the study of intraspecific behavioral variation. These findings indicate that animal personality is a previously overlooked mechanism generating context dependence in plant­animal interactions and suggest that behavioral diversity may have important consequences for the functioning of mutualisms.


Assuntos
Peromyscus , Dispersão de Sementes , Animais , Ecossistema , Simbiose
5.
Ecol Lett ; 27(5): e14435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735857

RESUMO

A long-standing debate exists among ecologists as to how diversity regulates infectious diseases (i.e., the nature of diversity-disease relationships); a dilution effect refers to when increasing host diversity inhibits infectious diseases (i.e., negative diversity-disease relationships). However, the generality, strength, and potential mechanisms underlying negative diversity-disease relationships in natural ecosystems remain unclear. To this end, we conducted a large-scale survey of 63 grassland sites across China to explore diversity-disease relationships. We found widespread negative diversity-disease relationships that were temperature-dependent; non-random diversity loss played a fundamental role in driving these patterns. Our study provides field evidence for the generality and temperature dependence of negative diversity-disease relationships in grasslands, becoming stronger in colder regions, while also highlighting the role of non-random diversity loss as a mechanism. These findings have important implications for community ecology, disease ecology, and epidemic control.


Assuntos
Biodiversidade , Pradaria , Doenças das Plantas , Temperatura , China , Doenças das Plantas/microbiologia , Fungos/fisiologia , Folhas de Planta/microbiologia , Poaceae/microbiologia , Poaceae/fisiologia
6.
Ecol Lett ; 27(1): e14368, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38247047

RESUMO

Determining how and why organisms interact is fundamental to understanding ecosystem responses to future environmental change. To assess the impact on plant-pollinator interactions, recent studies have examined how the effects of environmental change on individual interactions accumulate to generate species-level responses. Here, we review recent developments in using plant-pollinator networks of interacting individuals along with their functional traits, where individuals are nested within species nodes. We highlight how these individual-level, trait-based networks connect intraspecific trait variation (as frequency distributions of multiple traits) with dynamic responses within plant-pollinator communities. This approach can better explain interaction plasticity, and changes to interaction probabilities and network structure over spatiotemporal or other environmental gradients. We argue that only through appreciating such trait-based interaction plasticity can we accurately forecast the potential vulnerability of interactions to future environmental change. We follow this with general guidance on how future studies can collect and analyse high-resolution interaction and trait data, with the hope of improving predictions of future plant-pollinator network responses for targeted and effective conservation.


Assuntos
Ecossistema , Polinização , Humanos , Polinização/fisiologia , Plantas , Fenótipo
7.
Ecol Lett ; 27(3): e14396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456670

RESUMO

Trait-based ecology has already revealed main independent axes of trait variation defining trait spaces that summarize plant adaptive strategies, but often ignoring intraspecific trait variability (ITV). By using empirical ITV-level data for two independent dimensions of leaf form and function and 167 species across five habitat types (coastal dunes, forests, grasslands, heathlands, wetlands) in the Italian peninsula, we found that ITV: (i) rotated the axes of trait variation that define the trait space; (ii) increased the variance explained by these axes and (iii) affected the functional structure of the target trait space. However, the magnitude of these effects was rather small and depended on the trait and habitat type. Our results reinforce the idea that ITV is context-dependent, calling for careful extrapolations of ITV patterns across traits and spatial scales. Importantly, our study provides a framework that can be used to start integrating ITV into trait space analyses.


Assuntos
Ecossistema , Florestas , Folhas de Planta , Fenótipo , Ecologia
8.
Am Nat ; 204(1): 1-14, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857344

RESUMO

AbstractIntraspecific trait variation has been increasingly recognized as an important factor in determining species interactions and diversity. Eco-evolutionary models have studied the distribution of trait values within a population that changes over the generations as a result of selection and heritability. Nonheritable traits that can change within the lifetime, such as behavior, can cause trait-mediated indirect effects, often studied by modeling the dynamics of a homogeneous trait. Complementary to these approaches, we study the distribution of traits within a population and its dynamics on short timescales due to ecological processes. We consider several mechanisms by which the trait distribution can shift dynamically: phenotypic plasticity within each individual, differential growth among individuals, and preferential consumption by the predator. Through a simple predator-prey model that explicitly tracks the trait distribution within the prey, we identify the density and trait effects from the predator. We show that the dynamic shift of the trait distribution can lead to the modification of interaction strength between species and result in otherwise unexpected consequences. A particular example is the emergent promotion of the prey by the predator, where the introduction of the predator causes the prey population to increase rather than decrease.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Densidade Demográfica , Comportamento Predatório , Animais , Fenótipo , Evolução Biológica , Dinâmica Populacional
9.
BMC Plant Biol ; 24(1): 371, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724940

RESUMO

Variations in functional traits serve as measures of plants' ability to adapt to environment. Exploring the patterns of functional traits of desert plants along elevational gradients is helpful to understand the responses and adaptation strategies of species to changing environments. However, it is unknown whether the relationship between functional traits and elevation is affected by differences in the species' elevational distributions (elevation preference and species' range). Importantly, most researches have concerned with differences in mean trait values and ignored intraspecific trait variation. Here, we measured functional traits of desert plants along a wide elevational gradient in the Tibetan Plateau and adjacent areas and explored functional trait patterns over elevation in species with different elevational distributions. We decomposed trait variation and further investigated characterizations of intraspecific variation. Ultimately, the main drivers of trait variation were identified using redundancy analysis. We found that species' elevational distributions significantly influenced the relationship of functional traits such as plant height, leaf dry matter content, leaf thickness, leaf nitrogen and carbon content with elevation. Species with a lower elevational preference showed greater trait variation than species with a higher elevational preference, suggesting that species that prefer high elevation are more conservative facing environmental changes. We provide evidence that interspecific trait variation in leaf thickness and leaf carbon content decreased with increasing species' range, indicating that increased variations in resistance traits within species make greater responsiveness to environmental changes, enabling species a wider range. Elevation, temperature and precipitation were the main drivers of trait variation in species with a low elevational preference, while the effect of precipitation on trait variation in species with a high elevational preference was not significant. This study sheds new insights on how plants with different elevational distributions regulate their ecological strategies to cope with changing environments.


Assuntos
Altitude , Clima Desértico , Tibet , Folhas de Planta/fisiologia , Folhas de Planta/anatomia & histologia
10.
Proc Biol Sci ; 291(2030): 20240587, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39257340

RESUMO

Adaptation of reef-building corals to global warming depends upon standing heritable variation in tolerance traits upon which selection can act. Yet limited knowledge exists on heat-tolerance variation among conspecific individuals separated by metres to hundreds of kilometres. Here, we performed standardized acute heat-stress assays to quantify the thermal tolerance traits of 709 colonies of Acropora spathulata from 13 reefs spanning 1060 km (9.5° latitude) of the Great Barrier Reef. Thermal thresholds for photochemical efficiency and chlorophyll retention varied considerably among individual colonies both among reefs (approximately 6°C) and within reefs (approximately 3°C). Although tolerance rankings of colonies varied between traits, the most heat-tolerant corals (i.e. top 25% of each trait) were found at virtually all reefs, indicating widespread phenotypic variation. Reef-scale environmental predictors explained 12-62% of trait variation. Corals exposed to high thermal averages and recent thermal stress exhibited the greatest photochemical performance, probably reflecting local adaptation and stress pre-acclimatization, and the lowest chlorophyll retention suggesting stress pre-sensitization. Importantly, heat tolerance relative to local summer temperatures was the greatest on higher latitude reefs suggestive of higher adaptive potential. These results can be used to identify naturally tolerant coral populations and individuals for conservation and restoration applications.


Assuntos
Antozoários , Recifes de Corais , Animais , Antozoários/fisiologia , Clorofila/metabolismo , Aclimatação , Temperatura Alta , Termotolerância , Aquecimento Global , Adaptação Fisiológica , Austrália
11.
Proc Biol Sci ; 291(2017): 20232687, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378151

RESUMO

Understanding the distribution of herbivore damage among leaves and individual plants is a central goal of plant-herbivore biology. Commonly observed unequal patterns of herbivore damage have conventionally been attributed to the heterogeneity in plant quality or herbivore behaviour or distribution. Meanwhile, the potential role of stochastic processes in structuring plant-herbivore interactions has been overlooked. Here, we show that based on simple first principle expectations from metabolic theory, random sampling of different sizes of herbivores from a regional pool is sufficient to explain patterns of variation in herbivore damage. This is despite making the neutral assumption that herbivory is caused by randomly feeding herbivores on identical and passive plants. We then compared its predictions against 765 datasets of herbivory on 496 species across 116° of latitude from the Herbivory Variability Network. Using only one free parameter, the estimated attack rate, our neutral model approximates the observed frequency distribution of herbivore damage among plants and especially among leaves very well. Our results suggest that neutral stochastic processes play a large and underappreciated role in natural variation in herbivory and may explain the low predictability of herbivory patterns. We argue that such prominence warrants its consideration as a powerful force in plant-herbivore interactions.


Assuntos
Herbivoria , Folhas de Planta , Plantas
12.
New Phytol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39081013

RESUMO

Diversification of plant chemical phenotypes is typically associated with spatially and temporally variable plant-insect interactions. Floral scent is often assumed to be the target of pollinator-mediated selection, whereas foliar compounds are considered targets of antagonist-mediated selection. However, floral and vegetative phytochemicals can be biosynthetically linked and may thus evolve as integrated phenotypes. Utilizing a common garden of 28 populations of the perennial herb Arabis alpina (Brassicaceae), we investigated integration within and among floral scent compounds and foliar defense compounds (both volatile compounds and tissue-bound glucosinolates). Within floral scent volatiles, foliar volatile compounds, and glucosinolates, phytochemicals were often positively correlated, and correlations were stronger within these groups than between them. Thus, we found no evidence of integration between compound groups indicating that these are free to evolve independently. Relative to self-compatible populations, self-incompatible populations experienced stronger correlations between floral scent compounds, and a trend toward lower integration between floral scent and foliar volatiles. Our study serves as a rare test of integration of multiple, physiologically related plant traits that each are potential targets of insect-mediated selection. Our results suggest that independent evolutionary forces are likely to diversify different axes of plant chemistry without major constraints.

13.
New Phytol ; 243(1): 145-161, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38736026

RESUMO

Diatoms are a diverse group of phytoplankton usually dominating areas characterized by rapidly shifting light conditions. Because of their high growth rates and interesting biochemical profile, their biomass is considered for various commercial applications. This study aimed at identifying strains with superior growth in a photobioreactor (PBR) by screening the natural intraspecific diversity of ecotypes isolated from different habitats. We investigated the effect of PBR light fluctuating on a millisecond scale (FL, simulating the light in a PBR) on 19 ecotypes of the diatom Skeletonema marinoi isolated from the North Sea-Baltic Sea area. We compare growth, pigment ratios, phylogeny, photo-physiological variables and photoacclimation strategies between all strains and perform qPCR and absorption spectra analysis on a subset of strains. Our results show that the ecotypes responded differently to FL, and have contrasting photo-physiological and photoprotective strategies. The strains from Kattegat performed better in FL, and shared common photoacclimation and photoprotection strategies that are the results of adaptation to the specific light climate of the Kattegat area. The strains that performed better with FL conditions had a high light (HL)-acclimated phenotype coupled with unique nonphotochemical quenching features. Based on their characteristics, three strains were identified as good candidates for growth in PBRs.


Assuntos
Diatomáceas , Ecossistema , Ecótipo , Luz , Fotobiorreatores , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/efeitos da radiação , Diatomáceas/fisiologia , Filogenia , Aclimatação , Clorofila/metabolismo , Fotossíntese/efeitos da radiação
14.
New Phytol ; 243(3): 922-935, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38859570

RESUMO

Understanding how widespread species adapt to variation in abiotic conditions across their ranges is fundamental to ecology. Insight may come from studying how among-population variation (APV) in the common garden corresponds with the environmental conditions of source populations. However, there are no such studies comparing native vs non-native populations across multiple life stages. We examined APV in the performance and functional traits of 59 Conyza canadensis populations, in response to drought, across large aridity gradients in the native (North America) and non-native (Eurasia) ranges in three experiments. Our treatment (dry vs wet) was applied at the recruitment, juvenile, and adult life stages. We found contrasting patterns of APV in drought responses between the two ranges. In the native range, plant performance was less reduced by drought in populations from xeric than mesic habitats, but such relationship was not apparent for non-native populations. These range-specific patterns were consistent across the life stages. The weak adaptive responses of non-native populations indicate that they can become highly abundant even without complete local adaptation to abiotic environments and suggest that long-established invaders may still be evolving to the abiotic environment. These findings may explain lag times in invasions and raise concern about future expansions.


Assuntos
Secas , Espécies Introduzidas , Variação Biológica da População , Adaptação Fisiológica , Ecossistema , Estágios do Ciclo de Vida , Água
15.
New Phytol ; 241(6): 2410-2422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214451

RESUMO

Uncertainty persists within trait-based ecology, partly because few studies assess multiple axes of functional variation and their effect on plant performance. For 55 species from two semiarid grasslands, we quantified: (1) covariation between economic traits of leaves and absorptive roots, (2) covariation among economic traits, plant height, leaf size, and seed mass, and (3) relationships between these traits and species' abundance. Pairs of analogous leaf and root traits were at least weakly positively correlated (e.g. specific leaf area (SLA) and specific root length (SRL)). Two pairs of such traits, N content and DMC of leaves and roots, were at least moderately correlated (r > 0.5) whether species were grouped by site, taxonomic group and growth form, or life history. Root diameter was positively correlated with seed mass for all groups of species except annuals and monocots. Species with higher leaf dry matter content (LDMC) tended to be more abundant (r = 0.63). Annuals with larger seeds were more abundant (r = 0.69). Compared with global-scale syntheses with many observations from mesic ecosystems, we observed stronger correlations between analogous leaf and root traits, weaker correlations between SLA and leaf N, and stronger correlations between SRL and root N. In dry grasslands, plant persistence may require coordination of above- and belowground traits, and dense tissues may facilitate dominance.


Assuntos
Ecossistema , Pradaria , Ecologia , Sementes , Plantas , Folhas de Planta
16.
New Phytol ; 241(5): 1973-1984, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38273449

RESUMO

The Jornada Basin Long-Term Ecological Research Site (JRN-LTER, or JRN) is a semiarid grassland-shrubland in southern New Mexico, USA. The role of intraspecific competition in constraining shrub growth and establishment at the JRN and in arid systems, in general, is an important question in dryland studies. Using information on shrub distributions and growth habits at the JRN, we present a novel landscape-scale (c. 1 ha) metric (the 'competition index', CI), which quantifies the potential intensity of competitive interactions. We map and compare the intensity of honey mesquite (Prosopis glandulosa, Torr.) competition spatially and temporally across the JRN-LTER, investigating associations of CI with shrub distribution, density, and soil types. The CI metric shows strong correlation with values of percent cover. Mapping CI across the Jornada Basin shows that high-intensity intraspecific competition is not prevalent, with few locations where intense competition is likely to be limiting further honey mesquite expansion. Comparison of CI among physiographic provinces shows differences in average CI values associated with geomorphology, topography, and soil type, suggesting that edaphic conditions may impose important constraints on honey mesquite and growth. However, declining and negative growth rates with increasing CI suggest that intraspecific competition constrains growth rates when CI increases above c. 0.5.


Assuntos
Ecossistema , Prosopis , New Mexico , Solo
17.
New Phytol ; 243(2): 620-635, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38812269

RESUMO

In natural systems, different plant species have been shown to modulate specific nitrogen (N) cycling processes so as to meet their N demand, thereby potentially influencing their own niche. This phenomenon might go beyond plant interactions with symbiotic microorganisms and affect the much less explored plant interactions with free-living microorganisms involved in soil N cycling, such as nitrifiers and denitrifiers. Here, we investigated variability in the modulation of soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), and their ratio (NEA : DEA), across 193 Arabidopsis thaliana accessions. We studied the genetic and environmental determinants of such plant-soil interactions, and effects on plant biomass production in the next generation. We found that NEA, DEA, and NEA : DEA varied c. 30-, 15- and 60-fold, respectively, among A. thaliana genotypes and were related to genes linked with stress response, flowering, and nitrate nutrition, as well as to soil parameters at the geographic origin of the analysed genotypes. Moreover, plant-mediated N cycling activities correlated with the aboveground biomass of next-generation plants in home vs away nonautoclaved soil, suggesting a transgenerational impact of soil biotic conditioning on plant performance. Altogether, these findings suggest that nutrient-based plant niche construction may be much more widespread than previously thought.


Assuntos
Arabidopsis , Biomassa , Ciclo do Nitrogênio , Microbiologia do Solo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Nitrogênio/metabolismo , Solo/química , Genótipo , Nitrificação , Desnitrificação , Ecossistema
18.
New Phytol ; 241(1): 461-470, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858964

RESUMO

Seed dispersal mechanisms play a crucial role in driving evolutionary changes in seed and fruit traits. While previous studies have primarily focussed on the mean or maximum values of these traits, there is also significant intraspecific variation in them. Therefore, it is pertinent to investigate whether dispersal mechanisms can explain intraspecific variations in these traits. Taking seed size as a case study, we compiled a global dataset comprising 3424 records of intraspecific variation in seed size (IVSS), belonging to 691 plant species and 131 families. We provided the first comprehensive quantification of dispersal mechanism effects on IVSS. Biotic-dispersed species exhibited a larger IVSS than abiotic-dispersed species. Synzoochory species had a larger IVSS than endozoochory, epizoochory, and myrmecochory species. Vertebrate-dispersed species exhibited a larger IVSS than invertebrate-dispersed species, and species dispersed by birds exhibited a larger IVSS than mammal-dispersed species. Additionally, a clear negative correlation was detected between IVSS and disperser body mass. Our results prove that the IVSS is associated with the seed dispersal mechanism. This study advances our understanding of the dispersal mechanisms' crucial role in seed size evolution, encompassing not only the mean value but also the variation.


Assuntos
Dispersão de Sementes , Humanos , Animais , Sementes , Frutas , Aves , Plantas , Mamíferos
19.
Mol Ecol ; 33(7): e17306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38414303

RESUMO

Variation in how individuals interact with food resources can directly impact, and be affected by, their microbial interactions due to the potential for transmission. The degree to which this transmission occurs, however, may depend on the structure of forager networks, which determine the community-scale transmission opportunities. In particular, how the community-scale opportunity for transfer balances individual-scale barriers to transmission is unclear. Examining the bee-flower and bee-microbial interactions of over 1000 individual bees, we tested (1) the degree to which individual floral visits predicted microbiome composition and (2) whether plant-bee networks with increased opportunity for microbial transmission homogenized the microbiomes of bees within that network. The pollen community composition carried by bees was associated with microbiome composition at some sites, suggesting that microbial transmission at flowers occurred. Contrary to our predictions, however, microbiome variability did not differ based on transfer opportunity: bee microbiomes in asymmetric networks with high opportunity for microbial transfer were similarly variable compared to microbiomes in networks with more evenly distributed links. These findings suggest that microbial transmission at flowers is frequent enough to be observed at the community level, but that community network structure did not substantially change the dynamics of this transmission, perhaps due to filtering processes in host guts.


Assuntos
Microbioma Gastrointestinal , Plantas , Humanos , Abelhas/genética , Animais , Pólen/genética , Flores , Polinização
20.
J Anat ; 244(5): 722-738, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38214368

RESUMO

The semicircular canals of the inner ear are involved in balance and velocity control. Being crucial to ensure efficient mobility, their morphology exhibits an evolutionary conservatism attributed to stabilizing selection. Release of selection in slow-moving animals has been argued to lead to morphological divergence and increased inter-individual variation. In its natural habitat, the house mouse Mus musculus moves in a tridimensional space where efficient balance is required. In contrast, laboratory mice in standard cages are severely restricted in their ability to move, which possibly reduces selection on the inner ear morphology. This effect was tested by comparing four groups of mice: several populations of wild mice trapped in commensal habitats in France; their second-generation laboratory offspring, to assess plastic effects related to breeding conditions; a standard laboratory strain (Swiss) that evolved for many generations in a regime of mobility reduction; and hybrids between wild offspring and Swiss mice. The morphology of the semicircular canals was quantified using a set of 3D landmarks and semi-landmarks analyzed using geometric morphometric protocols. Levels of inter-population, inter-individual (disparity) and intra-individual (asymmetry) variation were compared. All wild mice shared a similar inner ear morphology, in contrast to the important divergence of the Swiss strain. The release of selection in the laboratory strain obviously allowed for an important and rapid drift in the otherwise conserved structure. Shared traits between the inner ear of the lab strain and domestic pigs suggested a common response to mobility reduction in captivity. The lab-bred offspring of wild mice also differed from their wild relatives, suggesting plastic response related to maternal locomotory behavior, since inner ear morphology matures before birth in mammals. The signature observed in lab-bred wild mice and the lab strain was however not congruent, suggesting that plasticity did not participate to the divergence of the laboratory strain. However, contrary to the expectation, wild mice displayed slightly higher levels of inter-individual variation than laboratory mice, possibly due to the higher levels of genetic variance within and among wild populations compared to the lab strain. Differences in fluctuating asymmetry levels were detected, with the laboratory strain occasionally displaying higher asymmetry scores than its wild relatives. This suggests that there may indeed be a release of selection and/or a decrease in developmental stability in the laboratory strain.


Assuntos
Evolução Biológica , Canais Semicirculares , Animais , Camundongos , Canais Semicirculares/anatomia & histologia , Mamíferos , França
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA