Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043525

RESUMO

Termites are dominant animals of tropical terrestrial ecosystems. Their success is due to their eusocial organization as well as their ability to digest dead plant tissues. While being extremely abundant, the termite diet is poor in crucial nutrients, such as fatty acids. Linoleic acid (LA) is a precursor for many vital biomolecules, and most animals depend on its dietary supply. Termites count among the exceptions known to produce LA de novo, presumably via the action of an unknown Δ12 fatty acyl desaturase (FAD) introducing the second double bond into monounsaturated oleic acid. Here, we search for the evolutionary origin of LA biosynthesis in termites. To this end, we compile the repertoire of FAD homologs from 57 species of termites and their closest relatives, the cockroaches, analyze FAD phylogeny, and identify a potential Δ12 FAD branch, which arose through duplication of a likely Δ9 FAD. We functionally characterize both paralogs and identify the Δ9 activity in the ancestral FAD-A1a and the Δ12 activity responsible for LA biosynthesis in FAD-A1b. Through the combination of homology modeling and site-directed mutagenesis, we pinpoint structural features possibly contributing to the distinct functions, regiospecificities, and substrate preferences of the two enzymes. We confirm the presence of both paralogs in all 36 studied species of the Blattoidea lineage (Blattidae, Lamproblattidae, Cryptocercidae, and termites) and conclude that we identified an evolutionary event important for the ecological success of termites, which took place in their cockroach ancestors roughly 160 My and remained conserved throughout termite diversification into 3,000 extant species.


Assuntos
Baratas , Isópteros , Animais , Ácido Linoleico , Isópteros/genética , Ecossistema , Filogenia , Ácidos Graxos
2.
Proc Biol Sci ; 291(2014): 20232363, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196360

RESUMO

The size-complexity rule posits that the evolution of larger cooperative groups should favour more division of labour. Examples include more cell types in larger multicellular organisms, and more polymorphic castes in larger eusocial colonies. However, a correlation between division of labour and group size may reflect a shared response of both traits to resource availability and/or profitability. Here, this possibility was addressed by investigating the evolution of sterile caste number (worker and soldier morphotypes) in termites, a major clade of eusocial insects in which the drivers of caste polymorphism are poorly understood. A novel dataset on 90 termite species was compiled from the published literature. The analysis showed that sterile caste number did increase markedly with colony size. However, after controlling for resource adaptations and phylogeny, there was no evidence for this relationship. Rather, sterile caste number increased with increasing nest-food separation and decreased with soil-feeding, through changes in worker (but not soldier) morphotype number. Further, colony size increased with nest-food separation, thus driving the false correlation between sterile caste number and colony size. These findings support adaptation to higher energy acquisition as key to the rise of complex insect societies, with larger size being a by-product.


Assuntos
Infertilidade , Isópteros , Animais , Alimentos , Fenótipo , Filogenia
3.
Mol Ecol ; 33(17): e17494, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39136107

RESUMO

Social insects have developed a broad diversity of nesting and foraging strategies. One of these, inquilinism, occurs when one species (the inquiline) inhabits the nest built and occupied by another species (the host). Obligatory inquilines must overcome strong constraints upon colony foundation and development, due to limited availability of host colonies. To reveal how inquilinism shapes reproductive strategies in a termite host-inquiline dyad, we carried out a microsatellite marker study on Inquilinitermes inquilinus and its host Constrictotermes cavifrons. The proportion of simple, extended and mixed families was recorded in both species, as well as the presence of neotenics, parthenogenesis and multiple foundations. Most host colonies (95%) were simple families and all were monodomous. By contrast, the inquiline showed a higher proportion of extended (30%) and mixed (5%) families, and frequent neotenics (in 25% of the nests). This results from the simultaneous foundation in host nests of numerous incipient colonies, which, as they grow, may compete, fight, or merge. We also documented the use of parthenogenesis by female-female pairs. In conclusion, the classical monogamous colony pattern of the host species suggests uneventful development of simple foundations dispersed in the environment, in accordance with the wide distribution of their resources. By contrast, the multiple reproductive patterns displayed by the inquiline species reveal strong constraints on foundation sites: founders first concentrate into host nests, then must attempt to outcompete or absorb the neighbouring foundations to gain full control of the resources provided by the host nest.


Assuntos
Isópteros , Repetições de Microssatélites , Partenogênese , Animais , Isópteros/genética , Repetições de Microssatélites/genética , Feminino , Partenogênese/genética , Reprodução/genética , Masculino , Comportamento de Nidação
4.
Proc Biol Sci ; 290(2001): 20230619, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37339742

RESUMO

Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.


Assuntos
Microbioma Gastrointestinal , Isópteros , Animais , Filogenia , Simbiose , Bactérias/genética , Mamíferos
5.
Proc Biol Sci ; 289(1975): 20220246, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35611530

RESUMO

Termites feed on vegetal matter at various stages of decomposition. Lineages of wood- and soil-feeding termites are distributed across terrestrial ecosystems located between 45°N and 45°S of latitude, a distribution they acquired through many transoceanic dispersal events. While wood-feeding termites often live in the wood on which they feed and are efficient at dispersing across oceans by rafting, soil-feeders are believed to be poor dispersers. Therefore, their distribution across multiple continents requires an explanation. Here, we reconstructed the historical biogeography and the ancestral diet of termites using mitochondrial genomes and δ13C and δ15N stable isotope measurements obtained from 324 termite samples collected in five biogeographic realms. Our biogeographic models showed that wood-feeders are better at dispersing across oceans than soil-feeders, further corroborated by the presence of wood-feeders on remote islands devoid of soil-feeders. However, our ancestral range reconstructions identified 33 dispersal events among biogeographic realms, 18 of which were performed by soil-feeders. Therefore, despite their lower dispersal ability, soil-feeders performed several transoceanic dispersals that shaped the distribution of modern termites.


Assuntos
Genoma Mitocondrial , Isópteros , Animais , Dieta , Ecossistema , Isópteros/genética , Solo
6.
Mol Phylogenet Evol ; 173: 107520, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577300

RESUMO

The phylogenetic history of termites has been investigated using mitochondrial genomes and transcriptomes. However, both sets of markers have specific limitations. Mitochondrial genomes represent a single genetic marker likely to yield phylogenetic trees presenting incongruences with species trees, and transcriptomes can only be obtained from well-preserved samples. In contrast, ultraconserved elements (UCEs) include a great many independent markers that can be retrieved from poorly preserved samples. Here, we designed termite-specific baits targeting 50,616 UCE loci. We tested our UCE bait set on 42 samples of termites and three samples of Cryptocercus, for which we generated low-coverage highly-fragmented genome assemblies and successfully extracted in silico between 3,426 to 42,860 non-duplicated UCEs per sample. Our maximum likelihood phylogenetic tree, reconstructed using the 5,934 UCE loci retrieved from upward of 75% of samples, was congruent with transcriptome-based phylogenies, demonstrating that our UCE bait set is reliable and phylogenetically informative. Combined with non-destructive DNA extraction protocols, our UCE bait set provides the tool needed to carry out a global taxonomic revision of termites based on poorly preserved specimens such as old museum samples. The Termite UCE database is maintained at: https://github.com/oist/TER-UCE-DB/.


Assuntos
Isópteros , Animais , Marcadores Genéticos , Isópteros/genética , Filogenia , Transcriptoma
7.
J Invertebr Pathol ; 192: 107771, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618025

RESUMO

Termites are serious pests in agriculture and forestry, causing significant economic losses to property and the construction industry. However, only a few entomopathogenic fungi attack termites that are dominant members of most terrestrial biomes. This study contributes to the taxonomic knowledge of entomopathogenic fungi with the description of a new pathogen on termites collected from the Pu Luong Nature Reserve in Vietnam. The new termite pathogen, Ophiocordyceps puluongensis, is introduced on the basis of morphological and multigene phylogenetic evidence. Based on the combined dataset of five genes including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1α (tef-1α), and the largest and the second largest subunits of RNA polymerase II (rpb1 and rpb2), phylogenetic analyses were performed by Maximum Likelihood and Bayesian inference methods to determine the phylogenetic position of O. puluongensis. Three samples of O. puluongensis are clustered in the Hirsutella thompsonii subclade of Hirsutella lineages in Ophiocordyceps, and clustered together with O. asiatica to form a separate clade from other Ophiocordyceps species. Morphologically, O. puluongensis differs from O. asiatica by its smaller and shorter perithecia, asci and ascospores, pink to reddish-orange stipes of stromata, as well as smaller fusiform or citriform conidia. The distinctiveness of this termite pathogen is strongly supported by both molecular phylogeny and morphology. The entomopathogenic fungus O. puluongensis could have the potential to be used as bioinsecticides to control termites.


Assuntos
Hypocreales , Isópteros , Animais , Teorema de Bayes , Hypocreales/genética , Filogenia , Esporos Fúngicos/genética , Vietnã
8.
Bull Entomol Res ; 111(3): 331-339, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33323136

RESUMO

Termites are a significant pest of buildings, agriculture, and trees, and are mainly controlled by baiting. However, baiting systems are available for only lower termites (Rhinotermitidae) not for higher termites (Termitidae). Termite foraging behavior associated with baiting systems varies among species and families, and plays a significant role in baiting success. Here, foraging behavior of Odontotermes obesus (Blattodea: Termitidae: Macrotermitinae), a fungus-growing higher termite, was investigated relative to three bait-station sizes (small, medium, and large) containing different quantities of food. Significantly more workers recruited to large stations (470/station) compared to medium (246/station) and small (124/station) stations. Abundance of O. obesus in large and medium stations significantly positively correlated with relative humidity whereas negative but non-significant correlations were observed with temperature in large and medium stations. Total and continuous contacts with the stations increased with time and were greater in large stations. Station abandonment due to disturbance was significantly less in large stations (3%) followed by medium (9%) and small stations (20%). Our results suggest that large stations (≈8 litres volume) work best for population management of O. obesus and other related fungus-growing higher termites.


Assuntos
Comportamento Alimentar , Isópteros/fisiologia , Animais , Controle de Insetos , Controle de Pragas
9.
J Chem Ecol ; 46(5-6): 475-482, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32529331

RESUMO

Trail-following behavior is a key to ecological success of termites, allowing them to orient themselves between the nesting and foraging sites. This behavior is controlled by specific trail-following pheromones produced by the abdominal sternal gland occurring in all termite species and developmental stages. Trail-following communication has been studied in a broad spectrum of species, but the "higher" termites (i.e. Termitidae) from the subfamily Syntermitinae remain surprisingly neglected. To fill this gap, we studied the trail-following pheromone in six genera and nine species of Syntermitinae. Our chemical and behavioral experiments showed that (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol is the single component of the pheromone of all the termite species studied, except for Silvestritermes euamignathus. This species produces both (3Z,6Z)-dodeca-3,6-dien-1-ol and neocembrene, but only (3Z,6Z)-dodeca-3,6-dien-1-ol elicits trail-following behavior. Our results indicate the importance of (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol, the most widespread communication compound in termites, but also the repeated switches to other common pheromones as exemplified by S. euamignathus.


Assuntos
Isópteros/fisiologia , Feromônios/metabolismo , Animais
10.
Proc Biol Sci ; 286(1895): 20182076, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30963947

RESUMO

Phylogenetic relationships among subgroups of cockroaches and termites are still matters of debate. Their divergence times and major phenotypic transitions during evolution are also not yet settled. We addressed these points by combining the first nuclear phylogenomic study of termites and cockroaches with a thorough approach to divergence time analysis, identification of endosymbionts, and reconstruction of ancestral morphological traits and behaviour. Analyses of the phylogenetic relationships within Blattodea robustly confirm previously uncertain hypotheses such as the sister-group relationship between Blaberoidea and remaining Blattodea, and Lamproblatta being the closest relative to the social and wood-feeding Cryptocercus and termites. Consequently, we propose new names for various clades in Blattodea: Cryptocercus + termites = Tutricablattae; Lamproblattidae + Tutricablattae = Kittrickea; and Blattoidea + Corydioidea = Solumblattodea. Our inferred divergence times contradict previous studies by showing that most subgroups of Blattodea evolved in the Cretaceous, reducing the gap between molecular estimates of divergence times and the fossil record. On a phenotypic level, the blattodean ground-plan is for egg packages to be laid directly in a hole while other forms of oviposition, including ovovivipary and vivipary, arose later. Finally, other changes in egg care strategy may have allowed for the adaptation of nest building and other novelties.


Assuntos
Baratas/classificação , Isópteros/classificação , Filogenia , Animais , Evolução Biológica , Baratas/genética , Isópteros/genética
11.
Mol Phylogenet Evol ; 132: 100-104, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30503950

RESUMO

Termites are the principal decomposers in tropical and subtropical ecosystems around the world. Time-calibrated molecular phylogenies show that some lineages of Neoisoptera diversified during the Oligocene and Miocene, and acquired their pantropical distribution through transoceanic dispersal events, probably by rafting in wood. In this paper, we intend to resolve the historical biogeography of one of the earliest branching lineages of Neoisoptera, the Rhinotermitinae. We used the mitochondrial genomes of 27 species of Rhinotermitinae to build two robust time-calibrated phylogenetic trees that we used to reconstruct the ancestral distribution of the group. Our analyses support the monophyly of Rhinotermitinae and all genera of Rhinotermitinae. Our molecular clock trees provided time estimations that diverged by up to 15.6 million years depending on whether or not 3rd codon positions were included. Rhinotermitinae arose 50.4-64.6 Ma (41.7-74.5 Ma 95% HPD). We detected four disjunctions among biogeographic realms, the earliest of which occurred 41.0-56.6 Ma (33.0-65.8 Ma 95% HPD), and the latest of which occurred 20.3-34.2 Ma (15.9-40.4 Ma 95% HPD). These results show that the Rhinotermitinae acquired their distribution through a combination of transoceanic dispersals and dispersals across land bridges.


Assuntos
Baratas/classificação , Filogeografia , Animais , Baratas/genética , Variação Genética , Genoma Mitocondrial , Filogenia
12.
Oecologia ; 191(3): 541-553, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31571038

RESUMO

Termites are eusocial insects having evolved several feeding, nesting and reproductive strategies. Among them, inquiline termites live in a nest built by other termite species: some of them do not forage outside the nest, but feed on food stored by the host or on the nest material itself. In this study, we characterized some dimensions of the ecological niche of Cavitermes tuberosus (Termitidae: Termitinae), a broad-spectrum inquiline termite with a large neotropical distribution, to explain its ecological success. We used an integrative framework combining ecological measures (physico-chemical parameters, stable isotopic ratios of N and C) and Illumina MiSeq sequencing of 16S rRNA gene to identify bacterial communities and to analyse termites as well as the material from nests constructed by different termite hosts (the builders). Our results show that (1) nests inhabited by C. tuberosus display a different physico-chemical composition when compared to nests inhabited by its builder alone; (2) stable isotopic ratios suggest that C. tuberosus feeds on already processed, more humified, nest organic matter; and (3) the gut microbiomes cluster by termite species, with the one of C. tuberosus being much more diverse and highly similar to the one of its main host, Labiotermes labralis. These results support the hypothesis that C. tuberosus is a generalist nest feeder adapted to colonize nests built by various builders, and explain its ecological success.


Assuntos
Isópteros , Microbiota , Animais , Comportamento Alimentar , Isótopos , RNA Ribossômico 16S
13.
Mol Biol Evol ; 34(3): 589-597, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025274

RESUMO

The higher termites (Termitidae) are keystone species and ecosystem engineers. They have exceptional biomass and play important roles in decomposition of dead plant matter, in soil manipulation, and as the primary food for many animals, especially in the tropics. Higher termites are most diverse in rainforests, with estimated origins in the late Eocene (∼54 Ma), postdating the breakup of Pangaea and Gondwana when most continents became separated. Since termites are poor fliers, their origin and spread across the globe requires alternative explanation. Here, we show that higher termites originated 42-54 Ma in Africa and subsequently underwent at least 24 dispersal events between the continents in two main periods. Using phylogenetic analyses of mitochondrial genomes from 415 species, including all higher termite taxonomic and feeding groups, we inferred 10 dispersal events to South America and Asia 35-23 Ma, coinciding with the sharp decrease in global temperature, sea level, and rainforest cover in the Oligocene. After global temperatures increased, 23-5 Ma, there was only one more dispersal to South America but 11 to Asia and Australia, and one dispersal back to Africa. Most of these dispersal events were transoceanic and might have occurred via floating logs. The spread of higher termites across oceans was helped by the novel ecological opportunities brought about by environmental and ecosystem change, and led termites to become one of the few insect groups with specialized mammal predators. This has parallels with modern invasive species that have been able to thrive in human-impacted ecosystems.


Assuntos
Isópteros/genética , Distribuição Animal , Animais , DNA Mitocondrial/genética , Ecossistema , Genoma Mitocondrial , Espécies Introduzidas , Isópteros/crescimento & desenvolvimento , Mitocôndrias/genética , Filogenia , Filogeografia/métodos , Floresta Úmida
14.
Mol Ecol ; 27(12): 2667-2679, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29729049

RESUMO

Understanding how species accomplish dispersal of their propagules can shed light on how they are adapted for their ecosystem. Guyanagaster necrorhizus is a sequestrate fungus, meaning its dispersal propagules, or spores, are entirely enclosed within a fruiting body, termed a sporocarp. This fungus is most closely related to Armillaria and its allies. While Armillaria species form mushrooms and have forcibly discharged spores, G. necrorhizus spores have lost this ability, and by necessity, must be passively dispersed. However, G. necrorhizus does not possess characteristics of other sequestrate fungi with known dispersal mechanisms. Repeated observations of termites feeding on G. necrorhizus sporocarps, and spores subsequently adhering to their exoskeletons, led to the hypothesis that termites disperse G. necrorhizus spores. To test this hypothesis, we used microsatellite markers and population genetics analyses to understand patterns of clonality and population structure of G. necrorhizus. While Armillaria individuals can spread vegetatively over large areas, high genotypic diversity in G. necrorhizus populations suggests spores are the primary mode of dispersal. Spatial genetic structure analyses show that G. necrorhizus sporocarps within 238 m of each other are more closely related than would be expected by chance and conservative estimates from population assignment tests suggest gene flow no longer occurs between sporocarps separated by 2 km. These distances are consistent with previous studies analysing foraging distances of the termites found associated with G. necrorhizus sporocarps. Termites have rarely been recorded to specifically target fungal sporocarps, making this a potentially novel fungal-insect interaction.


Assuntos
Agaricales/genética , Interações Hospedeiro-Parasita/genética , Isópteros/genética , Animais , Ecossistema , Carpóforos/genética , Fluxo Gênico/genética , Repetições de Microssatélites/genética , Filogenia
15.
Bull Entomol Res ; 108(4): 532-539, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29103385

RESUMO

The subterranean termite Reticulitermes grassei Clément causes lesions in the trunk of Quercus suber L. by constructing feeding galleries, but no information is available regarding other Quercus species from the Mediterranean region. This work aimed to study the suitability of the other main oak species of Mediterranean forests as a food resource for R. grassei. Two experiments, choice and non-choice feeding, were conducted lasting for 15, 30, and 45 days each. In the non-choice experiment, termites were offered one of the following food types: Quercus suber, Quercus ilex L., Quercus faginea Lam, cork or Pinus pinea L., which was considered the control. The choice feeding experiment used all the same food types listed above, supplied simultaneously in the same container. Food selection was examined by analysing the relationships over time between surviving termites and food consumption. The results indicated that R. grassei could be considered a generalist species, as it consumed the cork and wood of all oak species, as well as displaying a clear preference for soft wood (pine). Correlation analysis indicated that consumption was not dependent on wood density. Survival of R. grassei was influenced by the time of exposure to different oak species, but a high survival rate was maintained over time in the pine treatment (upper 70% in the three experiments). Given these results, it can be concluded that all the oak species are a suitable food source for R. grassei.


Assuntos
Isópteros/fisiologia , Quercus/parasitologia , Animais , Alimentos , Espanha
16.
Bull Entomol Res ; 108(1): 14-22, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28464973

RESUMO

Fungus-growing termites (Macrotermitinae) are important pests in tropical countries. They are difficult to control with existing baiting methods, as chitin synthesis inhibitors are not effectual as active ingredients. We tested two neurotoxins, fipronil and imidacloprid, as potential bait active ingredients against Macrotermes gilvus (Hagen) in Singapore. In laboratory bioassays, M. gilvus showed no preference for doses of 0-64 ppm fipronil, or for doses of 0-250 ppm imidacloprid, indicating no repellence. We tested each insecticide in toilet paper as a bait matrix in a field experiment. After 28 days, termites had eaten 5-13% of the fipronil treated toilet paper, abandoned bait and monitoring stations, contacted no new stations, and repaired poorly their experimentally damaged mounds. Termites ate no imidacloprid treated toilet paper, abandoned bait stations although contacted new stations, and repaired fully their damaged mounds. Termites ate 60-70% of the control toilet paper, remained in bait stations, and fully repaired damaged mounds. After 56 days, all five fipronil colonies were eliminated, whereas all of the imidacloprid and control colonies were healthy. The results suggest that fipronil could be an effective active ingredient in bait systems for fungus-growing termites in tropical countries.


Assuntos
Inseticidas , Isópteros , Neonicotinoides , Nitrocompostos , Pirazóis , Animais
17.
BMC Genomics ; 18(1): 681, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28863779

RESUMO

BACKGROUND: Thanks to specific adaptations developed over millions of years, the efficiency of lignin, cellulose and hemicellulose decomposition of higher termite symbiotic system exceeds that of many other lignocellulose utilizing environments. Especially, the examination of its symbiotic microbes should reveal interesting carbohydrate-active enzymes, which are of primary interest for the industry. Previous metatranscriptomic reports (high-throughput mRNA sequencing) highlight the high representation and overexpression of cellulose and hemicelluloses degrading genes in the termite hindgut digestomes, indicating the potential of this technology in search for new enzymes. Nevertheless, several factors associated with the material sampling and library preparation steps make the metatranscriptomic studies of termite gut prokaryotic symbionts challenging. METHODS: In this study, we first examined the influence of the sampling strategy, including the whole termite gut and luminal fluid, on the diversity and the metatranscriptomic profiles of the higher termite gut symbiotic bacteria. Secondly, we evaluated different commercially available kits combined in two library preparative pipelines for the best bacterial mRNA enrichment strategy. RESULTS: We showed that the sampling strategy did not significantly impact the generated results, both in terms of the representation of the microbes and their transcriptomic profiles. Nevertheless collecting luminal fluid reduces the co-amplification of unwanted RNA species of host origin. Furthermore, for the four studied higher termite species, the library preparative pipeline employing Ribo-Zero Gold rRNA Removal Kit "Epidemiology" in combination with Poly(A) Purist MAG kit resulted in a more efficient rRNA and poly-A-mRNAdepletion (up to 98.44% rRNA removed) than the pipeline utilizing MICROBExpress and MICROBEnrich kits. High correlation of both Ribo-Zero and MICROBExpresse depleted gene expression profiles with total non-depleted RNA-seq data has been shown for all studied samples, indicating no systematic skewing of the studied pipelines. CONCLUSIONS: We have extensively evaluated the impact of the sampling strategy and library preparation steps on the metatranscriptomic profiles of the higher termite gut symbiotic bacteria. The presented methodological approach has great potential to enhance metatranscriptomic studies of the higher termite intestinal flora and to unravel novel carbohydrate-active enzymes.


Assuntos
Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica/métodos , Isópteros/microbiologia , Lignina/metabolismo , Animais , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Simbiose , Transcrição Gênica
18.
Mol Biol Evol ; 33(3): 809-19, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26609080

RESUMO

In termites, as in many social insects, some individuals specialize in colony defense, developing diverse weaponry. As workers of the termite Neocapritermes taracua (Termitidae: Termitinae) age, their efficiency to perform general tasks decreases, while they accumulate defensive secretions and increase their readiness to fight. This defensive mechanism involves self-sacrifice through body rupture during which an enzyme, stored as blue crystals in dorsal pouches, converts precursors produced by the labial glands into highly toxic compounds. Here, we identify both components of this activated defense system and describe the molecular basis responsible for the toxicity of N. taracua worker autothysis. The blue crystals are formed almost exclusively by a specific protein named BP76. By matching N. taracua transcriptome databases with amino acid sequences, we identified BP76 to be a laccase. Following autothysis, the series of hydroquinone precursors produced by labial glands get mixed with BP76, resulting in the conversion of relatively harmless hydroquinones into toxic benzoquinone analogues. Neocapritermes taracua workers therefore rely on a two-component activated defense system, consisting of two separately stored secretions that can react only after suicidal body rupture, which produces a sticky and toxic cocktail harmful to opponents.


Assuntos
Proteínas de Insetos/genética , Isópteros/genética , Animais , Análise por Conglomerados , Ativação Enzimática , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Insetos/metabolismo , Isópteros/metabolismo , Lacase/genética , Lacase/metabolismo , Filogenia , Especificidade por Substrato , Transcriptoma
19.
Proc Natl Acad Sci U S A ; 111(48): 17212-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404335

RESUMO

Males and females are in conflict over genetic transmission in the evolution of parthenogenesis, because it enhances female reproductive output but deprives the males' genetic contribution. For males, any trait that coerces females into sexual reproduction should increase their fitness. However, in the termite Reticulitermes speratus, queens produce their replacements (neotenic queens) parthenogenetically while using normal sexual reproduction to produce other colony members. Here, we show that termite queens produce parthenogenetic offspring in the presence of kings by closing the micropyles (sperm gates; i.e., openings for sperm entry) of their eggs. Our field survey showed that termite eggs show large variation in numbers of micropyles, with some having none. Microsatellite analysis showed that embryos of micropyleless eggs develop parthenogenetically, whereas those of eggs with micropyles are fertilized and develop sexually. Surveys of eggs among queens of different age groups showed that queens begin to lay micropyleless eggs when they are older and thus, need to produce their replacements parthenogenetically. In addition, we found clear seasonality in new neotenic queen differentiation and micropyleless egg production. This micropyle-dependent parthenogenesis is the first identification, to our knowledge, of the mechanism through which females control egg fertilization over time in diploid animals, implying a novel route of the evolution of parthenogenesis in favor of female interests without interference from males.


Assuntos
Isópteros/fisiologia , Óvulo/fisiologia , Partenogênese/fisiologia , Espermatozoides/fisiologia , Animais , Diploide , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Feminino , Fertilização/genética , Fertilização/fisiologia , Genótipo , Isópteros/genética , Masculino , Microscopia Confocal , Microscopia Eletrônica de Varredura , Óvulo/metabolismo , Óvulo/ultraestrutura , Partenogênese/genética , Reprodução/genética , Reprodução/fisiologia , Estações do Ano , Espermatozoides/metabolismo , Fatores de Tempo
20.
Ecotoxicol Environ Saf ; 145: 436-441, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28778042

RESUMO

The drywood termite Cryptotermes brevis (Walker, 1853) (Kalotermitidae) is one of the most important wood structural pest in the world. Substances from the secondary metabolism of plants (e.g., essential oils) have been considered an environmentally safer form of control for urban pests, such as termites. In the present study, we analyzed the lethal and sub-lethal effects of essential oil of Lippia sidoides and its major components on C. brevis pseudergates in two routes of exposure (contact and fumigation). The essential oil of L. sidoides and thymol were more toxic to C. brevis pseudergates when applied by contact (LD50 = 9.33 and 8.20µgmg-1, respectively) and by fumigation (LC50 = 9.10 and 23.6µLL-1, respectively). In general, treatments changed the individual and collective behaviors of C. brevis pseudergates, as well as the displacement and walking speed. The essential oil of L. sidoides and its major components showed a high potential to control C. brevis pseudergates, due to the bioactivity in the two routes of exposure and the sub-lethal effects on the behavior and walking, important activities for the cohesion of C. brevis colonies.


Assuntos
Baratas/efeitos dos fármacos , Isópteros/efeitos dos fármacos , Lippia/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Madeira/efeitos dos fármacos , Animais , Dose Letal Mediana , Óleos Voláteis/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA