Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Part Fibre Toxicol ; 21(1): 29, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107780

RESUMO

BACKGROUND: Microplastics have been detected in the atmosphere as well as in the ocean, and there is concern about their biological effects in the lungs. We conducted a short-term inhalation exposure and intratracheal instillation using rats to evaluate lung disorders related to microplastics. We conducted an inhalation exposure of polypropylene fine powder at a low concentration of 2 mg/m3 and a high concentration of 10 mg/m3 on 8-week-old male Fischer 344 rats for 6 h a day, 5 days a week for 4 weeks. We also conducted an intratracheal instillation of polypropylene at a low dose of 0.2 mg/rat and a high dose of 1.0 mg/rat on 12-week-old male Fischer 344 rats. Rats were dissected from 3 days to 6 months after both exposures, and bronchoalveolar lavage fluid (BALF) and lung tissue were collected to analyze lung inflammation and lung injury. RESULTS: Both exposures to polypropylene induced a persistent influx of inflammatory cells and expression of CINC-1, CINC-2, and MPO in BALF from 1 month after exposure. Genetic analysis showed a significant increase in inflammation-related factors for up to 6 months. The low concentration in the inhalation exposure of polypropylene also induced mild lung inflammation. CONCLUSION: These findings suggest that inhaled polypropylene, which is a microplastic, induces persistent lung inflammation and has the potential for lung disorder. Exposure to 2 mg/m3 induced inflammatory changes and was thought to be the Lowest Observed Adverse Effect Level (LOAEL) for acute effects of polypropylene. However, considering the concentration of microplastics in a real general environment, the risk of environmental hazards to humans may be low.


Assuntos
Líquido da Lavagem Broncoalveolar , Exposição por Inalação , Pulmão , Microplásticos , Pneumonia , Polipropilenos , Ratos Endogâmicos F344 , Animais , Masculino , Polipropilenos/toxicidade , Microplásticos/toxicidade , Exposição por Inalação/efeitos adversos , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/química , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pneumonia/induzido quimicamente , Ratos
2.
J Appl Toxicol ; 44(4): 595-608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37968889

RESUMO

In this study, molybdenum(IV) sulfide (MoS2 ) nanoparticles (97 ± 32 nm) and microparticles (1.92 ± 0.64 µm) stabilized with poly (vinylpolypyrrolidone) (PVP) were administered intratracheally to male and female rats (dose of 1.5 or 5 mg/kg bw), every 14 days for 90 days (seven administrations in total). Blood parameters were assessed during and at the end of the study (hematology, biochemistry including glucose, albumins, uric acid, urea, high density lipoprotein HDL, total cholesterol, triglycerides, aspartate transaminase, and alanine transaminase ALT). Bronchoalveolar lavage fluid (BALF) analyses included cell viability, biochemistry (total protein concentration, lactate dehydrogenase, and glutathione peroxidase activity), and cytokine levels (tumor necrosis factor α, TNF-α, macrophage inflammatory protein 2-alpha, MIP-2, and cytokine-induced neutrophil chemoattractant-2, CINC-2). Tissues were subjected to routine histopathological and electron microscopy (STEM) examinations. No overt signs of chronic toxicity were observed. Differential cell counts in BALF revealed no significant differences between the animal groups. An increase in MIP-2 and a decrease in TNF-α were observed in BALF in the exposed males. The histopathological changes in the lung evaluated according to a developed classification system (based on severity of inflammation, range 0-4, with 4 indicating the most severe changes) showed average histopathological score of 1.33 for animals exposed to nanoparticles and microparticles at the lower dose, 1.72 after exposure to nanoparticles at the higher dose, and 2.83 for animals exposed to microparticles at the higher dose. In summary, it was shown that nanosized and microsized MoS2 can trigger dose-dependent inflammatory reactions in the lungs of rats after multiple intratracheal instillation irrespective of the animal sex. Some evidence indicates a higher lung pro-inflammatory potential of the microform.


Assuntos
Nanopartículas , Pneumonia , Feminino , Ratos , Masculino , Animais , Molibdênio/toxicidade , Molibdênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pulmão , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Pneumonia/induzido quimicamente , Nanopartículas/toxicidade , Inflamação/patologia , Sulfetos/toxicidade
3.
Ecotoxicol Environ Saf ; 283: 116838, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128447

RESUMO

The number of individuals with underlying medical conditions has been increasing steadily. These individuals are relatively vulnerable to harmful external factors. But it has not been proven that the effects of hazardous chemicals may differ depending on their physicochemical properties. This study determines the toxic effects of two chemicals with high indoor exposure risk and different physicochemical properties on an underlying disease model. A pulmonary arterial hypertension (PAH) model was constructed by a single subcutaneous injection of monocrotaline (MCT; 60 mg/kg) into Sprague-Dawley rats. After three weeks, formaldehyde (FA; 2.5 mg/kg) and polyhexamethylene guanidine (PHMG; 0.05 mg/kg) were administered once via intratracheal instillation, and rats were necropsied one week later. Exposure to FA and PHMG affected organ weight and the Fulton and toxicity indices in rats induced with PAH. FA promoted bronchial injury and aggravated PAH, while PHMG only induced alveolar injury. Additionally, the differentially expressed genes were altered following exposure to FA and PHMG, as were the associated diseases (cardiovascular disease and pulmonary fibrosis, respectively). In conclusion, inhaled chemicals with different physicochemical properties can cause damage to organs, such as the lungs and heart, and can aggravate underlying diseases. This study elucidates indoor inhaled exposure-induced toxicities and alerts patients with pre-existing diseases to the harmful chemicals.

4.
Environ Toxicol ; 39(4): 2304-2315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148711

RESUMO

Cigarette smoke induces an inflammatory response in the lungs by recruiting inflammatory cells, leading to lung diseases such as lung cancer, chronic obstructive pulmonary disease, and pulmonary fibrosis. Existing inhalation exposure methods for assessing the adverse effects of cigarette smoke require expensive equipment and are labor-intensive. Therefore, we attempted to develop a novel method to assess these adverse effects using intratracheal instillation (ITI) of whole cigarette smoke condensate (WCSC). The WCSC (0, 5, 10, or 20 mg/mL) was administered by ITI once daily for 6 or 12 days using an automatic video instillator. Repeated WCSC ITI increased the lung weight, and monocyte chemoattractant protein-1 (MCP-1), neutrophil, and lymphocyte levels within bronchoalveolar lavage fluid compared to the control. In the histopathological analysis of the lung tissue, a mild inflammatory response was observed in the 6 and 12 days 20 mg/mL WCSC exposure groups. The genome-wide RNA-seq expression patterns revealed that inflammatory and immune response-related genes, such as the chemokine signaling pathway, Th1/Th2 cell differentiation, and cytokine-cytokine receptor interaction, were employed following WCSC exposure. In addition, MCP-1 was time-dependent and increased in the 10 mg/mL exposure group compared to the control group. These results suggested that the WCSC might induce the potential pulmonary inflammatory response. Furthermore, we proposed that ITI may be a rapid and effective method of evaluating the adverse effects of WCSC within a short exposure period (less than 2 weeks), and it can be used to evaluate cigarette inhalation toxicity studies as an alternative method.


Assuntos
Fumar Cigarros , Pneumopatias , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Pulmão , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pneumopatias/patologia , Líquido da Lavagem Broncoalveolar
5.
Cancer Immunol Immunother ; 72(12): 4457-4470, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796299

RESUMO

BACKGROUND: The inducible Kras/p53 lung adenocarcinoma mouse model, which faithfully recapitulates human disease, is routinely initiated by the intratracheal instillation of a virus-based Cre recombinase delivery system. Handling virus-based delivery systems requires elevated biosafety levels, e.g., biosafety level 2 (BSL-2). However, in experimental animal research facilities, following exposure to viral vectors in a BSL-2 environment, rodents may not be reclassified to BSL-1 according to standard practice, preventing access to small animal micro-computed tomography (micro-CT) scanners that are typically housed in general access areas such as BSL-1 rooms. Therefore, our goal was to adapt the protocol so that the Cre-induced KP mouse model could be handled under BSL-1 conditions during the entire procedure. RESULTS: The Kras-Lox-STOP-Lox-G12D/p53 flox/flox (KP)-based lung adenocarcinoma mouse model was activated by intratracheal instillation of either an adenoviral-based or a gutless, adeno-associated viral-based Cre delivery system. Tumor growth was monitored over time by micro-CT. We have successfully substituted the virus-based Cre delivery system with a commercially available, gutless, adeno-associated, Cre-expressing vector that allows the KP mouse model to be handled and imaged in a BSL-1 facility. By optimizing the anesthesia protocol and switching to a microscope-guided vector instillation procedure, productivity was increased and procedure-related complications were significantly reduced. In addition, repeated micro-CT analysis of individual animals allowed us to monitor tumor growth longitudinally, dramatically reducing the number of animals required per experiment. Finally, we documented the evolution of tumor volume for different doses, which revealed that individual tumor nodules induced by low-titer AAV-Cre transductions can be monitored over time by micro-CT. CONCLUSION: Modifications to the anesthesia and instillation protocols increased the productivity of the original KP protocol. In addition, the switch to a gutless, adeno-associated, Cre-expressing vector allowed longitudinal monitoring of tumor growth under BSL-1 conditions, significantly reducing the number of animals required for an experiment, in line with the 3R principles.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Dependovirus/genética , Microtomografia por Raio-X , Proteína Supressora de Tumor p53 , Contenção de Riscos Biológicos , Modelos Animais de Doenças , Vetores Genéticos/genética
6.
Respir Res ; 24(1): 47, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782232

RESUMO

BACKGROUND: Recently in Japan, six workers at a chemical plant that manufactures resins developed interstitial lung diseases after being involved in loading and packing cross-linked water-soluble acrylic acid polymers (CWAAPs). The present study focused on assessing lung damage in rats caused by workplace-relevant inhalation exposure to CWAAP and investigated the molecular and cellular mechanisms involved in lung lesion development. METHODS: Using a whole-body inhalation exposure system, male F344 rats were exposed once to 40 or 100 mg/m3 of CWAAP-A for 4 h or to 15 or 40 mg/m3 of CWAAP-A for 4 h per day once per week for 2 months (9 exposures). In a separate set of experiments, male F344 rats were administered 1 mg/kg CWAAP-A or CWAAP-B by intratracheal instillation once every 2 weeks for 2 months (5 doses). Lung tissues, mediastinal lymph nodes, and bronchoalveolar lavage fluid were collected and subjected to biological and histopathological analyses. RESULTS: A single 4-h exposure to CWAAP-A caused alveolar injury, and repeated exposures resulted in regenerative changes in the alveolar epithelium with activation of TGFß signaling. During the recovery period after the last exposure, some alveolar lesions were partially healed, but other lesions developed into alveolitis with fibrous thickening of the alveolar septum. Rats administered CWAAP-A by intratracheal instillation developed qualitatively similar pulmonary pathology as rats exposed to CWAAP-A by inhalation. At 2 weeks after intratracheal instillation, rats administered CWAAP-B appeared to have a slightly higher degree of lung lesions compared to rats administered CWAAP-A, however, there was no difference in pulmonary lesions in the CWAAP-A and CWAAP-B exposed rats examined 18 weeks after administration of these materials. CONCLUSIONS: The present study reports our findings on the cellular and molecular mechanisms of pulmonary disease in rats after workplace-relevant inhalation exposure to CWAAP-A. This study also demonstrates that the lung pathogenesis of rats exposed to CWAAP-A by systemic inhalation was qualitatively similar to that of rats administered CWAAP-A by intratracheal instillation.


Assuntos
Doenças Pulmonares Intersticiais , Polímeros , Ratos , Animais , Ratos Endogâmicos F344 , Exposição por Inalação/efeitos adversos , Pulmão/patologia , Líquido da Lavagem Broncoalveolar , Doenças Pulmonares Intersticiais/patologia , Administração por Inalação , Local de Trabalho
7.
Crit Rev Toxicol ; 53(8): 441-479, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37850621

RESUMO

The mechanisms of particle-induced pathogenesis in the lung remain poorly understood. Neutrophilic inflammation and oxidative stress in the lung are hallmarks of toxicity. Some investigators have postulated that oxidative stress from particle surface reactive oxygen species (psROS) on the dust produces the toxicopathology in the lungs of dust-exposed animals. This postulate was tested concurrently with the studies to elucidate the toxicity of lunar dust (LD), which is believed to contain psROS due to high-speed micrometeoroid bombardment that fractured and pulverized lunar surface regolith. Results from studies of rats intratracheally instilled (ITI) with three LDs (prepared from an Apollo-14 lunar regolith), which differed 14-fold in levels of psROS, and two toxicity reference dusts (TiO2 and quartz) indicated that psROS had no significant contribution to the dusts' toxicity in the lung. Reported here are results of further investigations by the LD toxicity study team on the toxicological role of oxidants in alveolar neutrophils that were harvested from rats in the 5-dust ITI study and from rats that were exposed to airborne LD for 4 weeks. The oxidants per neutrophils and all neutrophils increased with dose, exposure time and dust's cytotoxicity. The results suggest that alveolar neutrophils play a critical role in particle-induced injury and toxicity in the lung of dust-exposed animals. Based on these results, we propose an adverse outcome pathway (AOP) for particle-associated lung disease that centers on the crucial role of alveolar neutrophil-derived oxidant species. A critical review of the toxicology literature on particle exposure and lung disease further supports a neutrophil-centric mechanism in the pathogenesis of lung disease and may explain previously reported animal species differences in responses to poorly soluble particles. Key findings from the toxicology literature indicate that (1) after exposures to the same dust at the same amount, rats have more alveolar neutrophils than hamsters; hamsters clear more particles from their lungs, consequently contributing to fewer neutrophils and less severe lung lesions; (2) rats exposed to nano-sized TiO2 have more neutrophils and more severe lesions in their lungs than rats exposed to the same mass-concentration of micron-sized TiO2; nano-sized dust has a greater number of particles and a larger total particle-cell contact surface area than the same mass of micron-sized dust, which triggers more alveolar epithelial cells (AECs) to synthesize and release more cytokines that recruit a greater number of neutrophils leading to more severe lesions. Thus, we postulate that, during chronic dust exposure, particle-inflicted AECs persistently release cytokines, which recruit neutrophils and activate them to produce oxidants resulting in a prolonged continuous source of endogenous oxidative stress that leads to lung toxicity. This neutrophil-driven lung pathogenesis explains why dust exposure induces more severe lesions in rats than hamsters; why, on a mass-dose basis, nano-sized dusts are more toxic than the micron-sized dusts; why lung lesions progress with time; and why dose-response curves of particle toxicity exhibit a hockey stick like shape with a threshold. The neutrophil centric AOP for particle-induced lung disease has implications for risk assessment of human exposures to dust particles and environmental particulate matter.


Assuntos
Poeira , Pneumopatias , Cricetinae , Ratos , Humanos , Animais , Neutrófilos/patologia , Pulmão , Citocinas/toxicidade , Oxidantes/toxicidade , Tamanho da Partícula
8.
Part Fibre Toxicol ; 20(1): 37, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770972

RESUMO

BACKGROUND: Carbon fibers are high aspect ratio structures with diameters on the submicron scale. Vapor grown carbon fibers are contained within multi-walled carbon tubes, with VGCF™-H commonly applied as a conductive additive in lithium-ion batteries. However, several multi-walled carbon fibers, including MWNT-7, have been reported to induce lung carcinogenicity in rats. This study investigated the carcinogenic potential of VGCF™-H fibers in F344 rats of both sexes with the vapor grown carbon fibers VGCF™-H and MWNT-7 over 2 years. The carbon fibers were administered to rats by intratracheal instillation at doses of 0, 0.016, 0.08, and 0.4 mg/kg (total doses of 0, 0.128, 0.64, and 3.2 mg/kg) once per week for eight weeks and the rats were observed for up to 2 years after the first instillation. RESULTS: Histopathological examination showed the induction of malignant mesothelioma on the pleural cavity with dose-dependent increases observed at 0, 0.128, 0.64, and 3.2 mg/kg in rats of both sexes that were exposed to MWNT-7. On the other hand, only two cases of pleural malignant mesothelioma were observed in the VGCF™-H groups; both rats that received 3.2 mg/kg in male. The animals in the MWNT-7 groups either died or became moribund earlier than those in the VGCF™-H groups, which is thought related to the development of malignant mesothelioma. The survival rates were higher in the VGCF™-H group, and more carbon fibers were observed in the pleural lavage fluid (PLF) of the MWNT-7 groups. These results suggest that malignant mesothelioma is related to the transfer of carbon fibers into the pleural cavity. CONCLUSIONS: The intratracheal instillation of MWNT-7 clearly led to carcinogenicity in both male and female rats at all doses. The equivocal evidence for carcinogenic potential that was observed in male rats exposed to VGCF™-H was not seen in the females. The differences in the carcinogenicities of the two types of carbon fibers are thought due to differences in the number of carbon fibers reaching the pleural cavity. The results indicate that the carcinogenic activity of VGCF™-H is lower than that of MWNT-7.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Ratos , Masculino , Feminino , Animais , Mesotelioma Maligno/patologia , Ratos Endogâmicos F344 , Fibra de Carbono/toxicidade , Pulmão , Neoplasias Pulmonares/induzido quimicamente , Carcinógenos/toxicidade , Carcinógenos/química
9.
J Appl Toxicol ; 43(5): 649-661, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36317230

RESUMO

Crystalline silica is an important cause of serious pulmonary diseases, and its toxic potential is known to be associated with its surface electrical properties. However, in vivo data clarifying the relevance of silica's toxic potential, especially its long-term effects, remain insufficient. To investigate the contribution of physico-chemical property including surface potential on the hazard of nanocrystalline silica, we performed single intratracheal instillation testing using five different crystalline silicas in a rat model and assessed time-course changes in pulmonary inflammation, lung burden, and thoracic lymph node loads. Silica-nanoparticles were prepared from two commercial products (Min-U-Sil5 [MS5] and SIO07PB [SPB]) using three different pretreatments: centrifugation (C), grinding (G), and surface dissolving (D). The five types of silica particles-MS5, MS5_C, SPB_C, SPB_G, and SPB_D-were intratracheally instilled into male F344 rats at doses of 0 mg/kg (purified water), 0.22 mg/kg (SPB), and 0.67, 2, or 6 mg/kg (MS5). Bronchoalveolar lavage, a lung burden analysis, and histopathological examination were performed at 3, 28, and 91 days after instillation. Granuloma formation was present in MS5 group at 91 days after instillation, although granuloma formation was suppressed in MS5_C group, which had a smaller particle size. SPB_C induced severe and progressive inflammation and kinetic lung overload, whereas SPB_G and SPB_D induced only slight and transient acute inflammation. Our results support that in vivo toxic potential of nanosilica by intratracheal instillation may involve with surface electrical properties leading to prolonged effect and may not be dependent not only on surface properties but also on other physico-chemical properties.


Assuntos
Pneumonia , Dióxido de Silício , Ratos , Masculino , Animais , Ratos Endogâmicos F344 , Dióxido de Silício/efeitos adversos , Líquido da Lavagem Broncoalveolar/química , Pulmão , Pneumonia/induzido quimicamente , Pneumonia/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Granuloma/patologia , Intubação Intratraqueal
10.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176090

RESUMO

Industrial production generates aerosols of complex composition, including an ultrafine fraction. This is typical for mining and metallurgical industries, welding processes, and the production and recycling of electronics, batteries, etc. Since nano-sized particles are the most dangerous component of inhaled air, in this study we aimed to establish the impact of the chemical nature and dose of nanoparticles on their cytotoxicity. Suspensions of CuO, PbO, CdO, Fe2O3, NiO, SiO2, Mn3O4, and SeO nanoparticles were obtained by laser ablation. The experiments were conducted on outbred female albino rats. We carried out four series of a single intratracheal instillation of nanoparticles of different chemical natures at doses ranging from 0.2 to 0.5 mg per animal. Bronchoalveolar lavage was taken 24 h after the injection to assess its cytological and biochemical parameters. At a dose of 0.5 mg per animal, cytotoxicity in the series of nanoparticles changed as follows (in decreasing order): CuO NPs > PbO NPs > CdO NPs > NiO NPs > SiO2 NPs > Fe2O3 NPs. At a lower dose of 0.25 mg per animal, we observed a different pattern of cytotoxicity of the element oxides under study: NiO NPs > Mn3O4 NPs > CuO NPs > SeO NPs. We established that the cytotoxicity increased non-linearly with the increase in the dose of nanoparticles of the same chemical element (from 0 to 0.5 mg per animal). An increase in the levels of intracellular enzymes (amylase, AST, ALT, LDH) in the supernatant of the bronchoalveolar lavage fluid indicated a cytotoxic effect of nanoparticles. Thus, alterations in the cytological parameters of the bronchoalveolar lavage and the biochemical characteristics of the supernatant can be used to predict the danger of new nanomaterials based on their comparative assessment with the available tested samples of nanoparticles.


Assuntos
Nanopartículas Metálicas , Metaloides , Nanopartículas , Animais , Feminino , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Nanopartículas/toxicidade , Óxidos/química , Dióxido de Silício , Ratos
11.
Part Fibre Toxicol ; 19(1): 63, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242080

RESUMO

BACKGROUND: The toxicokinetic behaviour of nanostructured particles following pulmonary or oral deposition is of great scientific interest. In this toxicokinetic study, following the general principles of OECD TG 417, the systemic availability of carbon black, a nanostructured material consisting of agglomerated aggregates was characterised. METHODS: Each of two grades of beryllium-7 labelled carbon black (Monarch® 1000, oxidized and Printex® 90; untreated) was administered either intratracheally or orally to adult rats. Independent of route, rats received a single dose of approximately 0.3 mg radiolabelled carbon black. A total of 12 rats were treated per grade and per exposure route: 4 females each for feces/urine/organs and serial blood kinetics; 4 males for organs. At necropsy, the complete suite of organs was analysed for females, but only the lungs, liver, kidney, reproductive organs for males. RESULTS: In the pulmonarily exposed animals, 7Be-Monarch® 1000 and 7Be-Printex® 90 was detected in feces in the first 3 days after treatment at significant levels, i.e. 17.6% and 8.2%, respectively. In urine, small percentages of 6.7% and 0.4% were observed, respectively. In blood, radioactivity, representative of carbon black was within the background noise of the measurement method. At necropsy, 20 days post-instillation, both test items were practically exclusively found in lungs (75.1% and 91.0%, respectively) and in very small amounts (approximately 0.5%) in the lung-associated lymph nodes (LALN). In the other organs/tissues the test item was not detectable. BAL analyses indicated that carbon black particles were completely engulfed by alveolar macrophages. In orally exposed animals, 98% (7Be-Monarch® 1000) and 99% (7Be-Printex® 90) of the measured radioactivity was detected in feces. Excretion was complete within the first 3 days following treatment. 1.3% and 0.5% of measured activity was attributable to urine in animals that received 7Be-Monarch® 1000 and 7Be-Printex® 90, respectively. Radioactivity was absent in blood and other organs and tissues. CONCLUSION: Radioactivity, representative of carbon black, was not detected beyond the experimentally defined limit of quantitation systemically after deposition in lungs or stomach in rats. Under these experimental conditions, the two CB samples were not shown to translocate beyond the lung or the GI tract into the blood compartment.


Assuntos
Pulmão , Fuligem , Administração por Inalação , Animais , Feminino , Linfonodos , Masculino , Ratos , Fuligem/toxicidade , Toxicocinética
12.
Part Fibre Toxicol ; 19(1): 38, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590372

RESUMO

BACKGROUND: A mounting number of studies have been documenting the carcinogenic potential of multiwalled carbon nanotubes (MWCNTs); however, only a few studies have evaluated the pulmonary carcinogenicity of MWCNTs in vivo. A 2-year inhalation study demonstrated that MWNT-7, a widely used MWCNT, was a pulmonary carcinogen in rats. In another 2-year study, rats administered MWNT-7 by intratracheal instillation at the beginning of the experimental period developed pleural mesotheliomas but not lung tumors. To obtain data more comparable with rats exposed to MWNT-7 by inhalation, we administered MWNT-7 to F344 rats by intratracheal instillation once every 4-weeks over the course of 2 years at 0, 0.125, and 0.5 mg/kg body weight, allowing lung burdens of MWNT-7 to increase over the entire experimental period, similar to the inhalation study. RESULTS: Absolute and relative lung weights were significantly elevated in both MWNT-7-treated groups. Dose- and time-dependent toxic effects in the lung and pleura, such as inflammatory, fibrotic, and hyperplastic lesions, were found in both treated groups. The incidences of lung carcinomas, lung adenomas, and pleural mesotheliomas were significantly increased in the high-dose group compared with the control group. The pleural mesotheliomas developed mainly at the mediastinum. No MWNT-7-related neoplastic lesions were noted in the other organs. Cytological and biochemical parameters of the bronchoalveolar lavage fluid (BALF) were elevated in both treated groups. The lung burden of MWNT-7 was dose- and time-dependent, and at the terminal necropsy, the average value was 0.9 and 3.6 mg/lung in the low-dose and high-dose groups, respectively. The number of fibers in the pleural cavity was also dose- and time-dependent. CONCLUSIONS: Repeated administration of MWNT-7 by intratracheal instillation over the 2 years indicates that MWNT-7 is carcinogenic to both the lung and pleura of rats, which differs from the results of the 2 carcinogenicity tests by inhalation or intratracheal instillation.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Nanotubos de Carbono , Animais , Carcinógenos/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Mesotelioma/induzido quimicamente , Mesotelioma/patologia , Nanotubos de Carbono/toxicidade , Ratos , Ratos Endogâmicos F344
13.
J Appl Toxicol ; 41(6): 941-952, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33094530

RESUMO

Cerium oxide (CeO2 ) nanoparticles have unique redox properties and exert excellent antioxidant effects in the biological environment. In recent years, many researchers have focused on the CeO2 nanoparticles as an effective antioxidant drug in the prevention and treatment of various diseases. However, the toxicity of CeO2 nanoparticles in vivo remains controversial and still needs intensive research. Therefore, the objective of this study is to investigate the pulmonary and systemic toxicity in rats after 14 days of exposure to the PEGylated CeO2 nanoparticles (abbreviated as CNPs; exposure dose of 2, 10, or 20 mg/kg) through a single intratracheal instillation (IT). We assessed the indicators of lung injury and the pathological damage degree of lung tissue. The bronchoalveolar lavage fluid (BALF) analysis and lung histopathology revealed the occurrence of slight pulmonary inflammation in the 20-mg/kg experimental group rats. However, the inflammation factors in the lung tissue of every group rats did not significantly increase, and the levels of superoxide dismutase (SOD) and glutathione (GSH) in lung tissue homogenate rose considerably in the experimental groups. Collectively, these results indicated that pulmonary exposure by the high dose of CNPs could induce mild pulmonary inflammation but did not cause severe systemic toxicity. Moreover, we speculate that the mechanism of pulmonary toxicity of CNPs in rats was due to the autophagic death of healthy lung epithelial cells mediated by endoplasmic reticulum stress. Our results implicate that CNPs can be safely used as an antioxidant drug for the oxidative stress pulmonary diseases.


Assuntos
Antioxidantes/toxicidade , Cério/toxicidade , Nanopartículas Metálicas/toxicidade , Polietilenoglicóis/toxicidade , Animais , Antioxidantes/farmacologia , Líquido da Lavagem Broncoalveolar , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pneumopatias/patologia , Masculino , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Preparações Farmacêuticas , Pneumonia/patologia , Polietilenoglicóis/farmacologia , Ratos
14.
J Appl Toxicol ; 41(3): 470-482, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022792

RESUMO

Cetylpyridinium chloride (CPC), a quaternary ammonium compound and cationic surfactant, is used in personal hygiene products such as toothpaste, mouthwash, and nasal spray. Although public exposure to CPC is frequent, its pulmonary toxicity has yet to be fully characterized. Due to high risks of CPC inhalation, we aimed to comprehensively elucidate the in vitro and in vivo toxicity of CPC. The results demonstrated that CPC is highly cytotoxic against the A549 cells with a half-maximal inhibitory concentration (IC50 ) of 5.79 µg/ml. Following CPC exposure, via intratracheal instillation (ITI), leakage of lactate dehydrogenase, a biomarker of cell injury, was significantly increased in all exposure groups. Further, repeated exposure of rats to CPC for 28 days caused a decrease in body weight of the high-exposure group and the relative weights of the lungs and kidneys of the high recovery group, but no changes were evident in the histological and serum chemical analyses. The bronchoalveolar lavage fluid (BALF) analysis showed a significant increase in proinflammatory cytokines interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α levels. ITI of CPC induced focal inflammation of the pulmonary parenchyma in rats' lungs. Our study demonstrated that TNF-α was the most commonly secreted proinflammatory cytokine during CPC exposure in both in vitro and in vivo models. Polymorphonuclear leukocytes in the BALF, which are indicators of pulmonary inflammation, significantly increased in a concentration-dependent manner in all in vivo studies including the ITI, acute, and subacute inhalation assays, demonstrating that PMNs are the most sensitive parameters of pulmonary toxicity.


Assuntos
Células A549/efeitos dos fármacos , Anti-Infecciosos Locais/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Cetilpiridínio/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
15.
Ecotoxicol Environ Saf ; 210: 111903, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429322

RESUMO

A diverse and large community of gut microbiota reside in the intestinal tract of various organisms and play important roles in metabolism and immune homeostasis of its host. The disorders of microbiota-host interaction have been closely associated with numerous chronic inflammatory and metabolic diseases, including inflammatory bowel disease and type 2 diabetes. The accumulating evidence has shown that fine particulate matter (PM2.5) exposure contributes to the diabetes, atherosclerosis and inflammatory bowel diseases; however, few studies have explored the impact of inhaled diesel PM2.5 on gut microbiota in vivo. In this study, C57BL/6J mice were exposed to diesel PM2.5 for 14 days via intratracheal instillation, and colon tissues and feces were harvested for microbiota analysis. Using high-throughput sequencing technology, we observed that intratracheally instillated diesel PM2.5 significantly altered the gut microbiota diversity and community. At the phylum and genus levels, principal coordinate analysis (PCoA) and principal component analysis (PCA) indicated pronounced segregation of microbiota compositions, which were further confirmed by ß diversity analysis. As the most affected phylum, Bacteroidetes was greatly diminished by diesel PM2.5. On the genus level, Escherichia, Parabacteroides, Akkermansia, and Oscillibacter were significantly elevated by diesel PM2.5 exposure. Our findings provided clear evidence that exposure to diesel PM2.5 via intratracheal instillation deteriorated the gastrointestinal (GI) tract and significantly altered the structure and composition of gut microbiota, which might subsequently contribute to the developmental abnormalities of inflammation, immunity and metabolism.


Assuntos
Poluentes Atmosféricos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Material Particulado/toxicidade , Administração por Inalação , Animais , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Masculino , Camundongos Endogâmicos C57BL
16.
J Toxicol Pathol ; 34(3): 269-273, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34290483

RESUMO

Recently, intratracheal instillation has been focused on as a simple, low-cost alternative to the inhalation method. In this study, intratracheal instillation of sulfuric acid, a typical acidic compound, was performed to compare the acute toxicity of acidic compounds that could cause damage to the respiratory system between intratracheal instillation and inhalation. Sulfuric acid was administered to male rats at doses of 0.7, 2, 7, 20, and 60 mg/kg by dividing the total dose into four doses. General condition and body weight were examined up to 14 days after administration, and macropathological and histopathological examinations were performed. The half-lethal dose was then estimated. All animals administered 20 and 60 mg/kg sulfuric acid and one animal administered 2 mg/kg sulfuric acid died within 4 h after administration. No abnormalities were observed in other animals. At 20 and 60 mg/kg, multiple red foci or diffuse red areas were macroscopically observed in the lungs. In these lesions, histopathologically, clefts between the mucosal epithelium and basement membrane and necrosis of the alveolar epithelium were observed. Deaths in these groups may have resulted from lung injury. No notable changes were observed in other animals. Therefore, the half-lethal dose of sulfuric acid by intratracheal instillation was estimated as 7-20 mg/kg. The acute toxicity by intratracheal instillation was evaluated with two-fold sensitivity since the exposure at the half-lethal sulfuric acid concentration in inhalation studies was calculated as 43.2 mg/kg.

17.
J Toxicol Pathol ; 34(1): 43-55, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33627944

RESUMO

Occupational exposure to nickel oxide (NiO) is an important cause of respiratory tract cancer. Toxicity is known to be associated with the dissociated component, i.e. nickel (II) ions. To address the relationship between physicochemical properties, including solubility in artificial lysosomal fluid, of NiO and time-course changes in the pulmonary response, we conducted an intratracheal instillation study in male Fischer rats using four different well-characterized NiO products, US3352 (NiO A), NovaWireNi01 (NiO B), I small particle (NiO C), and 637130 (NiO D). The NiOs were suspended in purified water and instilled once intratracheally into male F344 rats (12 weeks old) at 0 (vehicle control), 0.67, 2, and 6 mg/kg body weight. The animals were euthanized on days 3, 28, or 91 after instillation, and blood analysis, bronchoalveolar lavage fluid (BALF) testing, and histopathological examination were performed. The most soluble product, NiO B, caused the most severe systemic toxicity, leading to a high mortality rate, but the response was transient and surviving animals recovered. The second-most-soluble material, NiO D, and the third, NiO A, caused evident pulmonary inflammation, and the responses persisted for at least 91 days with collagen proliferation. In contrast, NiO C induced barely detectable inflammation in the BALF examination, and no marked changes were noted on histopathology. These results indicate that the early phase toxic potential of NiO products, but not the persistence of pulmonary inflammation, is associated with their solubility.

18.
J Toxicol Pathol ; 34(1): 57-71, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33627945

RESUMO

Carbon fibers have excellent physicochemical and electrical properties. Vapor-grown carbon fibers are a type of carbon fibers that have a multi-walled carbon tube structure with a high aspect ratio. The representative vapor-grown carbon fiber, VGCFTM-H, is extremely strong and stable and has superior thermal and electrical conductivity. Because some high-aspect-ratio multi-walled carbon nanotubes (MWCNTs) have been reported to have toxic and carcinogenic effects in the lungs of rodents, we performed a 13-week lung toxicity study using VGCFTM-H in comparison with one of MWCNTs, MWNT-7, in rats. Male and female F344 rats were intratracheally administered VGCFTM-H at doses of 0.2, 0.4, and 0.8 mg/kg bw or MWNT-7 at doses of 0.4 and 0.8 mg/kg bw once a week for 8 weeks and then up to week 13 without treatment. The lung burden was equivalent in the VGCFTM-H and MWNT-7 groups; however, the lung weight had increased and the inflammatory and biochemical parameters in the broncho-alveolar lavage fluid and histopathological parameters, including inflammatory cell infiltration, alveolar type II cells proliferation, alveolar fibrosis, pleural fibrosis, lung mesothelium proliferation, and diaphragm fibrosis, were milder in the VGCFTM-H group than in the MWNT-7 group. In addition, the proliferating cell nuclear antigen (PCNA)-positive index in the visceral and pleural mesothelium was significantly higher in the MWNT-7 group than in the controls, but not in the VGCFTM-H group. Thus, the results of this study indicate that the lung and pleural toxicities of VGCFTM-H were less than those of MWNT-7.

19.
Part Fibre Toxicol ; 17(1): 38, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771016

RESUMO

BACKGROUND: Diesel exhaust is carcinogenic and exposure to diesel particles cause health effects. We investigated the toxicity of diesel exhaust particles designed to have varying physicochemical properties in order to attribute health effects to specific particle characteristics. Particles from three fuel types were compared at 13% engine intake O2 concentration: MK1 ultra low sulfur diesel (DEP13) and the two renewable diesel fuels hydrotreated vegetable oil (HVO13) and rapeseed methyl ester (RME13). Additionally, diesel particles from MK1 ultra low sulfur diesel were generated at 9.7% (DEP9.7) and 17% (DEP17) intake O2 concentration. We evaluated physicochemical properties and histopathological, inflammatory and genotoxic responses on day 1, 28, and 90 after single intratracheal instillation in mice compared to reference diesel particles and carbon black. RESULTS: Moderate variations were seen in physical properties for the five particles: primary particle diameter: 15-22 nm, specific surface area: 152-222 m2/g, and count median mobility diameter: 55-103 nm. Larger differences were found in chemical composition: organic carbon/total carbon ratio (0.12-0.60), polycyclic aromatic hydrocarbon content (1-27 µg/mg) and acid-extractable metal content (0.9-16 µg/mg). Intratracheal exposure to all five particles induced similar toxicological responses, with different potency. Lung particle retention was observed in DEP13 and HVO13 exposed mice on day 28 post-exposure, with less retention for the other fuel types. RME exposure induced limited response whereas the remaining particles induced dose-dependent inflammation and acute phase response on day 1. DEP13 induced acute phase response on day 28 and inflammation on day 90. DNA strand break levels were not increased as compared to vehicle, but were increased in lung and liver compared to blank filter extraction control. Neutrophil influx on day 1 correlated best with estimated deposited surface area, but also with elemental carbon, organic carbon and PAHs. DNA strand break levels in lung on day 28 and in liver on day 90 correlated with acellular particle-induced ROS. CONCLUSIONS: We studied diesel exhaust particles designed to differ in physicochemical properties. Our study highlights specific surface area, elemental carbon content, PAHs and ROS-generating potential as physicochemical predictors of diesel particle toxicity.


Assuntos
Gasolina/toxicidade , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Emissões de Veículos/toxicidade , Animais , Carbono , Carcinógenos , Dano ao DNA , Pulmão , Camundongos , Camundongos Endogâmicos C57BL
20.
Regul Toxicol Pharmacol ; 115: 104690, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32474071

RESUMO

Silver is used in a wide range of products, and during their production and use, humans may be exposed through inhalation. Therefore, it is critical to know the concentration levels at which adverse effects may occur. In rodents, inhalation of silver nanoparticles has resulted in increased silver in the lungs, lymph nodes, liver, kidney, spleen, ovaries, and testes. Reported excretion pathways of pulmonary silver are urinary and faecal excretion. Acute effects in humans of the inhalation of silver include lung failure that involved increased heart rate and decreased arterial blood oxygen pressure. Argyria-a blue-grey discoloration of skin due to deposited silver-was observed after pulmonary exposure in 3 individuals; however, the presence of silver in the discolorations was not tested. Argyria after inhalation seems to be less likely than after oral or dermal exposure. Repeated inhalation findings in rodents have shown effects on lung function, pulmonary inflammation, bile duct hyperplasia, and genotoxicity. In our evaluation, the range of NOAEC values was 0.11-0.75 mg/m3. Silver in the ionic form is likely more toxic than in the nanoparticle form but that difference could reflect their different biokinetics. However, silver nanoparticles and ions have a similar pattern of toxicity, probably reflecting that the effect of silver nanoparticles is primarily mediated by released ions. Concerning genotoxicity studies, we evaluated silver to be positive based on studies in mammalian cells in vitro and in vivo when considering various exposure routes. Carcinogenicity data are absent; therefore, no conclusion can be provided on this endpoint.


Assuntos
Poeira , Gases/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Administração por Inalação , Animais , Humanos , Exposição por Inalação , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/análise , Testes de Mutagenicidade , Prata/sangue , Prata/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA