Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochem Biophys Res Commun ; 732: 150410, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39032413

RESUMO

Microplastics, such as polylactic acid (PLA), are ubiquitous environmental pollutants with unclear implications for health impact. This study aims to elucidate the mechanisms of PLA-induced inflammatory liver injury, focusing on disturbance of bile acid metabolism. The in vitro PLA exposure experiment was conducted using HepG2 cells to assess cell viability, cytokine secretion, and effects on bile acid metabolism. In vivo, male C57BL/6 J mice were exposed to PLA for ten days continuously, liver function and histopathological assessment were evaluated after the mice sacrificed. Molecular analyses including quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting, were applied to evaluate the expression of bile acid metabolizing enzymes and transporters. PLA exposure resulted in decreased cell viability in HepG2 cells, increased inflammation and altered bile acid metabolism. In mice, PLA exposure resulted in decreased body weight and food intake, impaired liver function, increased hepatic inflammation, altered bile acid profiles, and dysregulated expression of bile acid metabolic pathways. PLA exposure disrupts bile acid metabolism through inhibition of the CYP7A1 enzyme and activation of the FGF-JNK/ERK signaling pathway, contributing to liver injury. These findings highlight the potential hepatotoxic effects of environmentally friendly plastics PLA and underscore the need for further research on their biological impact.


Assuntos
Ácidos e Sais Biliares , Camundongos Endogâmicos C57BL , Poliésteres , Animais , Masculino , Ácidos e Sais Biliares/metabolismo , Humanos , Células Hep G2 , Camundongos , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Microplásticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Sobrevivência Celular/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia
2.
Neurochem Res ; 49(6): 1577-1587, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38276990

RESUMO

Parkinson's disease (PD) is characterized by oxidative stress and neuroinflammation as key pathological features. Emerging evidence suggests that nuclear factor erythroid 2 related factor 2-antioxidant response element (Nrf2-ARE), phosphatidylinositol 3­kinase-protein kinase B (PI3K-Akt), c-Jun N-terminal kinase-extracellular signal-regulated kinase 1/2 (JNK-ERK1/2), and toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-kB) pathways play pivotal roles in PD pathogenesis. Orientin, a phenolic phytoconstituent, has demonstrated modulatory potential on these pathways in various experimental conditions other than PD. In this study, we aimed to evaluate the neuroprotective effects of Orientin against rotenone-induced neurodegeneration in SH-SY5Y cell lines and the Swiss albino mice model of PD. Orientin was administered at doses 10 and 20 µM in cell lines and 10 and 20 mg/kg in mice, and its effects on rotenone-induced neurodegeneration were investigated. Oxidative stress markers including mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as inflammatory markers including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), were measured. The expression levels of genes related to Nrf2-ARE (Nrf2), PI3K/Akt (Akt), JNK-ERK1/2 (TNF-α), and TLR4/NF-kB (TNF-α) pathways were measured to understand the modulatory effect of Orientin on these pathways. Additionally, behavioral studies assessing locomotor activity, muscle coordination, and muscle rigidity were conducted with mice. Our results indicate that Orientin dose-dependently attenuated rotenone-induced changes in oxidative stress markers, inflammatory markers, gene expression levels, and behavioral parameters. Therefore, our study concludes that Orientin exhibits significant neuroprotective benefits against rotenone-induced PD by modulating Nrf2-ARE, PI3K-Akt, JNK-ERK1/2, and TLR4/NF-kB pathways.


Assuntos
Flavonoides , Glucosídeos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Fármacos Neuroprotetores , Doença de Parkinson , Receptor 4 Toll-Like , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rotenona/toxicidade , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
3.
J Biochem Mol Toxicol ; 37(2): e23260, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36453646

RESUMO

Cannabinoids (CBs) are psychoactive compounds, with reported anticancer, anti-inflammatory, and anti-neoplastic properties. The study was aimed at assessing the hepatoprotective effects of CB against ethanol (EtOH)-induced liver toxicity in rats. The animals were divided into seven groups: control (Group I) and Group II were treated with 50% ethanol (EtOH 5 mg/kg). Groups III, IV, and VI were treated with (EtOH + CB 10 mg/kg), (EtOH + CB 20 mg/kg), and (EtOH + CB 30 mg/kg), respectively. Groups V and VII consisted of animals treated with 20 and 30 mg/kg, of CB, respectively. Biochemical analysis revealed that Group IV (EtOH + CB 20 mg/kg) had reduced levels of ALT-alanine transferase, AST-aspartate aminotransferase, ALP-alanine peroxidase, MDA-malondialdehyde and increased levels of GSH-reduced glutathione. Histopathological analysis of liver and kidney tissues showed that EtOH + CB (20 and 30 mg/kg) treated animal groups exhibited normal tissue architecture similar to that of the control group. ELISA revealed that the inflammatory markers were reduced in the animal groups that were treated with EtOH + CB 20 mg/kg, in comparison to the animals treated only with EtOH. The mRNA expression levels of COX-2, CD-14, and MIP-2 showed a remarkable decrease in EtOH + CB treated animal groups to control groups. Western blot analysis revealed that CB downregulated p38/JNK/ERK thereby exhibiting its hepatoprotective property by inhibiting mitogen-activated protein kinase pathways. Thus, our findings suggest that CB is a potential candidate for the treatment of alcohol-induced hepatotoxicity.


Assuntos
Canabinoides , Hepatite , Ratos , Animais , Etanol/toxicidade , Canabinoides/farmacologia , Canabinoides/metabolismo , Fígado/metabolismo , Hepatite/metabolismo , Sistema de Sinalização das MAP Quinases , Alanina/metabolismo , Alanina/farmacologia
4.
Toxicol Appl Pharmacol ; 438: 115908, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123989

RESUMO

Gastric cancer is one of the most common cancers with few effective treatments, a new treatment agent is desperately needed. C-2, a Jaspine B derivative, has shown anti-cancer efficacy in gastric cancer cells. The anti-cancer mechanism, however, remains unknown. As a result, we investigate the anti-cancer effect and the underlying mechanism of C-2 in gastric cancer cells. The results showed that C-2 selectively reduced the proliferation of gastric cancer cells when compared to normal epithelial gastric cells. Western blotting and flow cytometry further demonstrated that Caspase9 is involved in causing cell death. Meanwhile, C-2 triggered autophagy in gastric cancer cells, inhibition of which with LY294002 can enhance the anti-proliferative activity of C-2. Next, we found that C-2 triggered autophagy through activating JNK/ERK, and that inhibitors of these proteins exacerbated C-2 induced cell death. Mechanically, enhanced phosphorylation of JNK/ERK elevated Beclin-1 by disturbing Beclin-1/Bcl-xL or Beclin-1/Bcl-2 complexes, resulting in autophagy and up-regulation of p62. Finally, p62 binds Keap1 competitively to release Nrf2, boosting Nrf2 translocation from the cytoplasm to the nucleus and triggering expression of Nrf2 target genes, so enhancing survival. C-2 inhibited the growth of gastric cancer cells, while JNK/ERK dependent autophagy antagonized C-2 induced cell growth inhibition through p62/Keap1/Nrf2 pathway.


Assuntos
Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Esfingosina/análogos & derivados , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Esfingosina/farmacologia , Neoplasias Gástricas/metabolismo
5.
Ecotoxicol Environ Saf ; 237: 113558, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483150

RESUMO

Bisphenol A (BPA) is an endocrine disruptor, that can cause immune dysfunction. Cineole (CIN) has that effect of regulating immune function and resist oxidation. Neutrophil extracellular traps (NETs) are one of the ways to resist pathogen invasion. In order to explore the effects of BPA and CIN on the release of chicken NETs and the antagonistic effect of CIN, take chicken peripheral blood neutrophils as object of study, grouping as NC, CIN, BPA + CIN and BPA. SEM, flow cytometry, RT-PCR, Western-blot and other methods were used to detect related indicators. The results showed that BPA inhibited the activities of GPX, SOD and CAT, increased the contents of MDA and NO, increased the activity of iNOS. BPA exposure inhibited the expression of myeloperoxidase (MPO), neutrophil elastase (NE) and histone, and inhibited the release of NETs. BPA activated downstream apoptosis and necroptosis through the p38 mitogen-activated protein kinase (p38-MAPK) pathway, which increased the expression of cytochrome C (CytC), bcl-2 associated K protein gene (bak), cysteinyl aspartate specific proteinase 3 (caspase-3), cysteinyl aspartate specific proteinase 9 (caspase-9), receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 1 (RIPK3) and mixed lineage kinase domain-like protein (MLKL), decreased the expression of B-cell lymphoma-2 (bcl-2). However, the co-exposure of CIN and BPA partially recovered the release of NETs, alleviated BPA-induced oxidative stress, and inhibited the activation of p38-MAPK pathway, necroptosis, and mitochondrial apoptosis pathway. These results indicated that CIN modulated p38 pathway alleviated BPA-induced neutrophil necroptosis and apoptosis, and increased NETs formation.


Assuntos
Armadilhas Extracelulares , Apoptose/genética , Ácido Aspártico , Compostos Benzidrílicos , Eucaliptol/metabolismo , Armadilhas Extracelulares/metabolismo , Fenóis , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Ecotoxicol Environ Saf ; 231: 113176, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026588

RESUMO

Lead (Pb), as a toxic heavy metal pollutant, has been paid much attention. Pb is often discharged into the environment through the soot, wastewater and waste residue in industrial production, which poses a great threat to animal health. Selenium (Se) is a trace element known to antagonize the toxicity caused by heavy metals. However, the interaction between Se and Pb in chicken kidney and its specific biological mechanism are still unclear. So, we constructed chicken models of Pb exposure and Pb, Se co-exposure. Therefore, we used western blot and qRT-PCR to detect the expression of related genes. The results showed that Pb activated the MAPK signaling pathway by up-regulating the expression of MARK pathway genes to induce the expression of pro-apoptotic genes and necroptosis-related genes. Se can regulate the MARK signaling pathway and attenuated the expression of MAPK pathway genes altered by Pb to reduce apoptosis and necroptosis of chicken kidney cells. Our study gives new ideas for the specific mechanism of Pb nephrotoxicity and provides a reference for comparative medicine and clinical medication.


Assuntos
Selênio , Animais , Apoptose , Galinhas , Rim/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Sistema de Sinalização das MAP Quinases , Necroptose , Selênio/metabolismo
7.
Allergol Immunopathol (Madr) ; 50(6): 1-9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36335439

RESUMO

BACKGROUND: Acute kidney injury (AKI), a prevalent complication of sepsis, causes substantial burden on patients' families as well as the society. More reliable markers are urgently required for the prevention and treatment of AKI. Pleckstrin homology-like domain, family A, member 1 (PHLDA1) was implicated in various diseases, but its involvement in sepsis-induced AKI remains to be explored. The JNK/ERK pathway has been revealed as being involved in progression of sepsis. One previous study demonstrated that PHLDA1 could activate the JNK/ERK pathway in hepatic ischemia/reperfusion injury. Nevertheless, involvement of PHLDA1 in sepsis-triggered AKI through the JNK/ERK pathway has not been probed. METHODS: A cecal ligation and punctured (CLP) mice model of sepsis-induced AKI was established. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence staining were applied to evaluate the expression of PHLDA1. Concentration of blood urea nitrogen (BUN) and serum creatinine (Scr), inflammation markers, including interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-α, as well as oxidative stress-associated proteins (catalase, malondialdehyde, superoxide dismutase, and glutathione), in the kidney tissues of mice were evaluated by enzyme-linked-immunosorbent serologic assay. Western blot analysis was applied for measuring protein expression levels. RESULTS: The BUN and SCr levels in mice were obviously elevated in the CLP group compared to the sham group. Moreover, the expression of PHLDA1 was also elevated in the CLP group in comparison to the sham group. Down-regulation of PHLDA1 alleviated renal injury, inflammation, and oxidative stress in AKI model. Mechanistic study showed that PHLDA1 knockdown suppressed the activation of c-JUN N-terminal kinase/p38 and extracellular signal-regulated kinase (JNK/ERK) pathway. CONCLUSION: Down-regulation of PHLDA1 suppressed inflammation and oxidative stress through the modulation of JNK/ERK pathway in sepsis-induced AKI. The results could offer a novel insight into the treatment of patients with sepsis-induced AKI.


Assuntos
Injúria Renal Aguda , Sepse , Animais , Camundongos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Inflamação/complicações , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Sepse/complicações , Sepse/metabolismo
8.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1547-1557, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34596215

RESUMO

5-Fluorouracil (5-FU) resistance has been long considered as an obstacle to the efficacy of chemotherapy in colorectal cancer (CRC). In this study, we demonstrated the role of miR-20b-5p-regulated syndecan-2 (SDC2) in 5-FU resistance of CRC cells. 5-FU-resistant SW480 CRC cells were established by treatment of SW480 cells with stepwise increase of 5-FU concentration. The results showed that SDC2 was expressed significantly higher in SW480/5-FU cells than in SW480/WT cells as revealed by quantitative real-time polymerase chain reaction and western blot analysis. MTT assay and BrdU assay showed that SDC2 overexpression led to increased cell survival rate, while SDC2 knockdown reversed the drug resistance of SW480/5-FU cells. Wound healing and transwell invasion assays revealed that knockdown of SDC2 inhibited the migratory and invasive ability of SW480/5-FU cells. Moreover, animal experiments indicated that si-SDC2 plays a suppressive role in tumor growth in vivo. We also confirmed that miR-20b-5p interacted with SDC2, which reversed the effect of SDC2 in SW480/5-FU cells via the c-Jun N-terminal kinase (JNK)/extracellular regulated protein kinases (ERK) signaling pathway. These findings showed that JNK/ERK signaling pathway is involved in miR-20b-5p/SDC2 axis-mediated 5-FU resistance in SW480/5-FU cells, indicating that the miR-20b-5p/SDC2 axis is a potential target for reversing 5-FU resistance in CRC.


Assuntos
Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Fluoruracila/farmacologia , MicroRNAs/genética , Sindecana-2/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Pareamento de Bases , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Survivina/genética , Survivina/metabolismo , Sindecana-2/antagonistas & inibidores , Sindecana-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Cell Probes ; 51: 101541, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092330

RESUMO

BACKGROUND: Osteoarthritis (OA) is a frequent and incurable joint disease, inducing significant pain and seriously threatening to human health. It has been reported that microRNAs (miRNAs) play crucial roles on cancers and inflammatory diseases via cooperating with genes. However, the effect of miR-374a-3p/Wingless-type MMTV integration site family, member 5B (WNT5B) pair in OA remains to be explored. METHODS: GSE105027 and GSE55457 datasets were obtained to reveal the expression of miR-374a-3p and WNT5B in OA cartilages using log-scale. The OA cell model was established by lipopolysaccharides (LPS) stimulation in CHON-001 cells and the functional role of miR-374a-3p on OA was investigated by analyzing cell proliferation, cell apoptosis and the expression of apoptosis-related proteins (Bcl-2, Bax and Bim). Through bioinformatics prediction, WNT5B, the target gene of miR-374a-3p, was predicted and the association between miR-374a-3p and WNT5B was further explored by luciferase reporter assay. Functional experiments in vitro were conducted to assess whether WNT5B was involved in the regulation of miR-374a-3p to LPS-stimulated CHON-001. Finally, the expression of JNK/ERK/MAPK pathway-related proteins was detected to explore the underlying molecular mechanism. RESULTS: The data set showed that miR-374a-3p was decreased in OA cartilages and the consistent expressional pattern was observed in LPS-stimulated CHON-001 cells. Overexpression of miR-374a-3p significantly alleviated LPS-induced damage in CHON-001 cells, whereas miR-374a-3p inhibitor aggravated LPS-stimulated injury. Further experiments demonstrated that WNT5B was a target of miR-374a-3p and its expression was decreased by miR-374a-3p. WNT5B expression was increased in OA cartilages. Silencing WNT5B prevented CHON-001 cells from LPS-induced damage. Down-regulation of WNT5B strengthened the protective effect of miR-374a-3p on LPS-stimulated CHON-001 cells. Moreover, miR-374a-3p cooperated with WNT5B to affect cell behaviors of LPS-stimulated CHON-001 cells via mediating the JNK/ERK/MAPK pathway. CONCLUSION: These results indicated that overexpression of miR-374a-3p protects CHON-001 cells against LPS challenge by modulating WNT5B and inhibiting the JNK/ERK/MAPK pathway.


Assuntos
Cartilagem/metabolismo , Condrócitos/metabolismo , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Proteínas Wnt/metabolismo , Proteína 11 Semelhante a Bcl-2/metabolismo , Cartilagem/patologia , Linhagem Celular , Condrócitos/patologia , Bases de Dados Genéticas , Regulação para Baixo , Regulação da Expressão Gênica/genética , Inativação Gênica , Humanos , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Osteoartrite/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação para Cima , Proteínas Wnt/genética , Proteína X Associada a bcl-2/metabolismo
10.
J Cell Biochem ; 119(2): 2048-2060, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28833446

RESUMO

In this study, it was aimed to determine the doses of 4-methylcatechol causing cell death in rat insulinoma ß-cells (INS-1), to find out the type of cellular death at these doses, and to investigate the molecular mechanism of cellular death occurring. More necrotic cells were observed than apoptosis with the administration of 350, 400, and 450 µM 4-methylcatechol. Lactate dehydrogenase levels, reactive oxygen species, mitochondrial potential loss, ATP, and GTP losses increased at these doses. The JNK and ERK cellular pathway were screened. We observed an increase in p-RAF1 activity, the active JNK amount, the total c-Jun amount, while a decrease in p-RAF1 expression, the total JNK amount, JNK expression, ATF2 expression, active ERK, and its expression and Elk1 expression. It was concluded that cells perform necrotic death by the following options: i) phosphorylated RAF1 activates the JNK pathway with the activity of transcription factor c-Jun; ii) Hsp 70 and Hsp 90 do not show a change inside the cell, rendering the JNK pathway active.


Assuntos
Catecóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Morte Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosforilação , Ratos , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Mol Sci ; 17(6)2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27322250

RESUMO

Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Inseticidas/toxicidade , Macrófagos/efeitos dos fármacos , Estresse Oxidativo , Piretrinas/toxicidade , Animais , Linhagem Celular , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Nutrients ; 16(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257186

RESUMO

In this study, ferulic acid was investigated for its potential in suppressing TNF-α-treated inflammation and insulin resistance in adipocytes. Ferulic acid suppressed TNF-α, IL-6, IL-1ß, and MCP-1. TNF-α increased p-JNK and ERK1/2, but treatment with ferulic acid (1, 10, and 50 µM) decreased p-JNK and ERK1/2. TNF-α induced the activation of IKK, IκBα, and NF-κB p65 compared to the control, but ferulic acid inhibited the activation of IKK, IκBα, and NF-κB p65. Following treatment with TNF-α, pIRS-1ser307 increased and pIRS-1tyr612 decreased compared to the control. Conversely, as a result of treatment with 1, 10, and 50 µM ferulic acid, pIRS-1ser307 was suppressed, and pIRS-1tyr612 was increased. Therefore, ferulic acid reduced inflammatory cytokine secretion by regulating JNK, ERK, and NF-κB and improved insulin resistance by suppressing pIRS-1ser. These findings indicate that ferulic acid can improve inflammation and insulin resistance in adipocytes.


Assuntos
Ácidos Cumáricos , Resistência à Insulina , NF-kappa B , Camundongos , Animais , Inibidor de NF-kappaB alfa , Fator de Necrose Tumoral alfa , Células 3T3-L1 , Inflamação/tratamento farmacológico , Adipócitos
13.
Int Immunopharmacol ; 118: 109930, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001383

RESUMO

OBJECTIVES: Diabetic encephalopathy (DE) is a common complication of diabetes in the central nervous system, which can cause cognitive dysfunction in patients. However, its pathophysiological mechanism has not been elucidated, and thus effective prevention and treatment methods are still lacking.Previous studies reported that neuroinflammation involved in the central neuropathy, while lipin2 plays an important role in inflammatory response.Therefore, we aimed to investigate the effects of lipin2 on regulating inflammatory response in the pathogenesis of DE. METHODS: BV2 cells were treated with high glucose and infected with lipin2 overexpression or knockdown virus to observe the cell viability. Then, we constructed a mouse model of DE, and constructed a lipin2 knockdown or overexpression model by injecting lentivirus into the brain with stereotaxis. The expression of lipin2 in inflammatory bodies and related inflammatory factor signaling pathway-related proteins were examined by western blot and quantitative real-time PCR. Morris water maze was used to evaluate the spatial learning and memory of mice. RESULTS: High glucose decreased the expression of lipin2 in BV2 cells, while overexpression of lipin2 in BV2 cells significantly suppressed the inflammatory response and apoptosis induced by high glucose. Meanwhile, the expression of lipin2 was down-regulated in the hippocampus in a DE mice model. Up-regulation of lipin2 in the hippocampus of DE mice inhibited JNK/ERK signaling pathway, reduced NLRP3 inflammasome-mediated inflammatory response, down-regulated IL-1/TNF-α expression, and improved synaptic plasticity and cognitive dysfunction in mice. Conversely, knockdown of lipin2 increased NLRP3 inflammasome overactivation, caused neuronal abnormalities and cognitive impairment in mice. CONCLUSIONS: Lipin2 may play a neuroprotective role in DE by inhibiting JNK/ERK-mediated NLRP3 inflammasome overactivation and subsequent inflammatory responses. It may be a potential therapeutic target for DE therapy.


Assuntos
Encefalopatias , Diabetes Mellitus , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Modelos Animais de Doenças , Glucose
14.
Biology (Basel) ; 11(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36101437

RESUMO

Recently, we found that both HIV and acetaldehyde, an alcohol metabolite, induce hepatocyte apoptosis, resulting in the release of large extracellular vesicles called apoptotic bodies (ABs). The engulfment of these hepatocyte ABs by hepatic stellate cells (HSC) leads to their profibrotic activation. This study aims to establish the mechanisms of HSC activation after engulfment of ABs from acetaldehyde and HIV-exposed hepatocytes (ABAGS+HIV). In vitro experiments were performed on Huh7.5-CYP (RLW) cells to generate hepatocyte ABs and LX2 cells were used as HSC. To generate ABs, RLW cells were pretreated for 24 h with acetaldehyde, then exposed overnight to HIV1ADA and to acetaldehyde for 96 h. Thereafter, ABs were isolated from cell suspension by a differential centrifugation method and incubated with LX2 cells (3:1 ratio) for profibrotic genes and protein analyses. We found that HSC internalized ABs via the tyrosine kinase receptor, Axl. While the HIV gag RNA/HIV proteins accumulated in ABs elicited no productive infection in LX2 and immune cells, they triggered ROS and IL6 generation, which, in turn, activated profibrotic genes via the JNK-ERK1/2 and JAK-STAT3 pathways. Similarly, ongoing profibrotic activation was observed in immunodeficient NSG mice fed ethanol and injected with HIV-derived RLW ABs. We conclude that HSC activation by hepatocyte ABAGS+HIV engulfment is mediated by ROS-dependent JNK-ERK1/2 and IL6 triggering of JAK-STAT3 pathways. This can partially explain the mechanisms of liver fibrosis development frequently observed among alcohol abusing PLWH.

15.
Oncol Lett ; 23(3): 78, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35111247

RESUMO

Tongue squamous cell carcinoma (SCC) is a most common type of oral cancer. Due to its highly invasive nature and poor survival rate, the development of effective pharmacological therapeutic agents is urgently required. Quercetin (3,3',4',5,7-pentahydroxyflavone) is a polyphenolic flavonoid found in plants and is an active component of Chinese herbal medicine. The present study investigated the pharmacological effects and possible mechanisms of quercetin on apoptosis of the tongue SCC-derived SAS cell line. Following treatment with quercetin, cell viability was assessed via the MTT assay. Apoptotic and necrotic cells, mitochondrial transmembrane potential and caspase-3/7 activity were analyzed via flow cytometric analyses. A caspase-3 activity assay kit was used to detect the expression of caspase-3 activity. Western blot analysis was performed to examine the expression levels of proteins associated with the MAPKs, AMPKα, GSK3-α/ß and caspase-related signaling pathways. The results revealed that quercetin induced morphological alterations and decreased the viability of SAS cells. Quercetin also increased apoptosis-related Annexin V-FITC fluorescence and caspase-3 activity, and induced mitochondria-dependent apoptotic signals, including a decrease in mitochondrial transmembrane potential and Bcl-2 protein expression, and an increase in cytosolic cytochrome c, Bax, Bak, cleaved caspase-3, cleaved caspase-7 and cleaved poly (ADP-ribose) polymerase protein expression. Furthermore, quercetin significantly increased the protein expression levels of phosphorylated (p)-ERK, p-JNK1/2 and p-GSK3-α/ß, but not p-p38 or p-AMPKα in SAS cells. Pretreatment with the pharmacological JNK inhibitor SP600125 effectively reduced the quercetin-induced apoptosis-related signals, as well as p-ERK1/2 and p-GSK3-α/ß protein expression. Both ERK1/2 and GSK3-α/ß inhibitors, PD98059 and LiCl, respectively, could significantly prevent the quercetin-induced phosphorylation of ERK1/2 and GSK3-α/ß, but not JNK activation. Taken together, these results suggested that quercetin may induce tongue SCC cell apoptosis via the JNK-activation-regulated ERK1/2 and GSK3-α/ß-mediated mitochondria-dependent apoptotic signaling pathway.

16.
Int J Biol Sci ; 18(5): 2047-2059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342363

RESUMO

Polycystic ovarian syndrome (PCOS) is one of the most prevalent endocrinopathies and the leading cause of anovulatory infertility, but its pathogenesis remains elusive. Although HB-EGF is involved in ovarian cancer progression, there is still no clarity about its relevance with PCOS. The present study exhibited that abundant HB-EGF was noted in follicular fluid from PCOS women, where it might induce the granulosa cells (GCs) production of more estrogen via the elevation of CYP19A1 expression after binding to EGFR. Furthermore, HB-EGF transduced intracellular downstream cAMP-PKA signaling to promote the phosphorylation of JNK and ERK whose blockage impeded the induction of HB-EGF on estrogen secretion. Meanwhile, HB-EGF enhanced the accumulation of intracellular Ca2+ whose chelation by BAPTA-AM abrogated the stimulation of HB-EGF on FOXO1 along with an obvious diminishment for estrogen production. cAMP-PKA-JNK/ERK-Ca2+ pathway played an important role in the crosstalk between HB-EGF and FOXO1. Treatment of GCs with HB-EGF resulted in mitochondrial dysfunction as evinced by the reduction of ATP content, mtDNA copy number and mitochondrial membrane potential. Additionally, HB-EGF facilitated the opening of mitochondrial permeability transition pore via targeting BAX and raised the release of cytochrome C from mitochondria into the cytosol to trigger the apoptosis of GCs, but this effectiveness was counteracted by estrogen receptor antagonist. Collectively, HB-EGF might induce mitochondrial dysfunction and GCs apoptosis through advancing estrogen hypersecretion dependent on cAMP-PKA-JNK/ERK-Ca2+-FOXO1 pathway and act as a promising therapeutic target for PCOS.


Assuntos
Síndrome do Ovário Policístico , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Proteína Forkhead Box O1/metabolismo , Células da Granulosa/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/farmacologia , Humanos , Mitocôndrias/metabolismo , Síndrome do Ovário Policístico/metabolismo
17.
Am J Med Sci ; 359(6): 365-371, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32498943

RESUMO

BACKGROUND: It has been reported that miR-294 is highly expressed in hepatocellular carcinoma (HCC) tissues and cells. However, the potential role of miR-294 in the pathogenesis of HCC remains unclear. This study aimed to explore the role of miR-294 in HCC and the potential mechanism involved in this process. MATERIALS AND METHODS: Reverse transcription polymerase chain reaction was performed to determine the expression of miR-294 in HCC tissues and cell lines. Following the overexpression or knockdown of miR-294, the proliferation, migration, and invasion abilities of cells were determined using Cell Counting Kit-8 (CCK-8), wound healing and transwell assays, respectively. The phosphorylation of JNK and ERK was determined through western blotting. Furthermore, HCC cells were treated with JNK inhibitor SP600125 or ERK inhibitor U0126 and transfected with miR-294 mimics or negative control. Subsequently, the phosphorylation of JNK and ERK was evaluated and the proliferation, migration and invasion abilities of HCC cells were also determined. RESULTS: The expression of miR-294 was significantly increased in HCC tissues and cell lines. Following the overexpression of miR-294, proliferation, migration, and invasion were promoted in the SSMC-7721 cell line, and the phosphorylation of JNK and ERK was increased, while silencing of miR-294 led to the opposite result. Use of the JNK or ERK inhibitor to treat SSMC-7721 cells transfected with miR-294 mimics decreased the phosphorylation of JNK and ERK and inhibited the proliferation, migration and invasion abilities of cells. CONCLUSIONS: miR-294 is important for the development of HCC in terms of the biological activities of cells, and may be a novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Hepáticas/metabolismo , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Idoso , Antracenos/farmacologia , Butadienos/farmacologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Nitrilas/farmacologia , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Regulação para Cima
19.
Front Cell Dev Biol ; 8: 245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411699

RESUMO

Elevated plasma non-esterified fatty acid (NEFA) levels and hepatocytes damage are characteristics of ketosis in dairy cows. Oxidative stress is associated with the pathogenesis of NEFA-induced liver damage. However, the exact mechanism by which oxidative stress mediates NEFA-induced hepatocytes apoptosis and liver injury remains poorly understood. The results of the present study demonstrated that NEFA contribute to reactive oxygen species (ROS) generation, resulting in an imbalance between oxidative and antioxidant species, transcriptional activation of p53, transcriptional inhibition of nuclear factor E2-related factor 2 (Nrf2), loss of mitochondria membrane potential (MMP) and release of apoptosis-inducing factor (AIF) and cytochrome c (cyt c) into the cytosol, leading to hepatocytes apoptosis. Besides, NEFA triggered apoptosis in dairy cow hepatocytes via the regulation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), Bcl-2-associated X protein (Bax), B-cell lymphoma gene 2 (Bcl-2), caspase 9 and poly (ADP-ribose) polymerase (PARP). Pretreatment with the inhibitor SP600125 or PD98059 or the antioxidant N-acetylcysteine (NAC) revealed that NEFA-ROS-JNK/ERK-mediated mitochondrial signaling pathway plays a crucial role in NEFA-induced hepatocytes apoptosis. Moreover, the results suggested that the transcription factors p53 and Nrf2 function downstream of this NEFA-ROS-JNK/ERK pathway and are involved in NEFA-induced hepatocytes apoptosis. In conclusion, these findings indicate that the NEFA-ROS-JNK/ERK-mediated mitochondrial pathway plays an important role in NEFA-induced dairy cow hepatocytes apoptosis and strongly suggests that the inhibitors SP600125 and PD98059 and the antioxidant NAC may be developed as therapeutics to prevent hyperlipidemia-induced apoptotic damage in ketotic dairy cows.

20.
Cytotechnology ; 71(1): 209-217, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30603922

RESUMO

An insulinoma is a tumor formed by beta cells in the Langerhans islets of the pancreas. Vitronectin (VTN), fibronectin (FN) and epidermal growth factor (EGF) are important in cell signaling. The aim of this study was to investigate the molecular mechanism that occurs in INS-1 cells with the administration of VTN, FN and EGF in proliferative doses. We determined the proliferative doses of EGF, VTN and FN. The molecular mechanism of proliferation has been investigated alone or in the combination of these proteins. It was observed that INS-1 cells did not have VTN and FN. Cell viability increased with the administration of 0.1 µg/ml VTN, 0.1 µg/ml FN and 1 mg/ml EGF. Proliferation increased with the administration of FN + EGF, and VTN + FN + EGF together when compared to the control group. The total JNK levels did not change between the groups; however, the active JNK levels increased in the VT + FN + EGF group compared to the control group. The total ERK levels increased in the VT + FN + EGF group, and the active ERK levels increased in the VTN + FN, VTN + EGF and VTN + FN + EGF groups compared to the control group. The JNK and ERK pathways are important for proliferation. The JNK and ERK pathways were activated in VTN + FN + EGF administered group. However, it was observed that the ERK pathway was more active than the JNK pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA