Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442041

RESUMO

Post-translational modifications (PTMs) have been extensively studied in both eukaryotes and prokaryotes. Lysine acetylation, originally thought to be a rare occurrence in bacteria, is now recognized as a prevalent and important PTM in more than 50 species. This expansion in interest in bacterial PTMs became possible with the advancement of mass spectrometry technology and improved reagents such as acyl-modification specific antibodies. In this Review, we discuss how mass spectrometry-based proteomic studies of lysine acetylation and other acyl modifications have contributed to our understanding of bacterial physiology, focusing on recently published studies from 2018 to 2023. We begin with a discussion of approaches used to study bacterial PTMs. Next, we discuss newly characterized acylomes, including acetylomes, succinylomes, and malonylomes, in different bacterial species. In addition, we examine proteomic contributions to our understanding of bacterial virulence and biofilm formation. Finally, we discuss the contributions of mass spectrometry to our understanding of the mechanisms of acetylation, both enzymatic and nonenzymatic. We end with a discussion of the current state of the field and possible future research avenues to explore.

2.
J Biol Chem ; 299(2): 102834, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572187

RESUMO

Under environmental stress, such as glucose deprivation, cells form stress granules-the accumulation of cytoplasmic aggregates of repressed translational initiation complexes, proteins, and stalled mRNAs. Recent research implicates stress granules in various diseases, such as neurodegenerative diseases, but the exact regulators responsible for the assembly and disassembly of stress granules are unknown. An important aspect of stress granule formation is the presence of posttranslational modifications on core proteins. One of those modifications is lysine acetylation, which is regulated by either a lysine acetyltransferase or a lysine deacetylase enzyme. This work deciphers the impact of lysine acetylation on an essential protein found in Saccharomyces cerevisiae stress granules, poly(A)-binding protein (Pab1). We demonstrated that an acetylation mimic of the lysine residue in position 131 reduces stress granule formation upon glucose deprivation and other stressors such as ethanol, raffinose, and vanillin. We present genetic evidence that the enzyme Rpd3 is the primary candidate for the deacetylation of Pab1-K131. Further, our electromobility shift assay studies suggest that the acetylation of Pab1-K131 negatively impacts poly(A) RNA binding. Due to the conserved nature of stress granules, therapeutics targeting the activity of lysine acetyltransferases and lysine deacetylase enzymes may be a promising route to modulate stress granule dynamics in the disease state.


Assuntos
Proteínas de Ligação a Poli(A) , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Grânulos de Estresse , Acetilação , Glucose/metabolismo , Lisina/metabolismo , Lisina Acetiltransferases/metabolismo , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Reprod Dev ; 90(1): 14-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534913

RESUMO

The basic units of chromatin are nucleosomes, that are made up of DNA wrapped around histone cores. Histone lysine residue is a common location for posttranslational modifications, with acetylation being the second most prevalent. Histone acetyltransferases (HATs/KATs) and histone deacetylases (HDACs/KDACs) regulate histone acetylation, which is important in gene expression control. HDACs/KDACs regulate gene expressions through the repression of the transcription machinery. HDAC/KDAC isoforms play a major role during various stages of embryo development and neurogenesis. In specific, class I and II HDACs/KDACs are involved in cardiac muscle differentiation and development. An insight into different pathways and genes associated with embryonic development, the effect of HDAC/KDAC activity during the embryonic stem cell differentiation, preimplantation, embryo development, gastrulation, and the role of different HDAC/KDAC inhibitors during the process of embryogenesis is summarized in the present review article.


Assuntos
Histona Desacetilases , Histonas , Histonas/metabolismo , Histona Desacetilases/metabolismo , Cromatina , Desenvolvimento Embrionário , Inibidores de Histona Desacetilases/farmacologia , Acetilação
4.
Biol Chem ; 403(2): 151-194, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34433238

RESUMO

The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.


Assuntos
Lisina , Sirtuínas , Acetilação , Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirtuínas/metabolismo
5.
FASEB J ; 34(10): 13140-13155, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32862458

RESUMO

Lysine acetylation is a posttranslational modification that occurs on thousands of human proteins, most of which are cytoplasmic. Acetylated proteins are involved in numerous cellular processes and human diseases. Therefore, how the acetylation/deacetylation cycle is regulated is an important question. Eleven metal-dependent lysine deacetylases (KDACs) have been identified in human cells. These enzymes, along with the sirtuins, are collectively responsible for reversing lysine acetylation. Despite several large-scale studies which have characterized the acetylome, relatively few of the specific acetylated residues have been matched to a proposed KDAC for deacetylation. To understand the function of lysine acetylation, and its association with diseases, specific KDAC-substrate pairs must be identified. Identifying specific substrates of a KDAC is complicated both by the complexity of assaying relevant activity and by the non-catalytic interactions of KDACs with cellular proteins. Here, we discuss in vitro and cell-based experimental strategies used to identify KDAC-substrate pairs and evaluate each for the purpose of directly identifying non-histone substrates of metal-dependent KDACs. We propose criteria for a combination of reproducible experimental approaches that are necessary to establish a direct enzymatic relationship. This critical analysis of the literature identifies 108 proposed non-histone substrate-KDAC pairs for which direct experimental evidence has been reported. Of these, five pairs can be considered well-established, while another thirteen pairs have both cell-based and in vitro evidence but lack independent replication and/or sufficient cell-based evidence. We present a path forward for evaluating the remaining substrate leads and reliably identifying novel KDAC substrates.


Assuntos
Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Acetilação , Animais , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/metabolismo , Zinco/metabolismo
6.
J Proteome Res ; 19(9): 3680-3696, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32674575

RESUMO

Post-translational modifications of proteins enable swift physiological adaptation of cells to altered growth conditions and stress. Aside from protein phosphorylation, acetylation on ε-amino groups of lysine residues (N-ε-lysine acetylation) represents another important post-translational modification of proteins. For many bacterial pathogens, including the whooping cough agent Bordetella pertussis, the role and extent of protein acetylation remain to be defined. We expressed in Escherichia coli the BP0960 and BP3063 genes encoding two putative deacetylases of B. pertussis and show that BP0960 encodes a lysine deacetylase enzyme, named Bkd1, that regulates acetylation of a range of B. pertussis proteins. Comparison of the proteome and acetylome of a Δbkd1 mutant with the proteome and acetylome of wild-type B. pertussis (PRIDE ID. PXD016384) revealed that acetylation on lysine residues may modulate activities or stabilities of proteins involved in bacterial metabolism and histone-like proteins. However, increased acetylation of the BvgA response regulator protein of the B. pertussis master virulence-regulating BvgAS two-component system affected neither the total levels of produced BvgA nor its phosphorylation status. Indeed, the Δbkd1 mutant was not impaired in the production of key virulence factors and its survival within human macrophages in vitro was not affected. The Δbkd1 mutant exhibited an increased growth rate under carbon source-limiting conditions and its virulence in the in vivo mouse lung infection model was somewhat affected. These results indicate that the lysine deacetylase Bkd1 and N-ε-lysine acetylation primarily modulate the general metabolism rather than the virulence of B. pertussis.


Assuntos
Proteínas de Bactérias , Lisina , Acetilação , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella pertussis/genética , Regulação Bacteriana da Expressão Gênica , Lisina/metabolismo , Camundongos , Virulência
7.
Adv Exp Med Biol ; 1258: 55-75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32767234

RESUMO

Epigenetic deregulation is an emerging hallmark of cancer that enables tumor cells to escape surveillance by tumor suppressors and ultimately progress. The structure of the epigenome consists of covalent modifications of chromatin components, including acetylation by histone acetyltransferases (HATs) and deacetylation by histone deacetylases (HDACs). Targeting these enzymes with inhibitors to restore epigenetic homeostasis has been explored for many cancers. Osteosarcoma, an aggressive bone malignancy that primarily affects children and young adults, is notable for widespread genetic and epigenetic instability. This may explain why therapy directed at unique molecular pathways has failed to substantially improve outcomes in osteosarcoma over the past four decades. In this review, we discuss the potential of targeting the cancer epigenome, with a focus on histone deacetylase inhibitors (HDACi) for osteosarcoma. We additionally highlight the safety and tolerance of HDACi, combination chemotherapy with HDACi, and the ongoing challenges in the development of these agents.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Epigenoma/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Acetilação/efeitos dos fármacos , Neoplasias Ósseas/enzimologia , Histona Desacetilases/metabolismo , Humanos , Osteossarcoma/enzimologia
8.
Biogerontology ; 20(3): 303-319, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30666570

RESUMO

Cell senescence, a state of cell cycle arrest and altered metabolism with enhanced pro-inflammatory secretion, underlies at least some aspects of organismal ageing. The sirtuin family of deacetylases has been implicated in preventing premature ageing; sirtuin overexpression or resveratrol-mediated activation of sirtuins increase longevity. Here we show that sirtuin inhibition by short-term, low-dose treatment with the experimental anti-cancer agent Tenovin-6 (TnV6) induces cellular senescence in primary human fibroblasts. Treated cells cease proliferation and arrest in G1 of the cell cycle, with elevated p21 levels, DNA damage foci, high mitochondrial and lysosomal load and increased senescence-associated ß galactosidase activity, together with actin stress fibres and secretion of IL-6 (indicative of SASP upregulation). Consistent with a histone deacetylation role of SIRT1, we find nuclear enlargement, possibly resulting from chromatin decompaction on sirtuin inhibition. These findings highlight TnV6 as a drug that may be useful in clinical settings where acute induction of cell senescence would be beneficial, but also provide the caveat that even supposedly non-genotoxic anticancer drugs can have unexpected and efficacy-limiting impacts on non-transformed cells.


Assuntos
Benzamidas/farmacologia , Senescência Celular/efeitos dos fármacos , Modelos Biológicos , Sirtuínas/antagonistas & inibidores , Antineoplásicos/farmacologia , Células HeLa , Humanos
9.
Med Res Rev ; 38(1): 147-200, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28094444

RESUMO

Sirtuins are NAD+ -dependent protein deacylases that cleave off acetyl, as well as other acyl groups, from the ε-amino group of lysines in histones and other substrate proteins. Seven sirtuin isotypes (Sirt1-7) have been identified in mammalian cells. As sirtuins are involved in the regulation of various physiological processes such as cell survival, cell cycle progression, apoptosis, DNA repair, cell metabolism, and caloric restriction, a dysregulation of their enzymatic activity has been associated with the pathogenesis of neoplastic, metabolic, infectious, and neurodegenerative diseases. Thus, sirtuins are promising targets for pharmaceutical intervention. Growing interest in a modulation of sirtuin activity has prompted the discovery of several small molecules, able to inhibit or activate certain sirtuin isotypes. Herein, we give an update to our previous review on the topic in this journal (Schemies, 2010), focusing on recent developments in sirtuin biology, sirtuin modulators, and their potential as novel therapeutic agents.


Assuntos
Histona Desacetilases do Grupo III/antagonistas & inibidores , Histona Desacetilases do Grupo III/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Animais , Humanos , Terapia de Alvo Molecular
10.
Bioorg Med Chem ; 25(7): 2105-2132, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28259528

RESUMO

A predictive structure-based 3D QSAR (COMBINEr 2.0) model of the Schistosoma mansoni lysine deacetylase 8 enzyme (SmKDAC8) was developed, validated and used to perform virtual screening (VS) of the NCI Diversity Set V database (1593 compounds). Three external datasets (with congeneric structures to those experimentally resolved in complexes by X-ray and previously reported as SmKDAC8 inhibitors) were employed to compose and validate the most predictive model. Two series characterized by 104 benzodiazepine derivatives (BZDs) and 60 simplified largazole analogs (SLAs), recently reported by our group as human KDAC inhibitors, were tested for their inhibition potency against SmKDAC8 to probe the predictive capability of the quantitative models against compounds with diverse structures. The SmKDAC8 biochemical results confirmed: (1) the benzodiazepine moiety as a valuable scaffold to further investigate when pursuing SmKDAC8 inhibition; (2) the predictive capability of the COMBINEr 2.0 model towards non-congeneric series of compounds, highlighting the most influencing ligand-protein interactions and refining the structure-activity relationships. From the VS investigations, the first 40 top-ranked compounds were obtained and biologically tested for their inhibition potency against SmKDAC8 and hKDACs 1, 3, 6 and 8. Among them, a non-hydroxamic acid benzothiadiazine dioxide derivative (code NSC163639), showed interesting activity and selectivity against SmKDAC8. To further elucidate the structure-activity relationships of NSC163639, two analogs (herein reported as compounds 3 and 4) were synthesized and biologically evaluated. Results suggest the benzothiadiazine dioxide moiety as a promising scaffold to be used in a next step to derive selective SmKDAC8 inhibitors.


Assuntos
Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Schistosoma mansoni/efeitos dos fármacos , Animais , Inibidores de Histona Desacetilases/química , Técnicas In Vitro , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Schistosoma mansoni/enzimologia , Schistosoma mansoni/genética
11.
Methods Mol Biol ; 2542: 41-54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008655

RESUMO

Candida albicans is a normal component of the human microflora that colonizes mucosal/epithelial surfaces and the gastrointestinal tract as a commensal organism. However, in an immunocompromised host, it can cause life-threatening infections of high mortality and morbidity. Virulence as well as antifungal drug resistance of C. albicans is often regulated by posttranslational modifications (PTM) of proteins via lysine acetylation by lysine acetyltransferases. Here, we report an experimental approach using tandem mass tag (TMT) labeling for the detection and quantification of lysine acetylation of histone and nonhistone proteins in C. albicans.


Assuntos
Candida albicans , Lisina , Acetilação , Candida albicans/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica
12.
ChemMedChem ; 16(24): 3691-3700, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259396

RESUMO

We report the synthesis and biological evaluation of a light-activated (caged) prodrug of the KDAC inhibitor panobinostat (Zap-Pano). We demonstrate that addition of the 4,5-dimethoxy-2-nitrobenzyl group to the hydroxamic acid oxygen results in an inactive prodrug. In two cancer cell lines we show that photolysis of this compound releases panobinostat and an unexpected carboxamide analogue of panobinostat. Photolysis of Zap-Pano causes an increase in H3K9Ac and H3K18Ac, consistent with KDAC inhibition, in an oesophageal cancer cell line (OE21). Irradiation of OE21 cells in the presence of Zap-Pano results in apoptotic cell death. This compound is a useful research tool, allowing spatial and temporal control over release of panobinostat.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Panobinostat/farmacologia , Pró-Fármacos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Estrutura Molecular , Panobinostat/síntese química , Panobinostat/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade
13.
Cell Chem Biol ; 28(9): 1258-1270.e13, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-33910023

RESUMO

Tumor hypoxia is associated with therapy resistance and poor patient prognosis. Hypoxia-activated prodrugs, designed to selectively target hypoxic cells while sparing normal tissue, represent a promising treatment strategy. We report the pre-clinical efficacy of 1-methyl-2-nitroimidazole panobinostat (NI-Pano, CH-03), a novel bioreductive version of the clinically used lysine deacetylase inhibitor, panobinostat. NI-Pano was stable in normoxic (21% O2) conditions and underwent NADPH-CYP-mediated enzymatic bioreduction to release panobinostat in hypoxia (<0.1% O2). Treatment of cells grown in both 2D and 3D with NI-Pano increased acetylation of histone H3 at lysine 9, induced apoptosis, and decreased clonogenic survival. Importantly, NI-Pano exhibited growth delay effects as a single agent in tumor xenografts. Pharmacokinetic analysis confirmed the presence of sub-micromolar concentrations of panobinostat in hypoxic mouse xenografts, but not in circulating plasma or kidneys. Together, our pre-clinical results provide a strong mechanistic rationale for the clinical development of NI-Pano for selective targeting of hypoxic tumors.


Assuntos
Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Hipóxia/tratamento farmacológico , Panobinostat/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Panobinostat/síntese química , Panobinostat/química , Células Tumorais Cultivadas
14.
Front Microbiol ; 12: 782815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111139

RESUMO

Bacillus subtilis produces dormant, highly resistant endospores in response to extreme environmental stresses or starvation. These spores are capable of persisting in harsh environments for many years, even decades, without essential nutrients. Part of the reason that these spores can survive such extreme conditions is because their chromosomal DNA is well protected from environmental insults. The α/ß-type small acid-soluble proteins (SASPs) coat the spore chromosome, which leads to condensation and protection from such insults. The histone-like protein HBsu has been implicated in the packaging of the spore chromosome and is believed to be important in modulating SASP-mediated alterations to the DNA, including supercoiling and stiffness. Previously, we demonstrated that HBsu is acetylated at seven lysine residues, and one physiological function of acetylation is to regulate chromosomal compaction. Here, we investigate if the process of sporulation or the resistance properties of mature spores are influenced by the acetylation state of HBsu. Using our collection of point mutations that mimic the acetylated and unacetylated forms of HBsu, we first determined if acetylation affects the process of sporulation, by determining the overall sporulation frequencies. We found that specific mutations led to decreases in sporulation frequency, suggesting that acetylation of HBsu at some sites, but not all, is required to regulate the process of sporulation. Next, we determined if the spores produced from the mutant strains were more susceptible to heat, ultraviolet (UV) radiation and formaldehyde exposure. We again found that altering acetylation at specific sites led to less resistance to these stresses, suggesting that proper HBsu acetylation is important for chromosomal packaging and protection in the mature spore. Interestingly, the specific acetylation patterns were different for the sporulation process and resistance properties of spores, which is consistent with the notion that a histone-like code exists in bacteria. We propose that specific acetylation patterns of HBsu are required to ensure proper chromosomal arrangement, packaging, and protection during the process of sporulation.

15.
Genes (Basel) ; 12(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34680865

RESUMO

The growing number of immunocompromised patients begs for efficient therapy strategies against invasive fungal infections. As conventional antifungal treatment is increasingly hampered by resistance to commonly used antifungals, development of novel therapy regimens is required. On the other hand, numerous fungal species are industrially exploited as cell factories of enzymes and chemicals or as producers of medically relevant pharmaceuticals. Consequently, there is immense interest in tapping the almost inexhaustible fungal portfolio of natural products for potential medical and industrial applications. Both the pathogenicity and production of those small metabolites are significantly dependent on the acetylation status of distinct regulatory proteins. Thus, classical lysine deacetylases (KDACs) are crucial virulence determinants and important regulators of natural products of fungi. In this review, we present an overview of the members of classical KDACs and their complexes in filamentous fungi. Further, we discuss the impact of the genetic manipulation of KDACs on the pathogenicity and production of bioactive molecules. Special consideration is given to inhibitors of these enzymes and their role as potential new antifungals and emerging tools for the discovery of novel pharmaceutical drugs and antibiotics in fungal producer strains.


Assuntos
Fungos/genética , Histona Desacetilases/genética , Lisina/genética , Acetilação , Antifúngicos/uso terapêutico , Fungos/enzimologia , Fungos/patogenicidade , Humanos , Processamento de Proteína Pós-Traducional/genética
16.
J Fungi (Basel) ; 6(3)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751495

RESUMO

Anti-microbial resistance (AMR) is currently one of the most serious threats to global human health and, appropriately, research to tackle AMR garnishes significant investment and extensive attention from the scientific community. However, most of this effort focuses on antibiotics, and research into anti-fungal resistance (AFR) is vastly under-represented in comparison. Given the growing number of vulnerable, immunocompromised individuals, as well as the positive impact global warming has on fungal growth, there is an immediate urgency to tackle fungal disease, and the disturbing rise in AFR. Chromatin structure and gene expression regulation play pivotal roles in the adaptation of fungal species to anti-fungal stress, suggesting a potential therapeutic avenue to tackle AFR. In this review we discuss both the genetic and epigenetic mechanisms by which chromatin structure can dictate AFR mechanisms and will present evidence of how pathogenic yeast, specifically from the Candida genus, modify chromatin structure to promote survival in the presence of anti-fungal drugs. We also discuss the mechanisms by which anti-chromatin therapy, specifically lysine deacetylase inhibitors, influence the acquisition and phenotypic expression of AFR in Candida spp. and their potential as effective adjuvants to mitigate against AFR.

17.
Front Microbiol ; 11: 574736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133044

RESUMO

Protein acetylation is a universal post-translational modification that fine-tunes the major cellular processes of many life forms. Although the mechanisms regulating protein acetylation have not been fully elucidated, this modification is finely tuned by both enzymatic and non-enzymatic mechanisms. Protein deacetylation is the reverse process of acetylation and is mediated by deacetylases. Together, protein acetylation and deacetylation constitute a reversible regulatory protein acetylation network. The recent application of mass spectrometry-based proteomics has led to accumulating evidence indicating that reversible protein acetylation may be related to fungal virulence because a substantial amount of virulence factors are acetylated. Additionally, the relationship between protein acetylation/deacetylation and fungal drug resistance has also been proven and the potential of deacetylase inhibitors as an anti-infective treatment has attracted attention. This review aimed to summarize the research progress in understanding fungal protein acetylation/deacetylation and discuss the mechanism of its mediation in fungal virulence, providing novel targets for the treatment of fungal infection.

18.
Front Microbiol ; 11: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117098

RESUMO

The fungal class 1 lysine deacetylase (KDAC) RpdA is a promising target for prevention and treatment of invasive fungal infection. RpdA is essential for survival of the most common air-borne mold pathogen Aspergillus fumigatus and the model organism Aspergillus nidulans. In A. nidulans, RpdA depletion induced production of previously unknown small bioactive substances. As known from yeasts and mammals, class 1 KDACs act as components of multimeric protein complexes, which previously was indicated also for A. nidulans. Composition of these complexes, however, remained obscure. In this study, we used tandem affinity purification to characterize different RpdA complexes and their composition in A. nidulans. In addition to known class 1 KDAC interactors, we identified a novel RpdA complex, which was termed RcLS2F. It contains ScrC, previously described as suppressor of the transcription factor CrzA, as well as the uncharacterized protein FscA. We show that recruitment of FscA depends on ScrC and we provide clear evidence that ΔcrzA suppression by ScrC depletion is due to a lack of transcriptional repression caused by loss of the novel RcLS2F complex. Moreover, RcLS2F is essential for sexual development and engaged in an autoregulatory feed-back loop.

19.
Front Microbiol ; 10: 2773, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866965

RESUMO

Current suboptimal treatment options of invasive fungal infections and emerging resistance of the corresponding pathogens urge the need for alternative therapy strategies and require the identification of novel antifungal targets. Aspergillus fumigatus is the most common airborne opportunistic mold pathogen causing invasive and often fatal disease. Establishing a novel in vivo conditional gene expression system, we demonstrate that downregulation of the class 1 lysine deacetylase (KDAC) RpdA leads to avirulence of A. fumigatus in a murine model for pulmonary aspergillosis. The xylP promoter used has previously been shown to allow xylose-induced gene expression in different molds. Here, we demonstrate for the first time that this promoter also allows in vivo tuning of A. fumigatus gene activity by supplying xylose in the drinking water of mice. In the absence of xylose, an A. fumigatus strain expressing rpdA under control of the xylP promoter, rpdA xylP , was avirulent and lung histology showed significantly less fungal growth. With xylose, however, rpdA xylP displayed full virulence demonstrating that xylose was taken up by the mouse, transported to the site of fungal infection and caused rpdA induction in vivo. These results demonstrate that (i) RpdA is a promising target for novel antifungal therapies and (ii) the xylP expression system is a powerful new tool for in vivo gene silencing in A. fumigatus.

20.
Genome Biol ; 20(1): 49, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823893

RESUMO

Histone acetylation plays a central role in gene regulation and is sensitive to the levels of metabolic intermediates. However, predicting the impact of metabolic alterations on acetylation in pathological conditions is a significant challenge. Here, we present a genome-scale network model that predicts the impact of nutritional environment and genetic alterations on histone acetylation. It identifies cell types that are sensitive to histone deacetylase inhibitors based on their metabolic state, and we validate metabolites that alter drug sensitivity. Our model provides a mechanistic framework for predicting how metabolic perturbations contribute to epigenetic changes and sensitivity to deacetylase inhibitors.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Metabolismo , Modelos Genéticos , Vorinostat/farmacologia , Acetilação , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA