Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 299(11): 105274, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739037

RESUMO

Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality control process that eliminates misfolded proteins from the ER. DnaJ homolog subfamily C member 10 (ERdj5) is a protein disulfide isomerase family member that accelerates ERAD by reducing disulfide bonds of aberrant proteins with the help of an ER-resident chaperone BiP. However, the detailed mechanisms by which ERdj5 acts in concert with BiP are poorly understood. In this study, we reconstituted an in vitro system that monitors ERdj5-mediated reduction of disulfide-linked J-chain oligomers, known to be physiological ERAD substrates. Biochemical analyses using purified proteins revealed that J-chain oligomers were reduced to monomers by ERdj5 in a stepwise manner via trimeric and dimeric intermediates, and BiP synergistically enhanced this action in an ATP-dependent manner. Single-molecule observations of ERdj5-catalyzed J-chain disaggregation using high-speed atomic force microscopy, demonstrated the stochastic release of small J-chain oligomers through repeated actions of ERdj5 on peripheral and flexible regions of large J-chain aggregates. Using systematic mutational analyses, ERAD substrate disaggregation mediated by ERdj5 and BiP was dissected at the molecular level.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Chaperonas Moleculares , Chaperona BiP do Retículo Endoplasmático/química , Chaperona BiP do Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Células HEK293 , Cadeias J de Imunoglobulina/metabolismo , Domínios Proteicos
2.
Proc Natl Acad Sci U S A ; 116(27): 13480-13489, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31127044

RESUMO

IgA is the most abundantly produced antibody in the body and plays a crucial role in gut homeostasis and mucosal immunity. IgA forms a dimer that covalently associates with the joining (J) chain, which is essential for IgA transport into the mucosa. Here, we demonstrate that the marginal zone B and B-1 cell-specific protein (MZB1) interacts with IgA through the α-heavy-chain tailpiece dependent on the penultimate cysteine residue and prevents the intracellular degradation of α-light-chain complexes. Moreover, MZB1 promotes J-chain binding to IgA and the secretion of dimeric IgA. MZB1-deficient mice are impaired in secreting large amounts of IgA into the gut in response to acute inflammation and develop severe colitis. Oral administration of a monoclonal IgA significantly ameliorated the colitis, accompanied by normalization of the gut microbiota composition. The present study identifies a molecular chaperone that promotes J-chain binding to IgA and reveals an important mechanism that controls the quantity, quality, and function of IgA.


Assuntos
Colite/metabolismo , Imunoglobulina A Secretora/metabolismo , Cadeias J de Imunoglobulina/metabolismo , Chaperonas Moleculares/fisiologia , Animais , Colite/induzido quimicamente , Colite/imunologia , Sulfato de Dextrana/farmacologia , Feminino , Microbioma Gastrointestinal , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361537

RESUMO

An immunosuppressive microenvironment in lung concurs to pre-malignant lesions progression to cancer. Here, we explore if perturbing lung microbiota, which contribute to immunosuppression, by antibiotics or probiotic aerosol interferes with lung cancer development in a mouse carcinogen-induced tumor model. Urethane-injected mice were vancomycin/neomycin (V/N)-aerosolized or live or dead L. rhamnosus GG (L.RGG)-aerosolized, and tumor development was evaluated. Transcriptional profiling of lungs and IHC were performed. Tumor nodules number, diameter and area were reduced by live or heat-killed L.RGG, while only a decrease in nodule diameter was observed in V/N-treated lungs. Both L.RGG and V/N reduced Tregs in the lung. In L.RGG-treated groups, the gene encoding the joining chain (J chain) of immunoglobulins was increased, and higher J chain protein and IgA levels were observed. An increased infiltration of B, NK and myeloid-derived cells was predicted by TIMER 2.0. The Kaplan-Meier plotter revealed an association between high levels of J chain mRNA and good prognosis in lung adenocarcinoma patients that correlated with increased B and CD4 T cells and reduced Tregs and M2 macrophages. This study highlights L.RGG aerosol efficacy in impairing lung cancer growth by promoting local immunity and points to this non-invasive strategy to treat individuals at risk of lung cancer.


Assuntos
Adenoma , Lacticaseibacillus rhamnosus , Neoplasias Pulmonares , Probióticos , Camundongos , Animais , Carcinógenos , Temperatura Alta , Neoplasias Pulmonares/patologia , Probióticos/uso terapêutico , Probióticos/farmacologia , Modelos Animais de Doenças , Microambiente Tumoral
4.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884580

RESUMO

Immunoglobulin G (IgG) is currently the most studied immunoglobin class and is frequently used in antibody therapeutics in which its beneficial effector functions are exploited. IgG is composed of two heavy chains and two light chains, forming the basic antibody monomeric unit. In contrast, immunoglobulin A (IgA) and immunoglobulin M (IgM) are usually assembled into dimers or pentamers with the contribution of joining (J)-chains, which bind to the secretory component (SC) of the polymeric Ig receptor (pIgR) and are transported to the mucosal surface. IgA and IgM play a pivotal role in various immune responses, especially in mucosal immunity. Due to their structural complexity, 3D structural study of these molecules at atomic scale has been slow. With the emergence of cryo-EM and X-ray crystallographic techniques and the growing interest in the structure-function relationships of IgA and IgM, atomic-scale structural information on IgA-Fc and IgM-Fc has been accumulating. Here, we examine the 3D structures of IgA and IgM, including the J-chain and SC. Disulfide bridging and N-glycosylation on these molecules are also summarized. With the increasing information of structure-function relationships, IgA- and IgM-based monoclonal antibodies will be an effective option in the therapeutic field.


Assuntos
Imunoglobulina A/química , Fragmentos Fc das Imunoglobulinas/química , Cadeias J de Imunoglobulina/química , Imunoglobulina M/química , Receptores de Imunoglobulina Polimérica/química , Animais , Glicosilação , Humanos
5.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668983

RESUMO

Transcytosis of polymeric IgA and IgM from the basolateral surface to the apical side of the epithelium and subsequent secretion into mucosal fluids are mediated by the polymeric immunoglobulin receptor (pIgR). Secreted IgA and IgM have vital roles in mucosal immunity in response to pathogenic infections. Binding and recognition of polymeric IgA and IgM by pIgR require the joining chain (J chain), a small protein essential in the formation and stabilization of polymeric Ig structures. Recent studies have identified marginal zone B and B1 cell-specific protein (MZB1) as a novel regulator of polymeric IgA and IgM formation. MZB1 might facilitate IgA and IgM transcytosis by promoting the binding of J chain to Ig. In this review, we discuss the roles of pIgR in transcytosis of IgA and IgM, the roles of J chain in the formation of polymeric IgA and IgM and recognition by pIgR, and focus particularly on recent progress in understanding the roles of MZB1, a molecular chaperone protein.


Assuntos
Imunoglobulina A/metabolismo , Imunoglobulina M/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Transcitose , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Humanos , Polimerização
6.
Methods ; 65(1): 127-32, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811333

RESUMO

The mucosal epithelia together with adaptive immune responses, such as local production and secretion of dimeric and polymeric immunoglobulin A (IgA), are a crucial part of the first line of defense against invading pathogens. IgA is primarily secreted as SIgA and plays multiple roles in mucosal defense. The study of SIgA-mediated protection is an important area of research in mucosal immunity but an easy, fast and reproducible method to generate pathogen-specific SIgA in vitro has not been available. We report here a new method to produce SIgA by co-purification of dimeric IgA, containing J chain, and recombinant human SC expressed in CHO cells. We previously reported the generation, production and characterization of the human recombinant monoclonal antibody IgA2 b12. This antibody, derived from the variable regions of the neutralizing anti-HIV-1 mAb IgG1 b12, blocked viral attachment and uptake by epithelial cells in vitro. We used a cloned CHO cell line that expresses monomeric, dimeric and polymeric species of IgA2 b12 for large-scale production of dIgA2 b12. Subsequently, we generated a CHO cell line to express recombinant human secretory component (rhSC). Here, we combined dIgA2 b12 and CHO-expressed rhSC via column chromatography to produce SIgA2 b12 that remains fully intact upon elution with 0.1M citric acid, pH 3.0. We have performed biochemical analysis of the synthesized SIgA to confirm the species is of the expected size and retains the functional properties previously described for IgA2 b12. We show that SIgA2 b12 binds to the HIV-1 gp120 glycoprotein with similar apparent affinity to that of monomeric and dimeric forms of IgA2 b12 and neutralizes HIV-1 isolates with similar potency. An average yield of 6 mg of SIgA2 b12 was achieved from the combination of 20mg of purified dIgA2 b12 and 2L of rhSC-containing CHO cell supernatant. We conclude that synthesized production of stable SIgA can be generated by co-purification. This process introduces a simplified means of generating a variety of pathogen-specific SIgA antibodies for research and clinical applications.


Assuntos
Anticorpos Neutralizantes/biossíntese , Imunoglobulina A Secretora/biossíntese , Animais , Anticorpos Neutralizantes/isolamento & purificação , Células CHO , Cromatografia de Afinidade , Cricetinae , Cricetulus , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Humanos , Imunoglobulina A Secretora/isolamento & purificação , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
7.
Biochim Biophys Acta Gen Subj ; 1868(2): 130536, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070292

RESUMO

BACKGROUND: Immunoglobulin A (IgA) plays a pivotal role in various immune responses, especially that of mucosal immunity. IgA is usually assembled into dimers with the contribution of J-chains. There are two N-glycosylation sites in human IgA1-Fc and one in the J-chain. There is no consensus as yet on the functional role of the N-glycosylation. METHODS: To gain a better understanding of their role, we designed a series of IgA1-Fc mutants, which were expressed in the absence or presence of the J-chain. RESULTS: IgA1-Fc without the J-chain, was predominantly expressed as a monomer, and in its presence dimers and some polymers appeared. N263 (Fc Cα2), N459 (Fc tailpiece) and N49 (J-chain) were shown to be site-specifically modified with N-glycans by mass spectrometry analysis. Mutant IgA1-Fc N459Q failed to form a proper dimer in the presence of the J-chain, instead higher-order aggregates appeared. Fluorescence experiments suggest that the N459-glycans cover a hydrophobic surface at the Fc tailpiece that prevents other Fc molecules from approaching the dimeric IgA. A thermofluor assay revealed that the N-glycans at N263 (Fc) and N49 (J-chain) both contribute in different ways to the thermal stability of the Fc-J-chain complex. NMR analysis of 13C-labeled Fc suggests that the N459-glycan is relatively flexible while the N263-glycan is more rigid. CONCLUSIONS: We conclude that the N459-glycan of IgA1-Fc is essential for dimer formation and prevention of higher-order aggregates while those at N263 (Fc) and N49 (J-chain) stabilize the Fc-J-chain complex. GENERAL SIGNIFICANCE: Site-specific role for N-glycan in molecular assembly is addressed.


Assuntos
Imunoglobulina A , Polissacarídeos , Humanos , Imunoglobulina A/química , Polissacarídeos/química , Espectrometria de Massas
8.
Monoclon Antib Immunodiagn Immunother ; 39(6): 228-232, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33121367

RESUMO

Immunoglobulin A (IgA) antibodies are critical to mucosal protection, specifically dimeric IgA (dIgA) and secretory IgA (sIgA), which rely on the J chain to polymerize. There is an absence of monoclonal antibodies that can specifically bind to polymeric IgA without the need to denature the molecule. We generated a panel of highly specific mouse anti-J chain antibodies that react with both intact and denatured nonhuman primate dIgA and human dIgA and sIgA of both the IgA1 and IgA2 subclass. We expanded use of this antibody for quantification of dIgA and sIgA using biolayer interferometry or enzyme-linked immunosorbent assay and use for affinity chromatography. This is a significant improvement over available anti-IgA antibodies in the field, which will allow for expanded use in clinical testing.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Imunoglobulina A Secretora/imunologia , Imunoglobulina A/imunologia , Animais , Cromatografia de Afinidade , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Multimerização Proteica/imunologia
9.
Antibodies (Basel) ; 9(4)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066119

RESUMO

Natural immunoglobulin M (IgM) antibodies are pentameric or hexameric macro-immunoglobulins and have been highly conserved during evolution. IgMs are initially expressed during B cell ontogeny and are the first antibodies secreted following exposure to foreign antigens. The IgM multimer has either 10 (pentamer) or 12 (hexamer) antigen binding domains consisting of paired µ heavy chains with four constant domains, each with a single variable domain, paired with a corresponding light chain. Although the antigen binding affinities of natural IgM antibodies are typically lower than IgG, their polyvalency allows for high avidity binding and efficient engagement of complement to induce complement-dependent cell lysis. The high avidity of IgM antibodies renders them particularly efficient at binding antigens present at low levels, and non-protein antigens, for example, carbohydrates or lipids present on microbial surfaces. Pentameric IgM antibodies also contain a joining (J) chain that stabilizes the pentameric structure and enables binding to several receptors. One such receptor, the polymeric immunoglobulin receptor (pIgR), is responsible for transcytosis from the vasculature to the mucosal surfaces of the lung and gastrointestinal tract. Several naturally occurring IgM antibodies have been explored as therapeutics in clinical trials, and a new class of molecules, engineered IgM antibodies with enhanced binding and/or additional functional properties are being evaluated in humans. Here, we review the considerable progress that has been made regarding the understanding of biology, structure, function, manufacturing, and therapeutic potential of IgM antibodies since their discovery more than 80 years ago.

10.
Hum Pathol ; 68: 47-53, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28851661

RESUMO

Although most classical Hodgkin lymphomas (CHLs) are easily distinguished from nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) and primary mediastinal large B-cell lymphoma (PMBL), cases with significant CD20 expression cause diagnostic confusion. Although the absence of OCT-2 and BOB.1 are useful in these circumstances, a variable proportion of CHLs are positive for these antigens. We investigated the utility of J chain and myocyte enhancer factor 2B (MEF2B) in the diagnosis of CHL; NLPHL; PMBL; T-cell/histiocyte-rich large B-cell lymphoma (TCRLBL); and B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and CHL, compared with OCT-2 and BOB.1. J chain and MEF2B highlighted lymphocyte predominant (LP) cells in 20/20 (100%) NLPHLs and were negative in 43/43 (100%) CHLs. Fourteen of 15 (93%) PMBLs and 4/4 (100%) TCRLBLs were MEF2B positive, whereas 67% of PMBLs and 50% of TCRLBLs were J chain positive. Three of 3 B-cell lymphomas, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and CHL, were negative for J chain and MEF2B. J chain and MEF2B were 100% sensitive and specific for NLPHL versus CHL. MEF2B was 100% sensitive and 98% specific for PMBL versus CHL. Whereas loss of OCT-2 and/or BOB.1 expression had a sensitivity of only 86% and specificity of 100% for CHL versus NLPHL, PMBL, and TCRLBL, lack of both J chain and MEF2B expression was 100% sensitive and 97% specific. J chain and MEF2B are highly sensitive and specific markers of NLPHL versus CHL; are particularly useful in highlighting LP cells; and, with rare exception, are of greater utility than OCT-2 and BOB.1 in differentiating CHL from NLPHL and other large B-cell lymphomas.


Assuntos
Biomarcadores Tumorais/análise , Doença de Hodgkin/metabolismo , Cadeias J de Imunoglobulina/análise , Linfoma de Células B/química , Linfoma Folicular/química , Neoplasias do Mediastino/química , Diagnóstico Diferencial , Doença de Hodgkin/patologia , Humanos , Imuno-Histoquímica , Linfoma de Células B/patologia , Linfoma Folicular/patologia , Fatores de Transcrição MEF2/análise , Neoplasias do Mediastino/patologia , Fator 2 de Transcrição de Octâmero/análise , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Transativadores/análise
11.
Virulence ; 5(8): 819-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25469594

RESUMO

Shiga toxin 1 (Stx1) is a virulence factor of enterohaemorrhagic Escherichia coli strains such as O157:H7 and Shigella dysenteriae. To prevent entry of Stx1 from the mucosal surface, an immunoglobulin A (IgA) specific for Stx1 would be useful. Due to the difficulty of producing IgA monoclonal antibodies (mAb) against the binding subunit of Stx1 (Stx1B) in mice, we took advantage of recombinant technology that combines the heavy chain variable region from Stx1B-specific IgG1 mAb and the Fc region from IgA. The resulting hybrid IgG/IgA was stably expressed in Chinese hamster ovary cells as a dimeric hybrid IgG/IgA. We separated the dimeric hybrid IgG/IgA from the monomeric one by size-exclusion chromatography. The dimer fraction, confirmed by immunoblot analyses, was used for toxin neutralization assays. The dimeric IgG/IgA was shown to neutralize Stx1 toxicity toward Vero cells by assaying their viability. To compare the relative effectiveness of the dimeric hybrid IgG/IgA and parental IgG1 mAb, Stx1-induced apoptosis was examined using 2 different cell lines, Ramos and Vero cells. The hybrid IgG/IgA inhibited apoptosis more efficiently than the parental IgG1 mAb in both cases. The results indicated that the use of high affinity binding sites as variable regions of IgA would increase the utility of IgA specific for virulence factors.


Assuntos
Anticorpos Monoclonais/imunologia , Apoptose , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Toxina Shiga/antagonistas & inibidores , Toxina Shiga/imunologia , Animais , Células CHO , Chlorocebus aethiops , Cromatografia em Gel , Cricetinae , Cricetulus , Hibridomas , Camundongos , Multimerização Proteica , Proteínas Recombinantes/imunologia , Toxina Shiga/toxicidade , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA