Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Magn Reson Med ; 91(3): 886-895, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010083

RESUMO

PURPOSE: Application of highly selective editing RF pulses provides a means of minimizing co-editing of contaminants in J-difference MRS (MEGA), but it causes reduction in editing yield. We examined the flip angles (FAs) of narrow-band editing pulses to maximize the lactate edited signal with minimal co-editing of threonine. METHODS: The effect of editing-pulse FA on the editing performance was examined, with numerical and phantom analyses, for bandwidths of 17.6-300 Hz in MEGA-PRESS editing of lactate at 3T. The FA and envelope of 46 ms Gaussian editing pulses were tailored to maximize the lactate edited signal at 1.3 ppm and minimize co-editing of threonine. The optimized editing-pulse FA MEGA scheme was tested in brain tumor patients. RESULTS: Simulation and phantom data indicated that the optimum FA of MEGA editing pulses is progressively larger than 180° as the editing-pulse bandwidth decreases. For 46 ms long 17.6 Hz bandwidth Gaussian pulses and other given sequence parameters, the lactate edited signal was maximum at the first and second editing-pulse FAs of 241° and 249°, respectively. The edit-on and difference-edited lactate peak areas of the optimized FA MEGA were greater by 43% and 25% compared to the 180°-FA MEGA, respectively. In-vivo data confirmed the simulation and phantom results. The lesions of the brain tumor patients showed elevated lactate and physiological levels of threonine. CONCLUSION: The lactate MEGA editing yield is significantly increased with editing-pulse FA much larger than 180° when the editing-pulse bandwidth is comparable to the lactate quartet frequency width.


Assuntos
Neoplasias Encefálicas , Ácido Láctico , Humanos , Espectroscopia de Ressonância Magnética/métodos , Imagens de Fantasmas , Neoplasias Encefálicas/diagnóstico por imagem , Treonina
2.
Magn Reson Med ; 90(3): 852-862, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154389

RESUMO

PURPOSE: The need to detect and quantify brain lactate accurately by MRS has stimulated the development of editing sequences based on J coupling effects. In J-difference editing of lactate, threonine can be co-edited and it contaminates lactate estimates due to the spectral proximity of the coupling partners of their methyl protons. We therefore implemented narrow-band editing 180° pulses (E180) in MEGA-PRESS acquisitions to resolve separately the 1.3-ppm resonances of lactate and threonine. METHODS: Two 45.3-ms rectangular E180 pulses, which had negligible effects 0.15-ppm away from the carrier frequency, were implemented in a MEGA-PRESS sequence with TE 139 ms. Three acquisitions were designed to selectively edit lactate and threonine, in which the E180 pulses were tuned to 4.1 ppm, 4.25 ppm, and a frequency far off resonance. Editing performance was validated with numerical analyses and acquisitions from phantoms. The narrow-band E180 MEGA and another MEGA-PRESS sequence with broad-band E180 pulses were evaluated in six healthy subjects. RESULTS: The 45.3-ms E180 MEGA offered a difference-edited lactate signal with lower intensity and reduced contamination from threonine compared to the broad-band E180 MEGA. The 45.3 ms E180 pulse had MEGA editing effects over a frequency range larger than seen in the singlet-resonance inversion profile. Lactate and threonine in healthy brain were both estimated to be 0.4 ± 0.1 mM, with reference to N-acetylaspartate at 12 mM. CONCLUSION: Narrow-band E180 MEGA editing minimizes threonine contamination of lactate spectra and may improve the ability to detect modest changes in lactate levels.


Assuntos
Encéfalo , Ácido Láctico , Humanos , Ácido Láctico/análise , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Treonina
3.
Magn Reson Med ; 88(1): 53-70, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344608

RESUMO

PURPOSE: At ultra-high field (UHF), B1+ -inhomogeneities and high specific absorption rate (SAR) of adiabatic slice-selective RF-pulses make spatial resolved spectral-editing extremely challenging with the conventional MEGA-approach. The purpose of the study was to develop a whole-brain resolved spectral-editing MRSI at UHF (UHF, B0 ≥ 7T) within clinical acceptable measurement-time and minimal chemical-shift-displacement-artifacts (CSDA) allowing for simultaneous GABA/Glx-, 2HG-, and PE-editing on a clinical approved 7T-scanner. METHODS: Slice-selective adiabatic refocusing RF-pulses (2π-SSAP) dominate the SAR to the patient in (semi)LASER based MEGA-editing sequences, causing large CSDA and long measurement times to fulfill SAR requirements, even using SAR-minimized GOIA-pulses. Therefore, a novel type of spectral-editing, called SLOW-editing, using two different pairs of phase-compensated chemical-shift selective adiabatic refocusing-pulses (2π-CSAP) with different refocusing bandwidths were investigated to overcome these problems. RESULTS: Compared to conventional echo-planar spectroscopic imaging (EPSI) and MEGA-editing, SLOW-editing shows robust refocusing and editing performance despite to B1+ -inhomogeneity, and robustness to B0 -inhomogeneities (0.2 ppm ≥ ΔB0  ≥ -0.2 ppm). The narrow bandwidth (∼0.6-0.8 kHz) CSAP reduces the SAR by 92%, RF peak power by 84%, in-excitation slab CSDA by 77%, and has no in-plane CSDA. Furthermore, the CSAP implicitly dephases water, lipid and all the other signals outside of range (≥ 4.6 ppm and ≤1.4 ppm), resulting in additional water and lipid suppression (factors ≥ 1000s) at zero SAR-cost, and no spectral aliasing artifacts. CONCLUSION: A new spectral-editing has been developed that is especially suitable for UHF, and was successfully applied for 2HG, GABA+, PE, and Glx-editing within 10 min clinical acceptable measurement time.


Assuntos
Encéfalo , Campos Magnéticos , Encéfalo/diagnóstico por imagem , Humanos , Lipídeos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagens de Fantasmas , Água , Ácido gama-Aminobutírico
4.
Magn Reson Med ; 87(3): 1150-1164, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34657302

RESUMO

PURPOSE: J-Difference editing (MEGA) provides an effective spectroscopic means of selectively measuring low-concentration metabolites having weakly coupled spins. The fractional inphase and antiphase coherences are determined by the radiofrequency (RF) pulses and inter-RF pulse intervals of the sequence. We examined the timings of the spectrally selective editing 180° pulses (E180) in MEGA-PRESS to maximize the edited signal amplitude in lactate at 3T. METHODS: The time evolution of the lactate spin coherences was analytically and numerically calculated for non-volume localized and single-voxel localized MEGA sequences. Single-voxel localized MEGA-PRESS simulations and phantom experiments were conducted for echo time (TE) 60-160 ms and for all possible integer-millisecond timings of the E180 pulses. Optimized E180 timings of 144, 103, and 109 ms TEs, tailored with simulation and phantom data, were tested in brain tumor patients in vivo. Lactate signals, broadened to singlet linewidths (~6 Hz), were compared between simulation, phantom, and in vivo data. RESULTS: Theoretical and experimental data indicated consistently that the MEGA-edited signal amplitude and width are sensitive to the E180 timings. In volume-localized MEGA, the lactate peak amplitudes in E180-on and difference spectra were maximized at specific E180 timings for individual TEs, largely due to the chemical-shift displacement effects. The E180 timings for maximum lactate peak amplitude were different from those of maximum inphase coherence in in vivo linewidth situations. CONCLUSION: In in vivo MEGA editing, the E180 pulse timings can be effectively used for manipulating the inphase and antiphase coherences and increasing the edited signal amplitude, following TE optimization.


Assuntos
Ácido Láctico , Ondas de Rádio , Frequência Cardíaca , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
5.
Neuroradiology ; 64(2): 217-232, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34654960

RESUMO

J-difference-edited spectroscopy is a valuable approach for the detection of low-concentration metabolites with magnetic resonance spectroscopy (MRS). Currently, few edited MRS studies are performed in neonates due to suboptimal signal-to-noise ratio, relatively long acquisition times, and vulnerability to motion artifacts. Nonetheless, the technique presents an exciting opportunity in pediatric imaging research to study rapid maturational changes of neurotransmitter systems and other metabolic systems in early postnatal life. Studying these metabolic processes is vital to understanding the widespread and rapid structural and functional changes that occur in the first years of life. The overarching goal of this review is to provide an introduction to edited MRS for neonates, including the current state-of-the-art in editing methods and editable metabolites, as well as to review the current literature applying edited MRS to the neonatal brain. Existing challenges and future opportunities, including the lack of age-specific reference data, are also discussed.


Assuntos
Encéfalo , Ácido gama-Aminobutírico , Artefatos , Encéfalo/diagnóstico por imagem , Criança , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
6.
NMR Biomed ; 34(5): e4411, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32946145

RESUMO

Spectral editing in in vivo 1 H-MRS provides an effective means to measure low-concentration metabolite signals that cannot be reliably measured by conventional MRS techniques due to signal overlap, for example, γ-aminobutyric acid, glutathione and D-2-hydroxyglutarate. Spectral editing strategies utilize known J-coupling relationships within the metabolite of interest to discriminate their resonances from overlying signals. This consensus recommendation paper provides a brief overview of commonly used homonuclear editing techniques and considerations for data acquisition, processing and quantification. Also, we have listed the experts' recommendations for minimum requirements to achieve adequate spectral editing and reliable quantification. These include selecting the right editing sequence, dealing with frequency drift, handling unwanted coedited resonances, spectral fitting of edited spectra, setting up multicenter clinical trials and recommending sequence parameters to be reported in publications.


Assuntos
Consenso , Espectroscopia de Prótons por Ressonância Magnética , Calibragem , Prova Pericial , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Metaboloma , Córtex Motor/metabolismo , Mutação/genética , Lobo Occipital/metabolismo
7.
NMR Biomed ; 34(11): e4590, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34318959

RESUMO

The pathophysiology of progressive multiple sclerosis remains elusive, significantly limiting available disease-modifying therapies. Proton MRS (1 H-MRS) enables in vivo measurement of small molecules implicated in multiple sclerosis, but its application to key metabolites glutamate, γ-aminobutyric acid (GABA), and glutathione has been sparse. We employed, at 7 T, a previously validated 1 H-MRS protocol to measure glutamate, GABA, and glutathione, as well as glutamine, N-acetyl aspartate, choline, and myoinositol, in the frontal cortex of individuals with relapsing-remitting (N = 26) or progressive (N = 21) multiple sclerosis or healthy control adults (N = 25) in a cross-sectional analysis. Only individuals with progressive multiple sclerosis demonstrated reduced glutamate (F2,65 = 3.424, p = 0.04; 12.40 ± 0.62 mM versus control 13.17 ± 0.95 mM, p = 0.03) but not glutamine (F2,65 = 0.352, p = 0.7; 4.71 ± 0.35 mM versus control 4.84 ± 0.42 mM), reduced GABA (F2,65 = 3.89, p = 0.03; 1.29 ± 0.23 mM versus control 1.47 ± 0.25 mM, p = 0.05), and possibly reduced glutathione (F2,65 = 0.352, p = 0.056; 2.23 ± 0.46 mM versus control 2.51 ± 0.48 mM, p < 0.1). As a group, multiple sclerosis patients demonstrated significant negative correlations between disease duration and glutamate or GABA (ρ = -0.4, p = 0.02) but not glutamine or glutathione. Alone, only relapsing-remitting multiple sclerosis patients exhibited a significant negative correlation between disease duration and GABA (ρ = -0.5, p = 0.03). Taken together, these results indicate that frontal cortex metabolism is differentially disturbed in progressive and relapsing-remitting multiple sclerosis.


Assuntos
Lobo Frontal/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Adulto , Idoso , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Feminino , Glutamina/metabolismo , Glutationa/metabolismo , Substância Cinzenta/metabolismo , Humanos , Inositol/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Metaboloma , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Neurotransmissores/metabolismo , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
8.
NMR Biomed ; 31(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29105210

RESUMO

The goals of this study were to develop an acquisition protocol and the analysis tools for Meshcher-Garwood point-resolved spectroscopy (MEGA-PRESS) in mouse brain at 9.4 T, to allow the in vivo detection of γ-aminobutyric acid (GABA) and to examine whether isoflurane alters GABA levels in the thalamus during anesthesia. We implemented the MEGA-PRESS sequence on a Bruker 94/20 system with ParaVision 6.0.1, and magnetic resonance spectra were acquired from nine male wild-type C57BL/6 J mice at the thalamus. Four individual scans were obtained for each mouse in a 2-h time course whilst the mouse was anesthetized with isoflurane. We developed an automated analysis program with improved correction for frequency and phase drift compared with the standard creatine (Cr) fitting-based method and provided automatic quantification. During MEGA-PRESS acquisition, a single voxel with a size of 5 × 3 × 3 mm3 was placed at the thalamus to evaluate GABA to Cr (GABA/Cr) ratios during anesthesia. Detection and quantitative analysis of thalamic GABA levels were successfully achieved. We noticed a significant decrease in GABA/Cr during the 2-h anesthesia (by linear regression analysis: slope < 0, p < 0.0001). In summary, our findings demonstrate that MEGA-PRESS is a feasible technique to measure in vivo GABA levels in the mouse brain at 9.4 T.


Assuntos
Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Ácido gama-Aminobutírico/metabolismo , Animais , Automação , Simulação por Computador , Creatina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Imagens de Fantasmas , Razão Sinal-Ruído , Análise Espectral , Fatores de Tempo
9.
Magn Reson Med ; 77(4): 1377-1389, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28150876

RESUMO

The Proton magnetic resonance (1 H-MRS) spectrum contains information about the concentration of tissue metabolites within a predefined region of interest (a voxel). The conventional spectrum in some cases obscures information about less abundant metabolites due to limited separation and complex splitting of the metabolite peaks. One method to detect these metabolites is to reduce the complexity of the spectrum using editing. This review provides an overview of the one-dimensional editing methods available to interrogate these obscured metabolite peaks. These methods include sequence optimizations, echo-time averaging, J-difference editing methods (single BASING, dual BASING, and MEGA-PRESS), constant-time PRESS, and multiple quantum filtering. It then provides an overview of the brain metabolites whose detection can benefit from one or more of these editing approaches, including ascorbic acid, γ-aminobutyric acid, lactate, aspartate, N-acetyl aspartyl glutamate, 2-hydroxyglutarate, glutathione, glutamate, glycine, and serine. Magn Reson Med 77:1377-1389, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Algoritmos , Encéfalo/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Animais , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Anal Biochem ; 529: 48-64, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28034791

RESUMO

This article reviews the methodological aspects of detecting low-abundant J-coupled metabolites via 1D spectral editing techniques and 2D nuclear magnetic resonance (NMR) methods applied in vivo, in humans, with a focus on the brain. A brief explanation of the basics of J-evolution will be followed by an introduction to 1D spectral editing techniques (e.g., J-difference editing, multiple quantum coherence filtering) and 2D-NMR methods (e.g., correlation spectroscopy, J-resolved spectroscopy). Established and recently developed methods will be discussed and the most commonly edited J-coupled metabolites (e.g., neurotransmitters, antioxidants, onco-markers, and markers for metabolic processes) will be briefly summarized along with their most important applications in neuroscience and clinical diagnosis.


Assuntos
Biomarcadores/metabolismo , Encéfalo/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Animais , Humanos
11.
MAGMA ; 30(6): 537-544, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28573461

RESUMO

OBJECTIVE: J-difference editing is often used to select resonances of compounds with coupled spins in 1H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. MATERIALS AND METHODS: In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. RESULTS: In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. CONCLUSION: Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Adulto , Encéfalo/metabolismo , Feminino , Análise de Fourier , Humanos , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Masculino , Razão Sinal-Ruído , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
12.
NMR Biomed ; 28(4): 514-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25802216

RESUMO

Lactate levels are measurable by MRS and are related to neural activity. Therefore, it is of interest to accurately measure lactate levels in the basal ganglia networks. If sufficiently stable, lactate measurements may be used to investigate alterations in dopaminergic signalling in the striatum, facilitating the detection and diagnosis of metabolic deficits. The aim of this study is to provide a J-difference editing MRS technique for the selective editing of lactate only, thus allowing the detection of lactate without contamination of overlapping macromolecules. As a validation procedure, macromolecule nulling was combined with J-difference editing, and this was compared with J-difference editing with a new highly selective editing pulse. The use of a high-field (7T) MR scanner enables the application of editing pulses with very narrow bandwidth, which are selective for lactate. We show that, despite the sensitivity to B0 offsets, the use of a highly selective editing pulse is more efficient for the detection of lactate than the combination of a broad-band editing pulse with macromolecule nulling. Although the signal-to-noise ratio of uncontaminated lactate detection in healthy subjects is relatively low, this article describes the test-retest performance of lactate detection in the striatum when using highly selective J-difference editing MRS at 7 T. The coefficient of variation, σw and intraclass correlation coefficients for within- and between-subject differences of lactate were determined. Lactate levels in the left and right striatum were determined twice in 10 healthy volunteers. Despite the fact that the test-retest performance of lactate detection is moderate with a coefficient of variation of about 20% for lactate, these values can be used for the design of new studies comparing, for example, patient populations with healthy controls.


Assuntos
Corpo Estriado/química , Ácido Láctico/análise , Espectroscopia de Ressonância Magnética , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Gânglios da Base/química , Colina/análise , Creatina/análise , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Adulto Jovem
13.
NMR Biomed ; 27(10): 1151-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070114

RESUMO

Glutamine has multiple roles in brain metabolism and its concentration can be altered in various pathological conditions. An accurate knowledge of its concentration is therefore highly desirable to monitor and study several brain disorders in vivo. However, in recent years, several MRS studies have reported conflicting glutamine concentrations in the human brain. A recent hypothesis for explaining these discrepancies is that a short T2 component of the glutamine signal may impact on its quantification at long echo times. The present study therefore aimed to investigate the impact of acquisition parameters on the quantified glutamine concentration using two different acquisition techniques, SPECIAL at ultra-short echo time and MEGA-SPECIAL at moderate echo time. For this purpose, MEGA-SPECIAL was optimized for the first time for glutamine detection. Based on the very good agreement of the glutamine concentration obtained between the two measurements, it was concluded that no impact of a short T2 component of the glutamine signal was detected.


Assuntos
Química Encefálica , Glutamina/análise , Neuroimagem/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Calibragem , Simulação por Computador , Feminino , Prótons , Ratos , Ratos Wistar , Software
14.
NMR Biomed ; 27(11): 1293-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25199506

RESUMO

In this study, we present a method for the detection of n-3 fatty acid (n-3 FA) signals using MRS in adipose tissue in vivo. This method (called oMEGA-PRESS) is based on the selective detection of the CH3 signal of n-3 FA using the MEGA-PRESS (MEshcher-GArwood Point-RESolved Spectroscopy) J-difference editing technique. We optimized the envelope shape and frequency of spectral editing pulses to minimize the spurious co-editing and incomplete subtraction of the CH3 signal of other FAs, which normally obscure the n-3 FA CH3 signal in MR spectra acquired using standard PRESS techniques. The post-processing of the individual data scans with the phase and frequency correction before data subtraction and averaging was implemented to further improve the quality of in vivo spectra. The technique was optimized in vitro on lipid phantoms using various concentrations of n-3 FA and examined in vivo at 3 T on 15 healthy volunteers. The proportion of n-3 FA estimated by the oMEGA-PRESS method in phantoms showed a highly significant linear correlation with the n-3 FA content determined by gas chromatography. The signal attributed to n-3 FA was observed in all subjects. Comparisons with the standard PRESS technique revealed an enhanced identification of the n-3 FA signal using oMEGA-PRESS. The presented method may be useful for the non-invasive quantification of n-3 FA in adipose tissue, and could aid in obtaining a better understanding of various aspects of n-3 FA metabolism.


Assuntos
Tecido Adiposo/química , Ácidos Graxos Ômega-3/análise , Espectroscopia de Ressonância Magnética/métodos , Índice de Massa Corporal , Cromatografia Gasosa , Humanos , Óleo de Semente do Linho/química , Imagens de Fantasmas , Óleos de Plantas/química , Gordura Subcutânea/química , Óleo de Girassol
15.
Magn Reson Med ; 70(5): 1183-91, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23213033

RESUMO

PURPOSE: To investigate factors that influence the multiplet pattern observed in J-difference editing of gamma-aminobutyric acid (GABA). METHODS: Density matrix simulations were applied to investigate the shape of the 3 ppm GABA multiplet as a function of the editing sequence's slice-selective refocusing pulse properties, in particular bandwidth, transition width, and flip angle. For comparison to the calculations, experimental measurements were also made at 3 T on a 10 mM GABA solution using the MEGA-PRESS sequence at various refocusing pulse flip angles. RESULTS: Good agreement was found between experiments and simulations. The edited multiplet consists of two outer lines of slightly unequal intensity due to strong coupling, and a smaller central line, the result of the unequal J-couplings between the C4 and C3 protons. The size of the center peak increases with increasing slice-selective refocusing pulse transition width, and deviation of the flip angle from 180°. CONCLUSION: The 3 ppm GABA multiplet pattern observed in the MEGA-PRESS experiment depends quite strongly on the properties of the slice-selective refocusing pulses used. Under some circumstance, the central peak can be quite large; this does not necessarily indicate inefficient editing, or a subtraction artifact, but should be recognized as a property of the pulse sequence itself.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Reconhecimento Automatizado de Padrão/métodos , Ácido gama-Aminobutírico/análise , Simulação por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
J Cereb Blood Flow Metab ; 42(6): 911-934, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35078383

RESUMO

While functional MRI (fMRI) localizes brain activation and deactivation, functional MRS (fMRS) provides insights into the underlying metabolic conditions. There is much interest in measuring task-induced and resting levels of metabolites implicated in neuroenergetics (e.g., lactate, glucose, or ß-hydroxybutyrate (BHB)) and neurotransmission (e.g., γ-aminobutyric acid (GABA) or pooled glutamate and glutamine (Glx)). Ultra-high magnetic field (e.g., 7T) has boosted the fMRS quantification precision, reliability, and stability of spectroscopic observations using short echo-time (TE) 1H-MRS techniques. While short TE 1H-MRS lacks sensitivity and specificity for fMRS at lower magnetic fields (e.g., 3T or 4T), most of these metabolites can also be detected by J-difference editing (JDE) 1H-MRS with longer TE to filter overlapping resonances. The 1H-MRS studies show that JDE can detect GABA, Glx, lactate, and BHB at 3T, 4T and 7T. Most recently, it has also been demonstrated that JDE 1H-MRS is capable of reliable detection of metabolic changes in different brain areas at various magnetic fields. Combining fMRS measurements with fMRI is important for understanding normal brain function, but also clinically relevant for mechanisms and/or biomarkers of neurological and neuropsychiatric disorders. We provide an up-to-date overview of fMRS research in the last three decades, both in terms of applications and technological advances. Overall the emerging fMRS techniques can be expected to contribute substantially to our understanding of metabolism for brain function and dysfunction.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Ácido 3-Hidroxibutírico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo
17.
Front Neurol ; 12: 718423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557149

RESUMO

The onco-metabolite 2-hydroxyglutarate (2HG), a biomarker of IDH-mutant gliomas, can be detected with 1H MR spectroscopy (1H-MRS). Recent studies showed measurements of 2HG at 7T with substantial gain in signal to noise ratio (SNR) and spectral resolution, offering higher specificity and sensitivity for 2HG detection. In this study, we assessed the sensitivity of semi-localized by adiabatic selective refocusing (sLASER) and J-difference MEsher-GArwood-semi-LASER (MEGA-sLASER) for 2HG detection at 7T. We performed spectral editing at long TE using a TE-optimized sLASER sequence (110 ms) and J-difference spectroscopy using MEGA-sLASER (TE = 74ms) in phantoms with different 2HG concentrations to assess the sensitivity of 2HG detection. The robustness of the methods against B0 inhomogeneity was investigated. Moreover, the performance of these two techniques was evaluated in four patients with IDH1-mutated glioma. In contrary to MEGA-sLASER, sLASER was able to detect 2HG concentration as low as 0.5 mM. In case of a composite phantom containing 2HG with overlapping metabolites, MEGA-sLASER provided a clean 2HG signal with higher fitting reliability (lower %CRLB). The results demonstrate that sLASER is more robust against field inhomogeneities and experimental or motion-related artifacts which promotes to adopt sLASER in clinical implementations.

18.
Magn Reson Imaging ; 65: 109-113, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31707293

RESUMO

Recent advances in J-difference-edited proton magnetic resonance spectroscopy (1H MRS) data acquisition and processing have led to the development of Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy (HERMES) techniques, which enable the simultaneous measurement of ɣ-aminobutyric acid (GABA), the primary inhibitory amino acid neurotransmitter in the central nervous system, and of glutathione (GSH), the most abundant antioxidant in living tissue, at the commonly available magnetic field strength of 3 T. However, the reproducibility of brain levels of GABA and GSH measured across multiple scans in human subjects using HERMES remains to be established. In the present study, twelve healthy volunteers completed two consecutive HERMES scans of the dorsal anterior cingulate cortex (dACC) to assess the test-retest reproducibility of the technique for GABA and GSH measurements at TE = 80 ms. Eleven of the twelve participants additionally completed two consecutive MEGA-PRESS scans at TE = 120 ms, with editing pulses configured for GSH acquisition, to compare the reliability of GSH in the same voxel measured using the standard MEGA-PRESS at TE = 120 ms. The primary findings of study were that, 1) the coefficient of variation (CV) of measuring GABA with HERMES was 16.7%, which is in agreement with the reliability we previously reported for measuring GABA using MEGA-PRESS; and 2) the reliability of measuring GSH with MEGA-PRESS at TE = 120 ms was more than twice as high as that for measuring the antioxidant with HERMES at TE = 80 ms (CV = 7.3% vs. 19.0% respectively). These findings suggest that HERMES and MEGA-PRESS offer similar reliabilities for measuring GABA, while MEGA-PRESS at TE = 120 ms is more reliable for measuring GSH relative to HERMES at TE = 80 ms.


Assuntos
Encéfalo/diagnóstico por imagem , Glutationa/metabolismo , Espectroscopia de Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética , Ácido gama-Aminobutírico/metabolismo , Adulto , Antioxidantes , Encéfalo/metabolismo , Testes Diagnósticos de Rotina , Feminino , Giro do Cíngulo/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
19.
Curr Med Chem ; 26(12): 2190-2207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30864500

RESUMO

High-resolution nuclear magnetic resonance (NMR) spectroscopy is a universal analytical tool. It can provide detailed information on chemical shifts, J coupling constants, multiplet patterns, and relative peak areas. It plays an important role in the fields of chemistry, biology, medicine, and pharmacy. A highly homogeneous magnetic field is a prerequisite for excellent spectral resolution. However, in some cases, such as in vivo and ex vivo biological tissues, the magnetic field inhomogeneity due to magnetic susceptibility variation in samples is unavoidable and hard to eliminate by conventional methods. The techniques based on intermolecular multiple quantum coherences and conventional single quantum coherence can remove the influence of the field inhomogeneity effects and be applied to obtain highresolution NMR spectra of biological tissues, including in vivo animal and human tissues. Broadband 1H homo-decoupled NMR spectroscopy displays J coupled resonances as collapsed singlets, resulting in highly resolved spectra. It can be used to acquire high-resolution spectra of some pharmaceuticals. The J-difference edited spectra can be used to detect J coupled metabolites, such as γ-aminobutyric acid, the detection of which is interfered by intense neighboring peaks. High-resolution 1H NMR spectroscopy has been widely utilized for the identification and characterization of biological fluids, constituting an important tool in drug discovery, drug development, and disease diagnosis.


Assuntos
Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Compostos Heterocíclicos/química , Compostos Heterocíclicos/metabolismo , Humanos , Polissacarídeos/química , Polissacarídeos/metabolismo , Ácido gama-Aminobutírico/metabolismo
20.
J Magn Reson ; 290: 1-11, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29524756

RESUMO

Glutathione (GSH) is an endogenous antioxidant implicated in numerous biological processes, including those associated with multiple sclerosis, aging, and cancer. Spectral editing techniques have greatly facilitated the acquisition of glutathione signal in living humans via proton magnetic resonance spectroscopy, but signal quantification at 7 Tesla is still hampered by uncertainty about the glutathione transverse decay rate T2 relative to those of commonly employed quantitative references like N-acetyl aspartate (NAA), total creatine, or water. While the T2 of uncoupled singlets can be derived in a straightforward manner from exponential signal decay as a function of echo time, similar estimation of signal decay in GSH is complicated by a spin system that involves both weak and strong J-couplings as well as resonances that overlap those of several other metabolites and macromolecules. Here, we extend a previously published method for quantifying the T2 of GABA, a weakly coupled system, to quantify T2 of the strongly coupled spin system glutathione in the human brain at 7 Tesla. Using full density matrix simulation of glutathione signal behavior, we selected an array of eight optimized echo times between 72 and 322 ms for glutathione signal acquisition by J-difference editing (JDE). We varied the selectivity and symmetry parameters of the inversion pulses used for echo time extension to further optimize the intensity, simplicity, and distinctiveness of glutathione signals at chosen echo times. Pairs of selective adiabatic inversion pulses replaced nonselective pulses at three extended echo times, and symmetry of the time intervals between the two extension pulses was adjusted at one extended echo time to compensate for J-modulation, thereby resulting in appreciable signal-to-noise ratio and quantifiable signal shapes at all measured points. Glutathione signal across all echo times fit smooth monoexponential curves over ten scans of occipital cortex voxels in nine subjects. The T2 of glutathione was calculated to be 145.0 ±â€¯20.1 ms (mean ±â€¯standard deviation); this result was robust within one standard deviation to changes in metabolite fitting baseline corrections and removal of individual data points on the signal decay curve. The measured T2 of NAA (222.1 ±â€¯24.7 ms) and total creatine (153.0 ±â€¯19.9 ms) were both higher than that calculated for GSH. Apparent glutathione concentration quantified relative to both reference metabolites increased by up to 32% and 6%, respectively, upon correction with calculated T2 values, emphasizing the importance of considering T2 relaxation differences in the spectroscopic measurement of these metabolites, especially at longer echo times.


Assuntos
Química Encefálica , Glutationa/química , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Creatina/metabolismo , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Occipital/química , Lobo Occipital/metabolismo , Imagens de Fantasmas , Razão Sinal-Ruído , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA