Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39077917

RESUMO

Trauma exposure may precipitate a cascade of plastic modifications within the intrinsic activity of brain regions, but it remains unclear which regions could be responsible for the development of post-traumatic stress disorder based on intrinsic activity. To elucidate trauma-related and post-traumatic stress disorder-related alterations in cortical intrinsic activity at the whole-brain level, we recruited 47 survivors diagnosed with post-traumatic stress disorder, 64 trauma-exposed controls from a major earthquake, and 46 age- and sex-matched healthy controls. All subjects were scanned with an echo-planar imaging sequence, and 5 parameters including the amplitude of low-frequency fluctuations, fractional amplitude of low-frequency fluctuations, regional homogeneity, degree centrality, and voxel-mirrored homotopic connectivity were calculated. We found both post-traumatic stress disorder patients and trauma-exposed controls exhibited decreased amplitude of low-frequency fluctuations in the bilateral posterior cerebellum and inferior temporal gyrus, decreased fractional amplitude of low-frequency fluctuation and regional homogeneity in the bilateral anterior cerebellum, and decreased fractional amplitude of low-frequency fluctuation in the middle occipital gyrus and cuneus compared to healthy controls, and these impairments were more severe in post-traumatic stress disorder patients than in trauma-exposed controls. Additionally, fractional amplitude of low-frequency fluctuation in left cerebellum was positively correlated with Clinician-Administered PTSD Scale scores in post-traumatic stress disorder patients. We identified brain regions that might be responsible for the emergence of post-traumatic stress disorder, providing important information for the treatment of this disorder.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/psicologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Imagem Ecoplanar , Terremotos , Imageamento por Ressonância Magnética , Adulto Jovem , Mapeamento Encefálico
2.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620010

RESUMO

Regulating the atomic density of single-atom alloys (SAAs) promotes the potential to significantly enhance the electrocatalytic activity. However, conventional methods for study on the electrocatalytic performance of SAAs versus the intersite distance demand exhaustive experiments and characterization. Herein, we present a combinatorial synthesis and analysis method to investigate the intersite distance effect of SAA electrocatalysts. We employ single-nanoparticle collision electrochemistry to realize in situ electrodeposition of a precisely tunable Au atomic density onto individual parent Ag nanoparticles, followed by instantaneous electrocatalytic measurement of the newborn Au-Ag SAAs. In this work, the utility of our method is confirmed by the identification of intersite distance effects of Au-Ag SAAs toward the oxygen reduction reaction. When the site distance between two neighboring Au atoms is 1.9 nm, Au-Ag SAAs exhibit optimal activity. This work provides a simple and efficient method for screening other SAA electrocatalysts with ideal intersite distance at the single-nanoparticle level.

3.
Small ; 20(11): e2305459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37922532

RESUMO

Electrocatalyst engineering from the atomic to macroscopic level of electrocatalysts is one of the most powerful routes to boost the performance of electrochemical devices. However, multi-scale structure engineering mainly focuses on the range of atomic-to-particle scale such as hierarchical porosity engineering, while catalyst engineering at the macroscopic level, such as the arrangement configuration of nanoparticles, is often overlooked. Here, a 2D carbon polyhedron array with a multi-scale engineered structure via facile chemical etching, ice-templating induced self-assembly, and high-temperature pyrolysis processes is reported. Controlled phytic acid etching of the carbon precursor introduces homogeneous atomic phosphorous and nitrogen doping, as well as a well-defined mesoporous structure. Subsequent ice-templated self-assembly triggers the formation of a 2D particle array superstructure. The atomic-level doping gives rise to high intrinsic activity, while the well-engineered porous structure and particle arrangement addresses the mass transport limitations at the microscopic particle level and macroscopic electrode level. As a result, the as-prepared electrocatalyst delivers outstanding performance toward oxygen reduction reaction in both acidic and alkaline media, which is better than recently reported state-of-the-art metal-free electrocatalysts. Molecular dynamics simulation together with extensive characterizations indicate that the performance enhancement originates from multi-scale structural synergy.

4.
Small ; : e2402976, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963321

RESUMO

Morphology, crystal phase, and its transformation are important structures that frequently determine electrocatalytic activity, but the correlations of intrinsic activity with them are not completely understood. Herein, using Co(OH)2 micro-platelets with well-defined structures (phase, thickness, area, and volume) as model electrocatalysts of oxygen evolution reaction, multiple in situ microscopy is combined to correlate the electrocatalytic activity with morphology, phase, and its transformation. Single-entity morphology and electrochemistry characterized by atomic force microscopy and scanning electrochemical cell microscopy reveal a thickness-dependent turnover frequency (TOF) of α-Co(OH)2. The TOF (≈9.5 s-1) of α-Co(OH)2 with ≈14 nm thickness is ≈95-fold higher than that (≈0.1 s-1) with ≈80 nm. Moreover, this thickness-dependent activity has a critical thickness of ≈30 nm, above which no thickness-dependence is observed. Contrarily, ß-Co(OH)2 reveals a lower TOF (≈0.1 s-1) having no significant correlation with thickness. Combining single-entity electrochemistry with in situ Raman microspectroscopy, this thickness-dependent activity is explained by more reversible Co3+/Co2+ kinetics and larger ratio of active Co sites of thinner α-Co(OH)2, accompanied with faster phase transformation and more extensive surface restructuration. The findings highlight the interactions among thickness, ratio of active sites, kinetics of active sites, and phase transformation, and offer new insights into structure-activity relationships at single-entity level.

5.
Chemistry ; 30(32): e202304003, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38573800

RESUMO

Proton exchange membrane fuel cells (PEMFCs) and alkaline membrane fuel cells (AEMFCs) have received great attention as energy devices of the next generation. Accelerating oxygen reduction reaction (ORR) kinetics is the key to improve PEMFC and AEMFC performance. Platinum-based catalysts are the most widely used catalysts for the ORR, but their high price and low abundance limit the commercialization of fuel cells. Non-noble metal-nitrogen-carbon (M-N-C) is considered to be the most likely material class to replace Pt-based catalysts, among which Fe-N-C and Co-N-C have been widely studied due to their excellent intrinsic ORR performance and have made great progress in the past decades. With the improvement of synthesis technology and a deeper understanding of the ORR mechanism, some reported Fe-N-C and Co-N-C catalysts have shown excellent ORR activity close to that of commercial Pt/C catalysts. Inspired by the progress, regulation strategies for Fe-N-C and Co-N-C catalysts are summarized in this Review from 5 perspectives: (1) coordinated atoms, (2) environmental heteroatoms and defects, (3) dual-metal active sites, (4) metal-based particle promoters, and (5) curved carbon layers. We also make suggestions on some challenges facing Fe-N-C and Co-N-C research.

6.
Arch Toxicol ; 98(6): 1795-1807, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704805

RESUMO

The endocrine system functions by interactions between ligands and receptors. Ligands exhibit potency for binding to and interacting with receptors. Potency is the product of affinity and efficacy. Potency and physiological concentration determine the ability of a ligand to produce physiological effects. The kinetic behavior of ligand-receptor interactions conforms to the laws of mass action. The laws of mass action define the relationship between the affinity of a ligand and the fraction of cognate receptors that it occupies at any physiological concentration. We previously identified the minimum ligand potency required to produce clinically observable estrogenic agonist effects via the human estrogen receptor-alpha (ERα). By examining data on botanical estrogens and dietary supplements, we demonstrated that ERα ligands with potency lower than one one-thousandth that of the primary endogenous hormone 17ß-estradiol (E2) do not produce clinically observable estrogenic effects. This allowed us to propose a Human-Relevant Potency Threshold (HRPT) for ERα ligands of 1 × 10-4 relative to E2. Here, we test the hypothesis that the HRPT for ERα arises from the receptor occupancy by the normal metabolic milieu of endogenous ERα ligands. The metabolic milieu comprises precursors to hormones, metabolites of hormones, and other normal products of metabolism. We have calculated fractional receptor occupancies for ERα ligands with potencies below and above the previously established HRPT when normal circulating levels of some endogenous ERα ligands and E2 were also present. Fractional receptor occupancy calculations showed that individual ERα ligands with potencies more than tenfold higher than the HRPT can compete for occupancy at ERα against individual components of the endogenous metabolic milieu and against mixtures of those components at concentrations found naturally in human blood. Ligands with potencies less than tenfold higher than the HRPT were unable to compete successfully for ERα. These results show that the HRPT for ERα agonism (10-4 relative to E2) proposed previously is quite conservative and should be considered strong evidence against the potential for disruption of the estrogenic pathway. For chemicals with potency 10-3 of E2, the potential for estrogenic endocrine disruption must be considered equivocal and subject to the presence of corroborative evidence. Most importantly, this work demonstrates that the endogenous metabolic milieu is responsible for the observed ERα agonist HRPT, that this HRPT applies also to ERα antagonists, and it provides a compelling mechanistic explanation for the HRPT that is grounded in basic principles of molecular kinetics using well characterized properties and concentrations of endogenous components of normal metabolism.


Assuntos
Disruptores Endócrinos , Estradiol , Receptor alfa de Estrogênio , Humanos , Disruptores Endócrinos/análise , Disruptores Endócrinos/química , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/agonistas , Estrogênios/metabolismo , Ligantes
7.
Angew Chem Int Ed Engl ; 63(23): e202404663, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38575553

RESUMO

The intrinsic activity assessment of transition metal oxides (TMOs) as key electrocatalysts for the oxygen evolution reaction (OER) has not been standardized due to uncertainties regarding their structure and composition, difficulties in accurately measuring their electrochemically active surface area (ECSA), and deficiencies in mass-transfer (MT) rates in conventional measurements. To address these issues, we utilized an electrodeposition-thermal annealing method to precisely synthesize single-particle TMOs with well-defined structure and composition. Concurrently, we engineered low roughness, spherical surfaces for individual particles, enabling precise measurement of their ECSA. Furthermore, by constructing a conductor-core semiconductor-shell structure, we evaluated the inherent OER activity of perovskite-type semiconductor materials, broadening the scope beyond just conductive TMOs. Finally, using single-particle nanoelectrode technique, we systematically measured individual TMO particles of various sizes for OER, overcoming MT limitations seen in conventional approaches. These improvements have led us to propose a precise and reliable approach to evaluating the intrinsic activity of TMOs, not only validating the accuracy of theoretical calculations but also revealing a strong correlation of OER activity on the melting point of TMOs. This discovery holds significant importance for future high-throughput material research and applications, offering valuable insights in electrocatalysis.

8.
Annu Rev Neurosci ; 38: 433-47, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25938726

RESUMO

The brain's default mode network consists of discrete, bilateral and symmetrical cortical areas, in the medial and lateral parietal, medial prefrontal, and medial and lateral temporal cortices of the human, nonhuman primate, cat, and rodent brains. Its discovery was an unexpected consequence of brain-imaging studies first performed with positron emission tomography in which various novel, attention-demanding, and non-self-referential tasks were compared with quiet repose either with eyes closed or with simple visual fixation. The default mode network consistently decreases its activity when compared with activity during these relaxed nontask states. The discovery of the default mode network reignited a longstanding interest in the significance of the brain's ongoing or intrinsic activity. Presently, studies of the brain's intrinsic activity, popularly referred to as resting-state studies, have come to play a major role in studies of the human brain in health and disease. The brain's default mode network plays a central role in this work.


Assuntos
Encéfalo/fisiologia , Vias Neurais/fisiologia , Descanso/fisiologia , Animais , Humanos
9.
J Pharmacol Sci ; 153(3): 153-160, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770156

RESUMO

Transporter-mediated clearance is determined by two factors, its single-molecule clearance, and expression level. However, no reliable method has been developed to evaluate them separately. This study aimed to develop a reliable method for evaluating the single-molecule activity of membrane transporters, such as organic anion transporting polypeptide (OATP) 2B1. HEK293 cells that co-expressed large conductance calcium-activated potassium (BK) channel and OATP2B1 were established and used for the following experiments. i) BK channel-mediated whole-cell conductance was measured using patch-clamp technique and divided by its unitary conductance to estimate the number of channels on plasma membrane (QI). ii) Using plasma membrane fraction, quantitative targeted absolute proteomics determined the stoichiometric ratio (ρ) of OATP2B1 to BK channel. iii) The uptake of estrone 3-sulfate was evaluated to calculate the Michaelis constant and uptake clearance (CL) per cell. Single-molecule clearance (CLint) was calculated by dividing CL by QI·ρ. QI and ρ values were estimated to be 916 and 2.16, respectively, yielding CLint of 5.23 fL/min/molecule. We successfully developed a novel method to reliably measure the single-molecule activity of a transporter, which could be used to evaluate the influences of factors such as genetic variations and post-translational modifications on the intrinsic activity of transporters.

10.
Small ; 18(13): e2108072, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35128776

RESUMO

Designing a synthesis of ultra-small Ni-based nanomaterials with high intrinsic activity and stability in alkaline hydrogen evolution reaction (HER) is a major challenge. Herein, a series of noble metal doped ultra-small size (4 nm) M-Ni/NiO nanoparticles supported on CNT are rationally designed by a solvent-free microwave reduction method that is fast (60 s), simple, includes no surfactants, extensive (>1 g), and has high yield (82.7%). The Ir-Ni/NiO@CNT has superior performance with a low overpotential of 24.6 mV at 10 mA cm-2 . In addition, the turnover frequency (TOF) value up to 2.51 s-1 and the exchange current density reaches 4.34 mA cm-2 , indicating that the catalyst has better intrinsic catalytic activity. It is further proved by density functional theory (DFT) that the NiO surface is conducive to the adsorption of OH* in the Volmer step while the Ni is inclined to adsorb H*, which synergistically promotes the water-splitting reaction, thereby increasing the catalytic rate of HER. It is believed that this work will provide valuable contributions and inspirations toward the large-scale production of high-performance Ni-based electrocatalysts for HER.

11.
Nanotechnology ; 33(45)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35896089

RESUMO

Intrinsic activity and reactive numbers are considered two important factors in oxygen reduction reaction (ORR) catalysts. Herein, we report the rational design and synthesis of a strongly coupled hybrid material comprising of FeZn nanoparticles (FeZn NPs) supported by a three-dimensional carbon conductive network (FeZn NPs@3D-CN) for increased ORR performance. Fe-N-C sites can offer high intrinsic activity owing to the unique bonding and oxygen vacancies, and the carbon conductive network facilitating the exposure to active sites, and increasing electron transport. Because of the synergetic effect of the conductive networks containing Fe-N-C and polyaniline, the catalysts exhibited ORR activity in an alkaline medium via a four-electron transfer process. FeZn NPs@3D-CN exhibited outstanding performance with a limited current density (6.2 mA cm-2), the Tafel slope (81.19 mV dec-1), and stability (23 mV negative shift after 2000 cycles), which were superior to those of 20% Pt/C (5.7 mA cm-2, 75.1 mV dec-1, 36 mV negative shift after 2000 cycles). This research highlights the effect of conductive networks expanding pathways and reducing the resistance of mass transport, which is a facile method to generate superior ORR electrocatalysts.

12.
Nano Lett ; 21(4): 1848-1855, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33550800

RESUMO

Perturbing the periodic electronic structure of the MoS2 basal plane via vacancy engineering offers an opportunity to explore its intrinsic activity. A significant challenge is the design of vacancy states, which include its type, distribution, and accessibility. Here, well-dispersed and vertically aligned MoS2 nanosheets with an in-plane selectively cleaved Mo-S bond on a carbon matrix (c-MoS2-C) have been prepared by a self-engaged strategy, which synergistically realizes uniform vacancy manufacturing and three-dimensional (3D) self-assembly of the defective MoS2 nanosheets. X-ray adsorption spectroscopy investigation confirms that the cleaved MoS2 basal plane generates newly active edge sites, where the Mo centers feature unsaturated coordination geometry. Theoretical calculations reveal that the exposed interior edge Mo sites represent new active centers for hydrogen adsorption/desorption. As expected, the synthesized c-MoS2-C exhibits markedly enhanced hydrogen evolution activity and superior stability. This in-plane activation strategy could be extended to other types of transition-metal dichalcogenides and catalytic reaction systems.

13.
Hum Brain Mapp ; 42(6): 1888-1909, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33534925

RESUMO

Demanding cognitive functions like working memory (WM) depend on functional brain networks being able to communicate efficiently while also maintaining some degree of modularity. Evidence suggests that aging can disrupt this balance between integration and modularity. In this study, we examined how cognitive training affects the integration and modularity of functional networks in older and younger adults. Twenty three younger and 23 older adults participated in 10 days of verbal WM training, leading to performance gains in both age groups. Older adults exhibited lower modularity overall and a greater decrement when switching from rest to task, compared to younger adults. Interestingly, younger but not older adults showed increased task-related modularity with training. Furthermore, whereas training increased efficiency within, and decreased participation of, the default-mode network for younger adults, it enhanced efficiency within a task-specific salience/sensorimotor network for older adults. Finally, training increased segregation of the default-mode from frontoparietal/salience and visual networks in younger adults, while it diffusely increased between-network connectivity in older adults. Thus, while younger adults increase network segregation with training, suggesting more automated processing, older adults persist in, and potentially amplify, a more integrated and costly global workspace, suggesting different age-related trajectories in functional network reorganization with WM training.


Assuntos
Envelhecimento/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Prática Psicológica , Adolescente , Adulto , Fatores Etários , Idoso , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
14.
Small ; 17(3): e2007085, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33354896

RESUMO

The poor electronic conductivity and low intrinsically electrocatalytic activity of most metal-organic frameworks (MOFs) greatly limit their direct applications as oxygen reduction reaction (ORR) electrocatalysts. In this work, it is reported that introduction of linker defects can effectively trigger the ORR activity of leaf-shaped zeolitic imidazolate framework (ZIF) by increasing the intrinsic activity of metal sites and electrical conductivity. Experimental results show that part of imidazole molecules is successfully removed from ZIF after a low-temperature thermal treatment without destroying its structure integrity, resulting in the formation of unsaturated metal sites and faster electron transport rate. Consequently, the ZIF with imidazole molecules defects (D-ZIF) exhibits a superior ORR activity than the pristine ZIF, possessing an onset potential of 0.86 V and higher half-wave potential of 0.60 V. Furthermore, the home-made Zn-air batteries with D-ZIF as air cathode exhibit high open-circuit voltage and well cycling stability. The developed linker-deficient modulation strategy can provide a new prospect to enable MOF-based electrocatalysts with efficient catalytic activity.

15.
Chemistry ; 27(64): 15992-15999, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34431564

RESUMO

Molybdenum sulfide (MoS2 ) is considered as an alternative material for commercial platinum catalysts for electrocatalytic hydrogen evolution reaction (HER). Improving the apparent HER activity of MoS2 to a level comparable to that of Pt is an essential premise for the commercial use of MoS2 . In this work, a Zn-doping strategy is proposed to enhance the HER performance of MoS2 . It is shown that tiny Zn doping into MoS2 leads to the enhancement of the electrochemical surface area, increases in proportion of HER active 1T phase in the material and formation of catalytic sites of higher intrinsic activity. These benefits result in a high-performance HER electrocatalyst with a low overpotential of 190 mV(@10 mA cm-2 ) and a low Tafel slope of 58 mV dec-1 . The origin for the excellent electrochemical performance of the doped MoS2 is rationalized with both experimental and theoretical investigations.

16.
Nanotechnology ; 32(50)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34375970

RESUMO

In order to reduce the overpotential of hydrogen evolution reaction (HER), the ternary coating Co-W-P was deposited on the surface of the nickel foam by electrochemical deposition to obtain a highly active electrode. Based on the measured double layer capacitance (Cdl) and HER activity, there is volcanic behavior between the intrinsic activity of Co-W-P and the Co:W ratio in the electrolyte. W and P play different roles in the formation of nanoparticles, and work together to achieve the large electrochemical surface area and excellent activity. When applied to the modification of other catalysts (Ni-P and Fe-P), the higher intrinsic activity was obtained after the introduction of W.

17.
Acta Neurol Scand ; 143(5): 514-520, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33210736

RESUMO

OBJECTIVE: Sleep-related hypermotor epilepsy (SHE) is a form of the epileptic syndrome that involves stereotyped hypermotor seizures and presents as asymmetric tonic or dystonic posturing events. We aimed to investigate the brain activities of SHE patients using structural and functional magnetic resonance imaging (fMRI). METHODS: A total of 41 patients with SHE and 41 age- and sex-matched healthy controls (HCs) were prospectively enrolled and assessed using fMRI. The two groups were compared in amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo), and potential correlations between these measures and clinical features were also examined. The involvement of functional network integration was explored by analyzing seed-based functional connectivity. RESULTS: In SHE patients, ALFF in the right precentral gyrus was significantly higher than in HCs, and ReHo in the left postcentral and right precentral gyrus was higher. None of the brain regions had lower ALFF or ReHo compared to HCs. ReHo in the left postcentral gyrus and ALFF in the right precentral gyrus were both negatively correlated with epilepsy duration. Patients with SHE had higher functional connectivity mainly in the precuneus, postcentral gyrus, and supplementary motor area. However, none of the brain regions in SHE group presented lower functional connectivity than in HCs. SHE is associated with disrupted regional and interregional functional activities. CONCLUSIONS: The patients showed abnormalities within the sensorimotor gyrus and supplementary motor area, suggesting spontaneous fluctuations correlated with remote functional brain network. These results at the whole-brain level argue for further investigation into connectivity disturbance in SHE.


Assuntos
Epilepsias Parciais/fisiopatologia , Córtex Motor/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Adulto , Epilepsias Parciais/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Córtex Motor/diagnóstico por imagem , Sono , Córtex Somatossensorial/diagnóstico por imagem , Adulto Jovem
18.
Angew Chem Int Ed Engl ; 60(40): 21911-21917, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34309153

RESUMO

A considerable amount of platinum (Pt) is required to ensure an adequate rate for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. Thus, the implementation of atomic Pt catalysts holds promise for minimizing the Pt content. In this contribution, atomic Pt sites with nitrogen (N) and phosphorus (P) co-coordination on a carbon matrix (PtNPC) are conceptually predicted and experimentally developed to alter the d-band center of Pt, thereby promoting the intrinsic ORR activity. PtNPC with a record-low Pt content (≈0.026 wt %) consequently shows a benchmark-comparable activity for ORR with an onset of 1.0 VRHE and half-wave potential of 0.85 VRHE . It also features a high stability in 15 000-cycle tests and a superior turnover frequency of 6.80 s-1 at 0.9 VRHE . Damjanovic kinetics analysis reveals a tuned ORR kinetics of PtNPC from a mixed 2/4-electron to a predominately 4-electron route. It is discovered that coordinated P species significantly shifts d-band center of Pt atoms, accounting for the exceptional performance of PtNPC.

19.
J Struct Biol ; 212(1): 107582, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707235

RESUMO

Rab4a is a small GTPase associated with endocytic compartments and a key regulator of early endosomes recycling. Gathering evidence indicates that its expression and activation are required for the development of metastases. Rab4a-intrinsic GTPase properties that control its activity, i.e. nucleotide exchange and hydrolysis rates, have not yet been thoroughly studied. The determination of these properties is of the utmost importance to understand its functions and contributions to tumorigenesis. Here, we used the constitutively active (Rab4aQ67L) and dominant negative (Rab4aS22N) mutants to characterize the thermodynamical and structural determinants of the interaction between Rab4a and GTP (GTPγS) as well as GDP. We report the first 1H, 13C, 15N backbone NMR assignments of a Rab GTPase family member with Rab4a in complex with GDP and GTPγS. We also provide a qualitative description of the extent of structural and dynamical changes caused by the Q67L and S22N mutations. Using a real-time NMR approach and the two aforementioned mutants as controls, we evaluated Rab4a intrinsic nucleotide exchange and hydrolysis rates. Compared to most small GTPases such as Ras, a rapid GTP exchange rate along with slow hydrolysis rate were observed. This suggests that, in a cellular context, Rab4a can self-activate and persist in an activated state in absence of regulatory mechanisms. This peculiar profile is uncommon among the Ras superfamily members, making Rab4a an atypical fast-cycling GTPase and may explain, at least in part, how it contributes to metastases.


Assuntos
GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética/métodos
20.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138330

RESUMO

Molybdenum disulfide (MoS2) has been recognized as one of the most promising catalysts to replace Pt for hydrogen evolution reaction (HER) electrocatalysis because of the elemental abundance, excellent catalytic potential, and stability. However, its HER efficiency is still below that of Pt. Recent research advances have revealed that the modification of pristine MoS2 is a very effective approach to boost its HER performance, including improving the intrinsic activity of sites, increasing the number of edges, and enhancing the electrical conductivity. In this review, we focus on the recent progress on the modification strategies of MoS2 for enhanced electrocatalytic hydrogen evolution. Moreover, some urgent challenges in this field are also discussed to realize the large-scale application of the modified-MoS2 catalysts in industry.


Assuntos
Dissulfetos/química , Molibdênio/química , Catálise , Domínio Catalítico , Hidrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA