Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Annu Rev Entomol ; 69: 219-237, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37708416

RESUMO

Throughout the past century, the global spread of Bactrocera pests has continued to pose a significant threat to the commercial fruit and vegetable industry, resulting in substantial costs associated with both control measures and quarantine restrictions. The increasing volume of transcontinental trade has contributed to an escalating rate of Bactrocera pest introductions to new regions. To address the worldwide threat posed by this group of pests, we first provide an overview of Bactrocera. We then describe the global epidemic, including border interceptions, species diagnosis, population genetics, geographical expansion, and invasion tracing of Bactrocera pests. We further consider the literature concerning the invasion co-occurrences, life-history flexibility, risk assessment, bridgehead effects, and ongoing implications of invasion recurrences, as well as a case study of Bactrocera invasions of California. Finally, we call for global collaboration to effectively monitor, prevent, and control the ongoing spread of Bactrocera pests and to share experience and knowledge to combat it.


Assuntos
Tephritidae , Animais , Geografia , Medição de Risco
2.
Conserv Biol ; 38(4): e14260, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38638064

RESUMO

Aquatic invasive species (AIS) are one of the greatest threats to the functioning of aquatic ecosystems worldwide. Once an invasive species has been introduced to a new region, many governments develop management strategies to reduce further spread. Nevertheless, managing AIS in a new region is challenging because of the vast areas that need protection and limited resources. Spatial heterogeneity in invasion risk is driven by environmental suitability and propagule pressure, which can be used to prioritize locations for surveillance and intervention activities. To better understand invasion risk across aquatic landscapes, we developed a simulation model to estimate the likelihood of a waterbody becoming invaded with an AIS. The model included waterbodies connected via a multilayer network that included boater movements and hydrological connections. In a case study of Minnesota, we used zebra mussels (Dreissena polymorpha) and starry stonewort (Nitellopsis obtusa) as model species. We simulated the impacts of management scenarios developed by stakeholders and created a decision-support tool available through an online application provided as part of the AIS Explorer dashboard. Our baseline model revealed that 89% of new zebra mussel invasions and 84% of new starry stonewort invasions occurred through boater movements, establishing it as a primary pathway of spread and offering insights beyond risk estimates generated by traditional environmental suitability models alone. Our results highlight the critical role of interventions applied to boater movements to reduce AIS dispersal.


Modelo del riesgo de la invasión de especies acuáticas dispersadas por movimiento de botes y conexiones entre ríos Resumen Las especies acuáticas invasoras (EAI) son una de las principales amenazas para el funcionamiento de los ecosistemas acuáticos a nivel mundial. Una vez que una especie invasora ha sido introducida a una nueva región, muchos gobiernos desarrollan estrategias de manejo para disminuir la dispersión. Sin embargo, el manejo de las especies acuáticas invasoras en una nueva región se complica debido a las amplias áreas que necesitan protección y los recursos limitados. La heterogeneidad espacial de un riesgo de invasión es causada por la idoneidad ambiental y la presión de propágulo, que puede usarse para priorizar la ubicación de las actividades de vigilancia e intervención. Desarrollamos una simulación para estimar la probabilidad de que un cuerpo de agua sea invadido por EAI para tener un mejor entendimiento del riesgo de invasión en los paisajes acuáticos. El modelo incluyó cuencas conectadas a través de una red multicapa que incluía movimiento de botes y conexiones hidrológicas. Usamos como especies modelo a Dreissena polymorpha y a Nitellopsis obtusa en un estudio de caso en Minnesota. Simulamos el impacto de los escenarios de manejo desarrollado por los actores y creamos una herramienta de decisiones por medio de una aplicación en línea proporcionada como parte del tablero del Explorer de EAI. Nuestro modelo de línea base reveló que el 89% de las invasiones nuevas de D. polymorpha y el 84% de las de N. obtusa ocurrieron debido al movimiento de los botes, lo que lo estableció como una vía primaria de dispersión y nos proporcionó información más allá de las estimaciones de riesgo generadas por los modelos tradicionales de idoneidad ambiental. Nuestros resultados resaltan el papel crítico de las intervenciones aplicadas al movimiento de los botes para reducir la dispersión de especies acuáticas invasoras.


Assuntos
Conservação dos Recursos Naturais , Dreissena , Espécies Introduzidas , Modelos Biológicos , Rios , Animais , Dreissena/fisiologia , Conservação dos Recursos Naturais/métodos , Minnesota , Navios , Distribuição Animal , Ecossistema
3.
Dokl Biochem Biophys ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955917

RESUMO

Fundamental aspects in the evolution of nematodes parasitizing woody plants are reviewed. (1) Nematode faunal lists of natural refugia are useful to predict the risks of opportunistic pathogens becoming true pathogens in the forest and park communities. (2) Nematode composition in natural refugia gives a chance to identify nematode antagonists of insect vectors of dangerous fungal and nematode infections, which can be potentially used as the biological agents for woody plants' protection. (3) Dauers in the ancestors of wood-inhabiting nematodes played a role as a survival stage in the detritus decomposition succession, and they later acquired the functions of dispersal and adaptations for transmission using insect vectors. (4) When inspecting wilted trees, it is necessary to use dauers for diagnostics, as sexually mature nematodes may be absent in tree tissues. (5) Plant parasitic nematodes originated from members of the detritus food web and retained a detritivorous phase in the life cycle as a part of the propagative generation. (6) Vectors in the life cycles of plant parasitic nematodes are inherited from the ancestral detritivorous nematode associations, rather than inserted in the dixenic life cycle of the 'nematode-fungus-plant' association. (7) Despite the significant difference in the duration of the nematode-tree and nematode-vector phases of the life cycle, the actual parasitic nematode specificity is dual: firstly to the vector and secondly to the natural host plant (as demonstrated in phytotests excluding a vector).

4.
Ecol Appl ; 33(1): e2721, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372556

RESUMO

Globalization and economic growth are recognized as key drivers of biological invasions. Alien species have become a feature of almost every biological community worldwide, and rates of new introductions continue to rise as the movement of people and goods accelerates. Insects are among the most numerous and problematic alien organisms, and are mainly introduced unintentionally with imported cargo or arriving passengers. However, the processes occurring prior to insect introductions remain poorly understood. We used a unique dataset of 1,902,392 border interception records from inspections at air, land, and maritime ports in Australia, New Zealand, Europe, Japan, USA, and Canada to identify key commodities associated with insect movement through trade and travel. In total, 8939 species were intercepted, and commodity association data were available for 1242 species recorded between 1960 and 2019. We used rarefaction and extrapolation methods to estimate the total species richness and diversity associated with different commodity types. Plant and wood products were the main commodities associated with insect movement across cargo, passenger baggage, and international mail. Furthermore, certain species were mainly associated with specific commodities within these, and other broad categories. More closely related species tended to share similar commodity associations, but this occurred largely at the genus level rather than within orders or families. These similarities within genera can potentially inform pathway management of new alien species. Combining interception records across regions provides a unique window into the unintentional movement of insects, and provides valuable information on establishment risks associated with different commodity types and pathways.


Assuntos
Insetos , Espécies Introduzidas , Humanos , Animais , Europa (Continente) , Biota , Austrália
5.
Ecol Lett ; 25(4): 900-912, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35098634

RESUMO

Successful control and prevention of biological invasions depend on identifying traits of non-native species that promote fitness advantages in competition with native species. Here, we show that, among 76 native and non-native woody plants of deciduous forests of North America, invaders express a unique functional syndrome that combines high metabolic rate with robust leaves of longer lifespan and a greater duration of annual carbon gain, behaviours enabled by seasonally plastic xylem structure and rapid production of thin roots. This trait combination was absent in all native species examined and suggests the success of forest invaders is driven by a novel resource-use strategy. Furthermore, two traits alone-annual leaf duration and nuclear DNA content-separated native and invasive species with 93% accuracy, supporting the use of functional traits in invader risk assessments. A trait syndrome reflecting both fast growth capacity and understorey persistence may be a key driver of forest invasions.


Assuntos
Florestas , Árvores , Carbono/metabolismo , Espécies Introduzidas , Folhas de Planta , Árvores/genética
6.
J Environ Manage ; 301: 113779, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597945

RESUMO

The Ballast Water Management Convention can decrease the introduction risk of harmful aquatic organisms and pathogens, yet the Convention increases shipping costs and causes subsequent economic impacts. This paper examines whether the Convention generates disproportionate invasion risk reduction results and economic impacts on Small Island Developing States (SIDS) and Least Developed Countries (LDCs). Risk reduction is estimated with an invasion risk assessment model based on a higher-order network, and the effects of the regulation on national economies and trade are estimated with an integrated shipping cost and computable general equilibrium modeling framework. Then we use the Lorenz curve to examine if the regulation generates risk or economic inequality among regions. Risk reduction ratios of all regions (except Singapore) are above 99%, which proves the effectiveness of the Convention. The Gini coefficient of 0.66 shows the inequality in risk changes relative to income levels among regions, but risk reductions across all nations vary without particularly high risks for SIDS and LDCs than for large economies. Similarly, we reveal inequality in economic impacts relative to income levels (the Gini coefficient is 0.58), but there is no evidence that SIDS and LDCs are disproportionately impacted compared to more developed regions. Most changes in GDP, real exports, and real imports of studied regions are minor (smaller than 0.1%). However, there are more noteworthy changes for select sectors and trade partners including Togo, Bangladesh, and Dominican Republic, whose exports may decrease for textiles and metal and chemicals. We conclude the Convention decreases biological invasion risk and does not generate disproportionate negative impacts on SIDS and LDCs.


Assuntos
Países em Desenvolvimento , Água , Espécies Introduzidas , Navios , Abastecimento de Água
7.
J Phycol ; 54(1): 12-24, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29054117

RESUMO

The mitochondrial genetic diversity, distribution and invasive potential of multiple cryptic operational taxonomic units (OTUs) of the red invasive seaweed Asparagopsis were assessed by studying introduced Mediterranean and Hawaiian populations. Invasive behavior of each Asparagopsis OTU was inferred from phylogeographic reconstructions, past historical demographic dynamics, recent range expansion assessments and future distributional predictions obtained from demographic models. Genealogical networks resolved Asparagopsis gametophytes and tetrasporophytes into four A. taxiformis and one A. armata cryptic OTUs. Falkenbergia isolates of A. taxiformis L3 were recovered for the first time in the western Mediterranean Sea and represent a new introduction for this area. Neutrality statistics supported past range expansion for A. taxiformis L1 and L2 in Hawaii. On the other hand, extreme geographic expansion and an increase in effective population size were found only for A. taxiformis L2 in the western Mediterranean Sea. Distribution models predicted shifts of the climatically suitable areas and population expansion for A. armata L1 and A. taxiformis L1 and L2. Our integrated study confirms a high invasive risk for A. taxiformis L1 and L2 in temperate and tropical areas. Despite the differences in predictions among modelling approaches, a number of regions were identified as zones with high invasion risk for A. taxiformis L2. Since range shifts are likely climate-driven phenomena, future invasive behavior cannot be excluded for the rest of the lineages.


Assuntos
Espécies Introduzidas , Dispersão Vegetal , Rodófitas/fisiologia , Alga Marinha/fisiologia , DNA de Algas/análise , DNA Mitocondrial/análise , Havaí , Mar Mediterrâneo , Filogeografia , Rodófitas/genética , Alga Marinha/genética , Análise de Sequência de DNA
8.
Biology (Basel) ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39056678

RESUMO

The global trade of non-native pet birds has increased in recent decades, and this has accelerated the introduction of invasive birds in the wild. This study employed ensemble species distribution modelling (eSDM) to assess potential habitat suitability and environmental predictor variables influencing the potential distribution of non-native pet bird species reported lost and sighted in South Africa. We used data and information on lost and found pet birds from previous studies to establish and describe scenarios of how pet birds may transition from captivity to the wild. Our study revealed that models fitted and performed well in predicting the suitability for African grey (Psittacus erithacus), Budgerigar (Melopsittacus undulatus), Cockatiel (Nymphicus hollandicus), Green-cheeked conure (Pyrrhura molinae), Monk parakeet (Myiopsitta monachus), and Rose-ringed parakeet (Psittacula krameri), with the mean weighted AUC and TSS values greater than 0.765. The predicted habitat suitability differed among species, with the suitability threshold indicating that between 61% and 87% of areas were predicted as suitable. Species with greater suitability included the African grey, Cockatiel, and Rose-ringed parakeet, which demonstrated significant overlap between their habitat suitability and reported lost cases. Human footprint, bioclimatic variables, and vegetation indices largely influenced predictive habitat suitability. The pathway scenario showed the key mechanisms driving the transition of pet birds from captivity to the wild, including the role of pet owners, animal rescues, adoption practices, and environmental suitability. Our study found that urban landscapes, which are heavily populated, are at high risk of potential invasion by pet birds. Thus, implementing a thorough surveillance survey is crucial for monitoring and evaluating the establishment potential of pet species not yet reported in the wild.

9.
Sci Total Environ ; 950: 175192, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111452

RESUMO

Avena sterilis L. (A. sterilis) and Avena ludoviciana Dur. (A. ludoviciana) are extremely invasive weeds with strong competitive ability and multiple transmission routes. Both species can invade a variety of dryland crops, including wheat, corn, and beans. Asia, as the world's major food-producing continent, will experience significant losses to agricultural production if it is invaded by these weeds on a large scale. This study used the MaxEnt model and ArcGIS to map the distribution of suitable habitats of the two species in Asia under climate change conditions. The constructed model comprised four levels, with a total of 25 index-level indicator factors used to evaluate the invasion risk of the two species. The results showed that the distribution of suitable habitats for both Avena species was highly dependent on precipitation and temperature. Under climate warming conditions, although overall the total suitable area is predicted to decrease compared to the current period, there are still moderately or highly suitable areas. Asian countries need to provide early warning for areas with significant increases in moderate and highly suitable zones for these two species of weeds under the background of climate change. If there is already an invaded area or if the suitability of the original area is increased, this should be closely monitored, and control measures should be taken to prevent further spread and deterioration.


Assuntos
Avena , Mudança Climática , Espécies Introduzidas , Plantas Daninhas , Ásia , Ecossistema , Produtos Agrícolas
10.
Front Plant Sci ; 14: 1141470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077648

RESUMO

With the development of globalization and agriculture trade, as well as its own strong migratory capacity, fall armyworm (FAW) (Spodoptera frugiperda) (J.E. Smith) has invaded more than 70 countries, posing a serious threat to the production of major crops in these areas. FAW has now also been detected in Egypt in North Africa, putting Europe, which is separated from it only by the Mediterranean Sea, at high risk of invasion. Therefore, this study integrated multiple factors of insect source, host plant, and environment to provide a risk analysis of the potential trajectories and time periods of migration of FAW into Europe in 2016~2022. First, the CLIMEX model was used to predict the annual and seasonal suitable distribution of FAW. The HYSPLIT numerical trajectory model was then used to simulate the possibility of the FAW invasion of Europe through wind-driven dispersal. The results showed that the risk of FAW invasion between years was highly consistent (P<0.001). Coastal areas were most suitable for the expansion of the FAW, and Spain and Italy had the highest risk of invasion, with 39.08% and 32.20% of effective landing points respectively. Dynamic migration prediction based on spatio-temporal data can enable early warning of FAW, which is important for joint multinational pest management and crop protection.

11.
Sci Total Environ ; 905: 167075, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37714356

RESUMO

Pine wilt disease (PWD), caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus), a destructive, invasive forest pathogen, poses a serious threat to global pine forest ecosystems. The global invasion of PWN has been described based on three successive phases, introduction, establishment, and dispersal. Risk assessments of the three successive PWN invasion phases can assist in targeted management efforts. Here, we present a risk assessment framework to evaluate the introduction, establishment, and dispersal risks of PWD in China using network analysis, species distribution models, and niche concepts. We found that >88 % of PWN inspection records were from the United States, South Korea, Japan, Germany, and Mexico, and 94 % of interception records were primarily from the Jiangsu, Shanghai, Shandong, Tianjin, and Zhejiang ports. Based on the nearly current climate, the areas of PWN overlap with its host Pinus species were primarily distributed in southern, eastern, Yangtze River Basin, central, and northeastern China regions. Areas of PWN overlap with its insect vector Monochamus alternatus were primarily distributed in southern, eastern, Yangtze River Basin, central, and northeastern China regions, and those of PWN overlap with the insect vector Monochamus saltuarius were primarily distributed in eastern and northeastern China. The niche between PWN and the insect vector M. alternatus was the most similar (0.68), followed by that between PWN and the insect vector M. saltuarius (0.47). Climate change will increase the suitable probabilities of PWN and its two insect vectors occurring at high latitudes, further increasing their threat to hosts in northeastern China. This risk assessment framework for PWD could be influential in preventing the entry of the PWN and mitigating their establishment and dispersal risks in China. Our study provides substantial clues for developing a framework to improve the risk assessment and surveillance of biological invasions worldwide.


Assuntos
Besouros , Nematoides , Pinus , Animais , Ecossistema , Doenças das Plantas , China , Insetos Vetores
12.
Insects ; 14(4)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37103131

RESUMO

The fall webworm (Hyphantria cunea Dury) has a strong impact on agricultural systems in Europe. However, its invasive potential, which was inherited from its native niche in North America, remains unknown. Here, we investigated the climatic niche and range shifts of the fall webworm in Europe and compared them with those in native North America, then assessed the worms' invasive potential in Europe. Compared with the fall webworm in Europe, those in North America survived in more diverse climatic conditions, which was closely associated with their broader niche and larger potential ranges in Europe. If the fall webworm in Europe could exploit the native niche inherited from those in North America to adapt to climatic conditions in Europe, their potential ranges in Europe could be 5.5-fold those based on the niche as introduced in Europe. The potentially unfilled ranges of the fall webworm in Europe were mainly detected in vast regions of Europe, excluding Norway, Sweden, Finland, North Russia, Hungary, Croatia, Romania, and Ukraine, suggesting that, without strict control, these vast regions might be preferably invaded by the fall webworm in Europe in the future. Therefore, strict control against its invasion is needed. Given that small niche shifts in this invasive insect could result in large range shifts, the niche shifts represent a more sensitive indicator of invasion risk than range shifts.

13.
Mar Pollut Bull ; 194(Pt A): 115272, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442052

RESUMO

The two invasive blue crabs, Callinectes sapidus and Portunus segnis have spread rapidly in the Mediterranean and no data exists on the connectivity of populations. Determining the source and recruitment areas is crucial to prioritize where population control measures should be put into immediate action. We simulated the dispersal of blue crab larvae using a Lagrangian model coupled at high resolution to estimate the potential connectivity of blue crab populations over a 3-year period. Our results reveal that the main areas at risk are the Spanish, French, Italian Tyrrhenian and Sardinian coasts for Callinectes sapidus with high populations connectivity. Tunisia and Egypt represent high auto recruitment zones for Portunus segnis restricted to the central and western basins. This study provides an overview of the connectivity between populations and will help define priority areas that require the urgent implementation of management measures.


Assuntos
Braquiúros , Animais , Itália , Larva , Mar Mediterrâneo , Tunísia
14.
Quant Imaging Med Surg ; 13(2): 982-998, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36819252

RESUMO

Background: Tumor invasion risk (TIR) is an important prognostic factor in nasopharyngeal carcinoma (NPC). We propose a novel prognostic analytic method for NPC based on a voxelwise analysis of TIR in a coordinate system of the nasopharynx. Methods: A stable nasopharynx coordinate system was constructed based on anatomical landmarks to obtain an accurate TIR profile for NPC. The coordinate system was validated by image registration of the lateral pterygoid muscle (LPM). The tumors were registered to the coordinate system through shift, scale, and rotation transformations. The voxelwise TIR map for NPC was obtained by superposition of all registered and mirrored tumor regions of interest. The minimum risk (MinR) point of the tumor region was used as an independent prognostic factor for NPC. The cutoff value was calculated with density plot and validated with restricted cubic splines (RCSs), and then the patients were divided into 2 groups for overall survival (OS) analysis. Results: The first voxelwise TIR map of NPC was obtained based on 778 patients. The OS of patients with a low TIR was 76.8% and was 92.6% for patients with a high TIR [P<0.001; hazard ratio (HR) =1/0.45; 95% CI: 0.27-0.77; adjusted P=0.004]. Thus, patients with a low TIR had a poor prognosis, whereas patients with a high TIR had a good prognosis. The MinR may be better at grading the prognosis of patients compared to the American Joint Committee on Cancer (AJCC) staging or tumor/node (T/N) classification systems. Conclusions: The voxelwise TIR map provides a new method for the prognostic analysis of NPC. Potential clinical applications of voxelwise TIR mapping are clinical target volume (CTV) delineation and dose-painting for NPC.

15.
Sci Total Environ ; 877: 162993, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948323

RESUMO

Invasive alien species are among the main global drivers of biodiversity loss posing major challenges to nature conservation and to managers of protected areas. The present study applied a methodological framework that combined invasive Species Distribution Models, based on propagule pressure, abiotic and biotic factors for 14 invasive alien plants of Union concern in Italy, with the local interpretable model-agnostic explanation analysis aiming to map, evaluate and analyse the risk of plant invasions across the country, inside and outside the network of protected areas. Using a hierarchical invasive Species Distribution Model, we explored the combined effect of propagule pressure, abiotic and biotic factors on shaping invasive alien plant occurrence across three biogeographic regions (Alpine, Continental, and Mediterranean) and realms (terrestrial and aquatic) in Italy. We disentangled the role of propagule pressure, abiotic and biotic factors on invasive alien plant distribution and projected invasion risk maps. We compared the risk posed by invasive alien plants inside and outside protected areas. Invasive alien plant distribution varied across biogeographic regions and realms and unevenly threatens protected areas. As an alien's occurrence and risk on a national scale are linked with abiotic factors followed by propagule pressure, their local distribution in protected areas is shaped by propagule pressure and biotic filters. The proposed modelling framework for the assessment of the risk posed by invasive alien plants across spatial scales and under different protection regimes represents an attempt to fill the gap between theory and practice in conservation planning helping to identify scale, site, and species-specific priorities of management, monitoring and control actions. Based on solid theory and on free geographic information, it has great potential for application to wider networks of protected areas in the world and to any invasive alien plant, aiding improved management strategies claimed by the environmental legislation and national and global strategies.


Assuntos
Biodiversidade , Ecossistema , Plantas , Espécies Introduzidas , Especificidade da Espécie
16.
Ecol Evol ; 13(11): e10672, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920769

RESUMO

Aim: As invasive plants are often in a non-equilibrium expansion state, traditional species distribution models (SDMs) are likely underestimating their suitable habitat. New methods are necessary to identify potential invasion risk areas. Location: Tropical monsoon rainforest and subtropical evergreen broad-leaved forest regions in China. Methods: We took Parthenium hysterophorus as a case study to predict its potential invasion risk using climate, terrain, and human activity variables. First, a generalized joint attribute model (GJAM) was constructed using the occurrence of P. hysterophorus and its 27 closely related species in Taiwan, given it is widely distributed in Taiwan. Based on the output correlation values, two positively correlated species (Cardiospermum halicacabum and Portulaca oleracea) and one negatively correlated species (Crassocephalum crepidioides) were selected as indicator species. Second, the distributions of P. hysterophorus and its indicator species in the study area were predicted separately using an ensemble model (EM). Third, when selecting indicator species to construct indicator SDMs, two treatments (indicator species with positive correlation only, or both positive and negative correlation) were considered. The indicator species' EM predictions were overlaid using a weighted average method, and a better indicator SDMs prediction result was selected by comparison. Finally, the EM prediction result of P. hysterophorus was used to optimize the indicator SDMs result by a maximum overlay. Results: The optimized indicator SDMs prediction showed an expanded range beyond the current geographic range compared to EM and the thresholds for predicting key environmental variables were wider. It also reinforced the human activities' influence on the potential distribution of P. hysterophorus. Main Conclusions: For invasive plants with expanding ranges, information about indicator species distribution can be borrowed as a barometer for areas not currently invaded. The optimized indicator SDMs allow for more efficient potential invasion risk prediction. On this basis, invasive plants can be prevented earlier.

17.
Plants (Basel) ; 11(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35448793

RESUMO

To understand the factors that limit invasive expansion in alien species, it is critical to predict potential zones of colonization. Climatic niche can be an important way to predict the potential distribution of alien species. This correlation between niche and geographic distribution is called Hutchinson's duality. A combination of global and regional niches allows four invasive stages to be identified: quasi-equilibrium, local adaptation, colonization and sink stage. We studied the invasive stages of six alien leguminous species either in the niche or the geographical space. In five of the six species, a higher proportion of populations were in the quasi-equilibrium stage. Notably, Acacia species had the highest proportion of populations in local adaptation. This picture changed dramatically when we projected the climatic niche in the geographic space: in all species the colonization stage had the highest proportional projected area, ranging from 50 to 90%. Our results are consistent with Hutchinson's duality, which predicts that small areas in the niche space can be translated onto large areas of the geographic space. Although the colonization stage accounted for a low proportion of occurrences, in all species, the models predicted the largest areas for this stage. This study complements invasive stages, projecting them in geographic space.

18.
Environ Entomol ; 50(1): 138-148, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33284962

RESUMO

The spread and impact of invasive species in exotic ranges can be mitigated by increased understanding of pest invasion dynamics. Here, we used geospatial analyses and habitat suitability modeling to characterize the invasion of an important vineyard pest, vine mealybug (Planococcus ficus Signoret, Hemiptera: Pseudococcidae), using nearly 15,000 trapping records from throughout Napa County, California, between 2012 and 2017. Spatial autocorrelation among P. ficus detections was strongest at distances of ~250 m and detectable at regional scales (up to 40 km), estimates of the rate and directionality of spread were highly idiosyncratic, and P. ficus detection hotspots were spatiotemporally dynamic. Generalized linear model, boosted regression tree, and random forest modeling methods performed well in predicting habitat suitability for P. ficus. The most important predictors of P. ficus occurrence were a positive effect of precipitation in the driest month, and negative effects of elevation and distance to nearest winery. Our results indicate that 250-m quarantine and treatment zones around P. ficus detections are likely sufficient to encompass most local establishment and spread, and that implementing localized regulatory procedures may limit inadvertent P. ficus spread via anthropogenic pathways. Finally, surveys of P. ficus presence at >300 vineyard sites validated that habitat suitability estimates were significantly and positively associated with P. ficus frequency of occurrence. Our findings indicate that habitat suitability predictions may offer a robust tool for identifying areas in the study region at risk to future P. ficus invasion and prioritizing locations for early detection and preventative management efforts.


Assuntos
Ficus , Hemípteros , Animais , California , Fazendas , Análise Espacial
19.
Biology (Basel) ; 10(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34827162

RESUMO

Predicting the regions at risk of invasion from IIAPS is an integral horizon-scanning activity that plays a crucial role in preventing, controlling, and eradicating invasive species. Here, we quantify the spatial distribution area and invasion risk of IIAPS using a species distribution model under different levels of environmental change in South Korea. From the model predictions, the current average spatial extent of the 10 IIAPS is 33,948 km2, and the individual spatial extents are estimated to change by -7% to 150% by 2050 and by -9% to 156% by 2070. The spatial invasion risk assessment shows that, currently, moderate-to-high invasion risk is limited to coastal areas and densely populated metropolitan cities (e.g., Seoul, Busan, and Gwangju), but that the area with this level of risk is expected to spread toward the central and northern regions of the country in the future, covering 86.21% of the total area of the country by 2070. These results demonstrate that the risk of invasion by IIAPS is estimated to enlarge across the whole country under future environmental changes. The modeling system provided in this study may contribute to the initial control and strategic management of IIAPS to maintain the dynamic ecosystems of South Korea.

20.
Biology (Basel) ; 10(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803081

RESUMO

Prosopis juliflora is one of the most problematic invasive trees in tropical and subtropical regions. Understanding driving forces affecting the potential global distribution would help in managing its current and future spread. The role of climate on the global spatial distribution of P. juliflora has been well studied, but little is known about the role of soil and human impacts as potential drivers. Here, we used maximum entropy (MaxEnt) for species distribution modelling to understand the role of climate (C), soil (S) and human impacts (H), C+S, and C+S+H in controlling the potential invasion range of P. juliflora, and to project its global potential invasive risk. We defined the top threatened global biomes, as predicted by the best-selected model. The incorporation of the edaphic factors improved the model performance and enhanced the accuracy of the outcome. Our findings revealed that the potential invasion risk increases with increases in mean temperature of the driest quarter (Bio9), soil alkalinity and clay fractions. Arid and semi-arid lands are at the highest risk of invasion than other moist biomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA