Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.671
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(9): e2305437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863807

RESUMO

Organic Photovoltaics (OPV) is a very promising technology to harvest artificial illumination and power smart devices of the Internet of Things (IoT). Efficiencies as high as 30.2% have been reported for OPVs under warm white light-emitting diode (LED) light. This is due to the narrow spectrum of indoor light, which leads to an optimal bandgap of ≈1.9 eV. Under full sunlight, OPV devices often suffer from poor stability compared to the established inorganic PV technologies such as crystalline silicon. This study focuses on a potentially very cost-effective Indium Tin Oxide (ITO) free cell stack with absorber materials processed from non-halogenated solvents. These organic solar cells and modules with efficiencies up to 21% can already achieve remarkable stabilities under typical indoor illumination. Aging under 50,000 lux LED lighting leads to very little degradation after more than 11 000 h. This light dose corresponds to more than 110 years under 500 lux. For modules encapsulated with a flexible barrier, extrapolated lifetimes of more than 41 years are achieved. This shows that OPV is mature for the specific application under indoor illumination. Due to the large number of potential organic semiconducting materials, further efficiency increase can be expected.

2.
Small ; 20(15): e2306655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009791

RESUMO

Flexible sensors are highly flexible, malleable, and capable of adapting todifferent shapes, surfaces, and environments, which opens a wide range ofpotential applications in the field of human-machine interface (HMI). Inparticular, flexible pressure sensors as a crucial member of the flexiblesensor family, are widely used in wearable devices, health monitoringinstruments, robots and other fields because they can achieve accuratemeasurement and convert the pressure into electrical signals. The mostintuitive feeling that flexible sensors bring to people is the change ofhuman-machine interface interaction, from the previous rigid interaction suchas keyboard and mouse to flexible interaction such as smart gloves, more inline with people's natural control habits. Many advanced flexible pressuresensors have emerged through extensive research and development, and to adaptto various fields of application. Researchers have been seeking to enhanceperformance of flexible pressure sensors through improving materials, sensingmechanisms, fabrication methods, and microstructures. This paper reviews the flexible pressure sensors in HMI in recent years, mainlyincluding the following aspects: current cutting-edge flexible pressuresensors; sensing mechanisms, substrate materials and active materials; sensorfabrication, performances, and their optimization methods; the flexiblepressure sensors for various HMI applications and their prospects.


Assuntos
Eletricidade , Dispositivos Eletrônicos Vestíveis , Humanos
3.
Annu Rev Biomed Eng ; 25: 101-129, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36913705

RESUMO

Energy-efficient sensing with physically secure communication for biosensors on, around, and within the human body is a major area of research for the development of low-cost health care devices, enabling continuous monitoring and/or secure perpetual operation. When used as a network of nodes, these devices form the Internet of Bodies, which poses challenges including stringent resource constraints, simultaneous sensing and communication, and security vulnerabilities. Another major challenge is to find an efficient on-body energy-harvesting method to support the sensing, communication, and security submodules. Due to limitations in the amount of energy harvested, we require a reduction in energy consumed per unit information, making the use of in-sensor analytics and processing imperative. In this article, we review the challenges and opportunities of low-power sensing, processing, and communication with possible powering modalities for future biosensor nodes. Specifically, we analyze, compare, and contrast (a) different sensing mechanisms such as voltage/current domain versus time domain, (b) low-power, secure communication modalities including wireless techniques and human body communication, and (c) different powering techniques for wearable devices and implants.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Redes de Comunicação de Computadores , Tecnologia sem Fio , Internet
4.
Network ; : 1-32, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884373

RESUMO

The attacks like distributed denial-of-service (DDoS) are termed as severe defence issues in data centres, and are considered real network threat. These types of attacks can produce huge disturbances in information technologies. In addition, it is a complex task to determine and fully alleviate DDoS attacks. The new strategy is developed to identify and alleviate DDoS attacks in the Software-Defined Internet of Things (SD-IoT) model. SD-IoT simulation is executed to gather data. The data collected through nodes of SD-IoT are fed to the selection of feature phases. Here, the hybrid process is considered to select features, wherein features, like wrapper-based technique, cosine similarity-based technique, and entropy-based technique are utilized to choose the significant features. Thereafter, the attack discovery process is done with Elephant Water Cycle (EWC)-assisted deep neuro-fuzzy network (DNFN). The EWC is adapted to train DNFN, and here EWC is obtained by grouping Elephant Herd Optimization (EHO) and water cycle algorithm (WCA). Finally, attack mitigation is carried out to secure the SD-IoT. The EWC-assisted DNFN revealed the highest accuracy of 96.9%, TNR of 98%, TPR of 90%, precision of 93%, and F1-score of 91%, when compared with other related techniques.

5.
Network ; 35(2): 190-211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38155546

RESUMO

Nowadays, Internet of things (IoT) and IoT platforms are extensively utilized in several healthcare applications. The IoT devices produce a huge amount of data in healthcare field that can be inspected on an IoT platform. In this paper, a novel algorithm, named artificial flora optimization-based chameleon swarm algorithm (AFO-based CSA), is developed for optimal path finding. Here, data are collected by the sensors and transmitted to the base station (BS) using the proposed AFO-based CSA, which is derived by integrating artificial flora optimization (AFO) in chameleon swarm algorithm (CSA). This integration refers to the AFO-based CSA model enhancing the strengths and features of both AFO and CSA for optimal routing of medical data in IoT. Moreover, the proposed AFO-based CSA algorithm considers factors such as energy, delay, and distance for the effectual routing of data. At BS, prediction is conducted, followed by stages, like pre-processing, feature dimension reduction, adopting Pearson's correlation, and disease detection, done by recurrent neural network, which is trained by the proposed AFO-based CSA. Experimental result exhibited that the performance of the proposed AFO-based CSA is superior to competitive approaches based on the energy consumption (0.538 J), accuracy (0.950), sensitivity (0.965), and specificity (0.937).


Assuntos
Aprendizado Profundo , Internet das Coisas , Algoritmos , Instalações de Saúde , Redes Neurais de Computação
6.
BMC Med Imaging ; 24(1): 123, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797827

RESUMO

The quick proliferation of pandemic diseases has been imposing many concerns on the international health infrastructure. To combat pandemic diseases in smart cities, Artificial Intelligence of Things (AIoT) technology, based on the integration of artificial intelligence (AI) with the Internet of Things (IoT), is commonly used to promote efficient control and diagnosis during the outbreak, thereby minimizing possible losses. However, the presence of multi-source institutional data remains one of the major challenges hindering the practical usage of AIoT solutions for pandemic disease diagnosis. This paper presents a novel framework that utilizes multi-site data fusion to boost the accurateness of pandemic disease diagnosis. In particular, we focus on a case study of COVID-19 lesion segmentation, a crucial task for understanding disease progression and optimizing treatment strategies. In this study, we propose a novel multi-decoder segmentation network for efficient segmentation of infections from cross-domain CT scans in smart cities. The multi-decoder segmentation network leverages data from heterogeneous domains and utilizes strong learning representations to accurately segment infections. Performance evaluation of the multi-decoder segmentation network was conducted on three publicly accessible datasets, demonstrating robust results with an average dice score of 89.9% and an average surface dice of 86.87%. To address scalability and latency issues associated with centralized cloud systems, fog computing (FC) emerges as a viable solution. FC brings resources closer to the operator, offering low latency and energy-efficient data management and processing. In this context, we propose a unique FC technique called PANDFOG to deploy the multi-decoder segmentation network on edge nodes for practical and clinical applications of automated COVID-19 pneumonia analysis. The results of this study highlight the efficacy of the multi-decoder segmentation network in accurately segmenting infections from cross-domain CT scans. Moreover, the proposed PANDFOG system demonstrates the practical deployment of the multi-decoder segmentation network on edge nodes, providing real-time access to COVID-19 segmentation findings for improved patient monitoring and clinical decision-making.


Assuntos
COVID-19 , Aprendizado Profundo , Pandemias , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , SARS-CoV-2 , Cidades , Internet das Coisas
7.
Bioelectromagnetics ; 45(4): 184-192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38014861

RESUMO

This paper describes the assessment of the electromagnetic fields produced by consumer "smart" devices used to control and monitor everyday equipment and appliances in a modern "smart" home. The assessment is based on the careful measurement of fields produced by a range of such devices in a laboratory environment configured to operate in a condition simulating high user activity. All devices included in this study operate in the 2.4 GHz band utilizing either Wi-Fi or Bluetooth connectivity. Overall results indicate very low levels of electromagnetic fields for all IoT smart devices in terms of human exposure safety standards (typically much less than 1%) with very low duty cycles (also less than 1%) resulting in even lower time-averaged exposure levels. These low levels of exposure, along with rapid reduction of levels with distance from the devices, suggests that the cumulative effect of multiple devices in a "smart" home are not significant.


Assuntos
Campos Eletromagnéticos , Exposição Ambiental , Humanos , Exposição Ambiental/análise , Ondas de Rádio , Padrões de Referência
8.
BMC Med Inform Decis Mak ; 24(1): 153, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831390

RESUMO

BACKGROUND: The increased application of Internet of Things (IoT) in healthcare, has fueled concerns regarding the security and privacy of patient data. Lightweight Cryptography (LWC) algorithms can be seen as a potential solution to address this concern. Due to the high variation of LWC, the primary objective of this study was to identify a suitable yet effective algorithm for securing sensitive patient information on IoT devices. METHODS: This study evaluates the performance of eight LWC algorithms-AES, PRESENT, MSEA, LEA, XTEA, SIMON, PRINCE, and RECTANGLE-using machine learning models. Experiments were conducted on a Raspberry Pi 3 microcontroller using 16 KB to 2048 KB files. Machine learning models were trained and tested for each LWC algorithm and their performance was evaluated based using precision, recall, F1-score, and accuracy metrics. RESULTS: The study analyzed the encryption/decryption execution time, energy consumption, memory usage, and throughput of eight LWC algorithms. The RECTANGLE algorithm was identified as the most suitable and efficient LWC algorithm for IoT in healthcare due to its speed, efficiency, simplicity, and flexibility. CONCLUSIONS: This research addresses security and privacy concerns in IoT healthcare and identifies key performance factors of LWC algorithms utilizing the SLR research methodology. Furthermore, the study provides insights into the optimal choice of LWC algorithm for enhancing privacy and security in IoT healthcare environments.


Assuntos
Segurança Computacional , Internet das Coisas , Aprendizado de Máquina , Humanos , Segurança Computacional/normas , Algoritmos , Confidencialidade/normas
9.
BMC Med Inform Decis Mak ; 24(1): 194, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014361

RESUMO

This research study demonstrates an efficient scheme for early detection of cardiorespiratory complications in pandemics by Utilizing Wearable Electrocardiogram (ECG) sensors for pattern generation and Convolution Neural Networks (CNN) for decision analytics. In health-related outbreaks, timely and early diagnosis of such complications is conclusive in reducing mortality rates and alleviating the burden on healthcare facilities. Existing methods rely on clinical assessments, medical history reviews, and hospital-based monitoring, which are valuable but have limitations in terms of accessibility, scalability, and timeliness, particularly during pandemics. The proposed scheme commences by deploying wearable ECG sensors on the patient's body. These sensors collect data by continuously monitoring the cardiac activity and respiratory patterns of the patient. The collected raw data is then transmitted securely in a wireless manner to a centralized server and stored in a database. Subsequently, the stored data is assessed using a preprocessing process which extracts relevant and important features like heart rate variability and respiratory rate. The preprocessed data is then used as input into the CNN model for the classification of normal and abnormal cardiorespiratory patterns. To achieve high accuracy in abnormality detection the CNN model is trained on labeled data with optimized parameters. The performance of the proposed scheme is evaluated and gauged using different scenarios, which shows a robust performance in detecting abnormal cardiorespiratory patterns with a sensitivity of 95% and specificity of 92%. Prominent observations, which highlight the potential for early interventions include subtle changes in heart rate variability and preceding respiratory distress. These findings show the significance of wearable ECG technology in improving pandemic management strategies and informing public health policies, which enhances preparedness and resilience in the face of emerging health threats.


Assuntos
Diagnóstico Precoce , Eletrocardiografia , Redes Neurais de Computação , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrocardiografia/instrumentação , COVID-19/diagnóstico
10.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475047

RESUMO

The Internet of Things (IoT) has emerged as an important concept, bridging the physical and digital worlds through interconnected devices. Although the idea of interconnected devices predates the term "Internet of Things", which was coined in 1999 by Kevin Ashton, the vision of a seamlessly integrated world of devices has been accelerated by advancements in wireless technologies, cost-effective computing, and the ubiquity of mobile devices. This study aims to provide an in-depth review of existing and emerging IoT simulators focusing on their capabilities and real-world applications, and discuss the current challenges and future trends in the IoT simulation area. Despite substantial research in the IoT simulation domain, many studies have a narrow focus, leaving a gap in comprehensive reviews that consider broader IoT development metrics, such as device mobility, energy models, Software-Defined Networking (SDN), and scalability. Notably, there is a lack of literature examining IoT simulators' capabilities in supporting renewable energy sources and their integration with Vehicular Ad-hoc Network (VANET) simulations. Our review seeks to address this gap, evaluating the ability of IoT simulators to simulate complex, large-scale IoT scenarios and meet specific developmental requirements, as well as examining the current challenges and future trends in the field of IoT simulation. Our systematic analysis has identified several significant gaps in the current literature. A primary concern is the lack of a generic simulator capable of effectively simulating various scenarios across different domains within the IoT environment. As a result, a comprehensive and versatile simulator is required to simulate the diverse scenarios occurring in IoT applications. Additionally, there is a notable gap in simulators that address specific security concerns, particularly battery depletion attacks, which are increasingly relevant in IoT systems. Furthermore, there is a need for further investigation and study regarding the integration of IoT simulators with traffic simulation for VANET environments. In addition, it is noteworthy that renewable energy sources are underrepresented in IoT simulations, despite an increasing global emphasis on environmental sustainability. As a result of these identified gaps, it is imperative to develop more advanced and adaptable IoT simulation tools that are designed to meet the multifaceted challenges and opportunities of the IoT domain.

11.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000893

RESUMO

This paper discusses the design and implementation of a portable IoT station. Communication and data synchronization issues in several installations are addressed here, making possible a detailed analysis of the entire system during its operation. The system operator requires a synchronized data stream, combining multiple communication protocols into one single time stamp. The hardware selected for the portable IoT station complies with the International Electrotechnical Commission (IEC) industrial standards. A short discussion regarding interface customization shows how easily the hardware can be modified so that it is integrated with almost any system. A programmable logic controller enables the Node-RED to be utilized. This open-source middleware defines operations for each global variable nominated in the Modbus register. Two applications are presented and discussed in this paper; each application has a distinct methodology utilized to publish and visualize the acquired data. The portable IoT station is highly customizable, consisting of a modular structure and providing the best platform for future research and development of dedicated algorithms. This paper also demonstrates how the portable IoT station can be implemented in systems where time-based data synchronization is essential while introducing a seamless implementation and operation.

12.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544266

RESUMO

With the development of IoT technology and 5G massive machine-type communication, the 3GPP standardization body considered as viable the integration of Narrowband Internet of Things (NB-IoT) in low Earth orbit (LEO) satellite-based architectures. However, the presence of the LEO satellite channel comes up with new challenges for the NB-IoT random access procedures and coverage enhancement mechanism. In this paper, an Adaptive Coverage Enhancement (ACE) method is proposed to meet the requirement of random access parameter configurations for diverse applications. Based on stochastic geometry theory, an expression of random access channel (RACH) success probability is derived for LEO satellite-based NB-IoT networks. On the basis of a power consumption model of the NB-IoT terminal, a multi-objective optimization problem is formulated to trade-off RACH success probability and power consumption. To solve this multi-objective optimization problem, we employ the Non-dominated Sorting Genetic Algorithms-II (NSGA-II) method to obtain the Pareto-front solution set. According to different application requirements, we also design a random access parameter configuration method to minimize the power consumption under the constraints of RACH success probability requirements. Simulation results show that the maximum number of repetitions and back-off window size have a great influence on the system performance and their value ranges should be set within [4, 18] and [0, 2048]. The power consumption of coverage enhancement with ACE is about 58% lower than that of the 3GPP proposed model. All this research together provides good reference for the scale deployment of NB-IoT in LEO satellite networks.

13.
Sensors (Basel) ; 24(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38894365

RESUMO

Internet of Things (IoT) technology has become an inevitable part of our daily lives. With the increase in usage of IoT Devices, manufacturers continuously develop IoT technology. However, the security of IoT devices is left behind in those developments due to cost, size, and computational power limitations. Since these IoT devices are connected to the Internet and have low security levels, one of the main risks of these devices is being compromised by malicious malware and becoming part of IoT botnets. IoT botnets are used for launching different types of large-scale attacks including Distributed Denial-of-Service (DDoS) attacks. These attacks are continuously evolving, and researchers have conducted numerous analyses and studies in this area to narrow security vulnerabilities. This paper systematically reviews the prominent literature on IoT botnet DDoS attacks and detection techniques. Architecture IoT botnet DDoS attacks, evaluations of those attacks, and systematically categorized detection techniques are discussed in detail. The paper presents current threats and detection techniques, and some open research questions are recommended for future studies in this field.

14.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894478

RESUMO

Identification of different species of animals has become an important issue in biology and ecology. Ornithology has made alliances with other disciplines in order to establish a set of methods that play an important role in the birds' protection and the evaluation of the environmental quality of different ecosystems. In this case, the use of machine learning and deep learning techniques has produced big progress in birdsong identification. To make an approach from AI-IoT, we have used different approaches based on image feature comparison (through CNNs trained with Imagenet weights, such as EfficientNet or MobileNet) using the feature spectrogram for the birdsong, but also the use of the deep CNN (DCNN) has shown good performance for birdsong classification for reduction of the model size. A 5G IoT-based system for raw audio gathering has been developed, and different CNNs have been tested for bird identification from audio recordings. This comparison shows that Imagenet-weighted CNN shows a relatively high performance for most species, achieving 75% accuracy. However, this network contains a large number of parameters, leading to a less energy efficient inference. We have designed two DCNNs to reduce the amount of parameters, to keep the accuracy at a certain level, and to allow their integration into a small board computer (SBC) or a microcontroller unit (MCU).


Assuntos
Aves , Redes Neurais de Computação , Vocalização Animal , Animais , Aves/fisiologia , Aves/classificação , Vocalização Animal/fisiologia , Aprendizado de Máquina , Internet das Coisas , Inteligência Artificial , Aprendizado Profundo , Algoritmos
15.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931692

RESUMO

This work proposes an implementation of the SHA-256, the most common blockchain hash algorithm, on a field-programmable gate array (FPGA) to improve processing capacity and power saving in Internet of Things (IoT) devices to solve security and privacy issues. This implementation presents a different approach than other papers in the literature, using clustered cores executing the SHA-256 algorithm in parallel. Details about the proposed architecture and an analysis of the resources used by the FPGA are presented. The implementation achieved a throughput of approximately 1.4 Gbps for 16 cores on a single FPGA. Furthermore, it saved dynamic power, using almost 1000 times less compared to previous works in the literature, making this proposal suitable for practical problems for IoT devices in blockchain environments. The target FPGA used was the Xilinx Virtex 6 xc6vlx240t-1ff1156.

16.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001066

RESUMO

The progression of the Internet of Things (IoT) has brought about a complete transformation in the way we interact with the physical world. However, this transformation has brought with it a slew of challenges. The advent of intelligent machines that can not only gather data for analysis and decision-making, but also learn and make independent decisions has been a breakthrough. However, the low-cost requirement of IoT devices requires the use of limited resources in processing and storage, which typically leads to a lack of security measures. Consequently, most IoT devices are susceptible to security breaches, turning them into "Bots" that are used in Distributed Denial of Service (DDoS) attacks. In this paper, we propose a new strategy labeled "Temporary Dynamic IP" (TDIP), which offers effective protection against DDoS attacks. The TDIP solution rotates Internet Protocol (IP) addresses frequently, creating a significant deterrent to potential attackers. By maintaining an "IP lease-time" that is short enough to prevent unauthorized access, TDIP enhances overall system security. Our testing, conducted via OMNET++, demonstrated that TDIP was highly effective in preventing DDoS attacks and, at the same time, improving network efficiency and IoT network protection.

17.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38610310

RESUMO

Smart cities are powered by several new technologies to enhance connectivity between devices and develop a network of connected objects which can lead to many smart industrial applications. This network known as the Industrial Internet of Things (IIoT) consists of sensor nodes that have limited computing capacity and are sometimes not able to execute intricate industrial tasks within their stipulated time frame. For faster execution, these tasks are offloaded to nearby fog nodes. Internet access and the diverse nature of network types make IIoT nodes vulnerable and are under serious malicious attacks. Malicious attacks can cause anomalies in the IIoT network by overloading complex tasks, which can compromise the fog processing capabilities. This results in an increased delay of task computation for trustworthy nodes. To improve the task execution capability of the fog computing node, it is important to avoid complex offloaded tasks due to malicious attacks. However, even after avoiding the malicious tasks, if the offloaded tasks are too complex for the fog node to execute, then the fog nodes may struggle to process all legitimate tasks within their stipulated time frame. To address these challenges, the Trust-based Efficient Execution of Offloaded IIoT Trusted tasks (EEOIT) is proposed for fog nodes. EEOIT proposes a mechanism to detect malicious nodes as well as manage the allocation of computing resources so that IIoT tasks can be completed in the specified time frame. Simulation results demonstrate that EEOIT outperforms other techniques in the literature in an IIoT setting with different task densities. Another significant feature of the proposed EEOIT technique is that it enhances the computation of trustable tasks in the network. The results show that EEOIT entertains more legitimate nodes in executing their offloaded tasks with more executed data, with reduced time and with increased mean trust values as compared to other schemes.

18.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732795

RESUMO

The deployment of Internet of Things (IoT) devices is widespread in different environments, including homes. Although security is incorporated, homes can become targets for cyberattacks because of their vulnerabilities. IoT devices generate Domain Name Server (DNS) traffic primarily for communication with Internet servers. In this paper, we present a detailed analysis of DNS traffic from IoT devices. The queried domains are highly distinctive, enabling attackers to easily identify the IoT device. In addition, we observed an unexpectedly high volume of queries. The analysis reveals that the same domains are repeatedly queried, DNS queries are transmitted in plain text over User Datagram Protocol (UDP) port 53 (Do53), and the excessive generation of traffic poses a security risk by amplifying an attacker's ability to identify IoT devices and execute more precise, targeted attacks, consequently escalating the potential compromise of the entire IoT ecosystem. We propose a simple measure that can be taken to reduce DNS traffic generated by IoT devices, thus preventing it from being used as a vector to identify the types of devices present in the network. This measure is based on the implementation of the DNS cache in the devices; caching few resources increases privacy considerably.

19.
Sensors (Basel) ; 24(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38676127

RESUMO

The Internet of Things (IoT) will bring about the next industrial revolution in Industry 4.0. The communication aspect of IoT devices is one of the most critical factors in choosing the device that is suitable for use. Thus far, the IoT physical layer communication challenges have been met with various communications protocols that provide varying strengths and weaknesses. This paper summarizes the network architectures of some of the most popular IoT wireless communications protocols. It also presents a comparative analysis of some of the critical features, including power consumption, coverage, data rate, security, cost, and quality of service (QoS). This comparative study shows that low-power wide area network (LPWAN)-based IoT protocols (LoRa, Sigfox, NB-IoT, LTE-M) are more suitable for future industrial applications because of their energy efficiency, high coverage, and cost efficiency. In addition, the study also presents an Industrial Internet of Things (IIoT) application perspective on the suitability of LPWAN protocols in a particular scenario and addresses some open issues that need to be researched. Thus, this study can assist in deciding the most suitable IoT communication protocol for an industrial and production field.

20.
Sensors (Basel) ; 24(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257589

RESUMO

Electronic tickets (e-tickets) are gradually being adopted as a substitute for paper-based tickets to bring convenience to customers, corporations, and governments. However, their adoption faces a number of practical challenges, such as flexibility, privacy, secure storage, and inability to deploy on IoT devices such as smartphones. These concerns motivate the current research on e-ticket systems, which seeks to ensure the unforgeability and authenticity of e-tickets while simultaneously protecting user privacy. Many existing schemes cannot fully satisfy all these requirements. To improve on the current state-of-the-art solutions, this paper constructs a blockchain-enhanced privacy-preserving e-ticket system for IoT devices, dubbed PriTKT, which is based on blockchain, structure-preserving signatures (SPS), unlinkable redactable signatures (URS), and zero-knowledge proofs (ZKP). It supports flexible policy-based ticket purchasing and ensures user unlinkability. According to the data minimization and revealing principle of GDPR, PriTKT empowers users to selectively disclose subsets of (necessary) attributes to sellers as long as the disclosed attributes satisfy ticket purchasing policies. In addition, benefiting from the decentralization and immutability of blockchain, effective detection and efficient tracing of double spending of e-tickets are supported in PriTKT. Considering the impracticality of existing e-tickets schemes with burdensome ZKPs, we replace them with URS/SPS or efficient ZKP to significantly improve the efficiency of ticket issuing and make it suitable for use on smartphones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA