Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Anal Bioanal Chem ; 416(2): 349-362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030884

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a huge group of anthropogenic chemicals with unique properties that are used in countless products and applications. Due to the high stability of their C-F bonds, PFAS or their transformation products (TPs) are persistent in the environment, leading to ubiquitous detection in various samples worldwide. Since PFAS are industrial chemicals, the availability of authentic PFAS reference standards is limited, making non-target screening (NTS) approaches based on high-resolution mass spectrometry (HRMS) necessary for a more comprehensive characterization. NTS usually is a time-consuming process, since only a small fraction of the detected chemicals can be identified. Therefore, efficient prioritization of relevant HRMS signals is one of the most crucial steps. We developed PFΔScreen, a Python-based open-source tool with a simple graphical user interface (GUI) to perform efficient feature prioritization using several PFAS-specific techniques such as the highly promising MD/C-m/C approach, Kendrick mass defect analysis, diagnostic fragments (MS2), fragment mass differences (MS2), and suspect screening. Feature detection from vendor-independent MS raw data (mzML, data-dependent acquisition) is performed via pyOpenMS (or custom feature lists) with subsequent calculations for prioritization and identification of PFAS in both HPLC- and GC-HRMS data. The PFΔScreen workflow is presented on four PFAS-contaminated agricultural soil samples from south-western Germany. Over 15 classes of PFAS (more than 80 single compounds with several isomers) could be identified, including four novel classes, potentially TPs of the precursors fluorotelomer mercapto alkyl phosphates (FTMAPs). PFΔScreen can be used within the Python environment and is easily automatically installable and executable on Windows. Its source code is freely available on GitHub ( https://github.com/JonZwe/PFAScreen ).

2.
Environ Sci Technol ; 56(4): 2455-2465, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35099180

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a large family of thousands of chemicals, many of which have been identified using nontargeted time-of-flight and Orbitrap mass spectrometry methods. Comprehensive characterization of complex PFAS mixtures is critical to assess their environmental transport, transformation, exposure, and uptake. Because 21 tesla (T) Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers the highest available mass resolving power and sub-ppm mass errors across a wide molecular weight range, we developed a nontargeted 21 T FT-ICR MS method to screen for PFASs in an aqueous film-forming foam (AFFF) using suspect screening, a targeted formula database (C, H, Cl, F, N, O, P, S; ≤865 Da), isotopologues, and Kendrick-analogous mass difference networks (KAMDNs). False-positive PFAS identifications in a natural organic matter (NOM) sample, which served as the negative control, suggested that a minimum length of 3 should be imposed when annotating CF2-homologous series with positive mass defects. We putatively identified 163 known PFASs during suspect screening, as well as 134 novel PFASs during nontargeted screening, including a suspected polyethoxylated perfluoroalkane sulfonamide series. This study shows that 21 T FT-ICR MS analysis can provide unique insights into complex PFAS composition and expand our understanding of PFAS chemistries in impacted matrices.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Espectrometria de Massas , Água , Poluentes Químicos da Água/análise
3.
Arch Toxicol ; 96(3): 809-816, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35103817

RESUMO

The kinetically derived maximal dose (KMD) provides a toxicologically relevant upper range for the determination of chemical safety. Here, we describe a new way of calculating the KMD that is based on sound Bayesian, theoretical, biochemical, and toxicokinetic principles, that avoids the problems of relying upon the area under the curve (AUC) approach that has often been used. Our new, mathematically rigorous approach is based on converting toxicokinetic data to the overall, or system-wide, Michaelis-Menten curve (which is the slope function for the toxicokinetic data) using Bayesian methods and using the "kneedle" algorithm to find the "knee" or "elbow"-the point at which there is diminishing returns in the velocity of the Michaelis-Menten curve (or acceleration of the toxicokinetic curve). Our work fundamentally reshapes the KMD methodology, placing it within the well-established Michaelis-Menten theoretical framework by defining the KMD as the point where the kinetic rate approximates the Michaelis-Menten asymptote at higher concentrations. By putting the KMD within the Michaelis-Menten framework, we leverage existing biochemical and pharmacological concepts such as "saturation" to establish the region where the KMD is likely to exist. The advantage of defining KMD as a region, rather than as an inflection point along the curve, is that a region reflects uncertainty and clarifies that there is no single point where the curve is expected to "break;" rather, there is a region where the curve begins to taper off as it approaches the asymptote (Vmax in the Michaelis-Menten equation).


Assuntos
Segurança Química , Toxicocinética , Toxicologia/métodos , Algoritmos , Animais , Área Sob a Curva , Teorema de Bayes , Humanos , Dose Máxima Tolerável , Modelos Teóricos , Farmacocinética
4.
Crit Rev Toxicol ; 51(8): 653-694, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35239444

RESUMO

The Toxicology Forum convened an international state-of-the-science workshop Assessing Chemical Carcinogenicity: Hazard Identification, Classification, and Risk Assessment in December 2020. Challenges related to assessing chemical carcinogenicity were organized under the topics of (1) problem formulation; (2) modes-of-action; (3) dose-response assessment; and (4) the use of new approach methodologies (NAMs). Key topics included the mechanisms of genotoxic and non-genotoxic carcinogenicity and how these in conjunction with consideration of exposure conditions might inform dose-response assessments and an overall risk assessment; approaches to evaluate the human relevance of modes-of-action observed in rodent studies; and the characterization of uncertainties. While the scientific limitations of the traditional rodent chronic bioassay were widely acknowledged, knowledge gaps that need to be overcome to facilitate the further development and uptake of NAMs were also identified. Since one single NAM is unlikely to replace the bioassay, activities to combine NAMs into integrated approaches for testing and assessment, or preferably into defined approaches for testing and assessment that include data interpretation procedures, were identified as urgent research needs. In addition, adverse outcome pathway networks can provide a framework for organizing the available evidence/data for assessing chemical carcinogenicity. Since a formally accepted decision tree to guide use of the best and most current science to advance carcinogenicity risk assessment is currently unavailable, a Decision Matrix for carcinogenicity assessment could be useful. The workshop organizers developed and presented a decision matrix to be considered within a carcinogenicity hazard and risk assessment that is offered in tabular form.


Assuntos
Carcinogênese , Carcinógenos , Bioensaio , Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Humanos , Medição de Risco/métodos
5.
Arch Toxicol ; 95(12): 3651-3664, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34623454

RESUMO

Regulatory toxicology seeks to ensure that exposures to chemicals encountered in the environment, in the workplace, or in products pose no significant hazards and produce no harm to humans or other organisms, i.e., that chemicals are used safely. The most practical and direct means of ensuring that hazards and harms are avoided is to identify the doses and conditions under which chemical toxicity does not occur so that chemical concentrations and exposures can be appropriately limited. Modern advancements in pharmacology and toxicology have revealed that the rates and mechanisms by which organisms absorb, distribute, metabolize and eliminate chemicals-i.e., the field of kinetics-often determine the doses and conditions under which hazard, and harm, are absent, i.e., the safe dose range. Since kinetics, like chemical hazard and toxicity, are extensive properties that depend on the amount of the chemical encountered, it is possible to identify the maximum dose under which organisms can efficiently metabolize and eliminate the chemicals to which they are exposed, a dose that has been referred to as the kinetic maximum dose, or KMD. This review explains the rationale that compels regulatory toxicology to embrace the advancements made possible by kinetics, why understanding the kinetic relationship between the blood level produced and the administered dose of a chemical is essential for identifying the safe dose range, and why dose-setting in regulatory toxicology studies should be informed by estimates of the KMD rather than rely on the flawed concept of maximum-tolerated toxic dose, or MTD.


Assuntos
Exposição Ambiental/legislação & jurisprudência , Toxicocinética , Toxicologia/legislação & jurisprudência , Animais , Relação Dose-Resposta a Droga , Exposição Ambiental/prevenção & controle , Substâncias Perigosas/administração & dosagem , Substâncias Perigosas/toxicidade , Humanos , Dose Máxima Tolerável , Testes de Toxicidade/métodos
6.
Regul Toxicol Pharmacol ; 127: 105070, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718074

RESUMO

Top dose selection for repeated dose animal studies has generally focused on identification of apical endpoints, use of the limit dose, or determination of a maximum tolerated dose (MTD). The intent is to optimize the ability of toxicity tests performed in a small number of animals to detect effects for hazard identification. An alternative approach, the kinetically derived maximum dose (KMD), has been proposed as a mechanism to integrate toxicokinetic (TK) data into the dose selection process. The approach refers to the dose above which the systemic exposures depart from being proportional to external doses. This non-linear external-internal dose relationship arises from saturation or limitation of TK process(es), such as absorption or metabolism. The importance of TK information is widely acknowledged when assessing human health risks arising from exposures to environmental chemicals, as TK determines the amount of chemical at potential sites of toxicological responses. However, there have been differing opinions and interpretations within the scientific and regulatory communities related to the validity and application of the KMD concept. A multi-stakeholder working group, led by the Health and Environmental Sciences Institute (HESI), was formed to provide an opportunity for impacted stakeholders to address commonly raised scientific and technical issues related to this topic and, more specifically, a weight of evidence approach is recommended to inform design and dose selection for repeated dose animal studies. Commonly raised challenges related to the use of TK data for dose selection are discussed, recommendations are provided, and illustrative case examples are provided to address these challenges or refute misconceptions.


Assuntos
Relação Dose-Resposta a Droga , Testes de Toxicidade/métodos , Toxicocinética , Animais , Testes de Carcinogenicidade/métodos , Testes de Carcinogenicidade/normas , Dose Máxima Tolerável , Medição de Risco , Testes de Toxicidade/normas
7.
Regul Toxicol Pharmacol ; 124: 104962, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34019964

RESUMO

Afidopyropen is an insecticide that acts as a transient receptor potential vanilloid subtype (TRPV) channel modulator in chordotonal organs of target insects and has been assessed for a wide range of toxicity endpoints including chronic toxicity and carcinogenicity in rats and mice. The current study evaluates the toxicokinetic properties of afidopyropen and its plasma metabolites in rats at dose levels where the pharmacokinetics (PK) are linear and nonlinear in an attempt to identify a point of inflection. Based on the results of this study and depending on the analysis method used, the kinetically derived maximum dose (KMD) is estimated to be between 2.5 and 12.5 mg/kg bw/d with linearity observed at doses below 2.5 mg/kg bw/d. A defined point of inflection could not be determined. These data demonstrate that consideration of PK is critical for improving the dose-selection in toxicity studies as well as to enhance human relevance of the interpretation of animal toxicity studies. The study also demonstrates the technical difficulty in obtaining a defined point of inflection from in vivo PK data.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/toxicidade , Inseticidas/toxicidade , Lactonas/toxicidade , Testes de Toxicidade Subaguda/métodos , Administração Oral , Animais , Relação Dose-Resposta a Droga , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Inseticidas/administração & dosagem , Inseticidas/farmacocinética , Lactonas/administração & dosagem , Lactonas/farmacocinética , Masculino , Modelos Animais , Ratos , Organismos Livres de Patógenos Específicos , Testes de Toxicidade , Toxicocinética
8.
Crit Rev Toxicol ; 50(10): 861-884, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33528305

RESUMO

A cancer weight of evidence (WOE) analysis based on updated toxicokinetics, genotoxicity, and carcinogenicity data for 1,3-dichloropropene was peer reviewed by a panel of experts. Historically, 1,3-dichloropropene has been classified in the U.S. as "likely to be carcinogenic to humans" via oral and inhalation exposure routes based upon the results of rodent cancer bioassays conducted in the 1980s. Contemporary studies led the authors of the WOE analysis to conclude that the currently manufactured form of 1,3-dichloropropene is not mutagenic and not carcinogenic below certain doses, pointing to a threshold-based approach for cancer risk assessment. SciPinion conducted a peer review of the WOE analysis using methods for assembling and managing blinded expert panels that maximize expertise while minimizing potential selection/participation bias. The process was implemented through a web-based application that poses a series of questions soliciting the experts' scientific opinions and observations about specific topics. The goal of the peer review was to have experts provide conclusions about the WOE for carcinogenicity classification of 1,3-dichloropropene, identify potential data gaps, and evaluate the validity of a threshold-based risk assessment for 1,3-dichloropropene. Based on a robust peer review of the current scientific information, a cancer WOE classification of "not likely to be carcinogenic to humans" is best supported for 1,3-dichloropropene. This conclusion is reached with a high degree of consensus (consensus score = 0.92) across expert panel members.


Assuntos
Compostos Alílicos/toxicidade , Carcinógenos/toxicidade , Hidrocarbonetos Clorados/toxicidade , Animais , Carcinogênese , Dano ao DNA , Humanos , Testes de Mutagenicidade , Mutagênicos , Neoplasias , Revisão por Pares , Praguicidas , Medição de Risco , Toxicocinética
9.
Anal Bioanal Chem ; 412(25): 7007-7016, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32740822

RESUMO

Qualitative and quantitative detection of genetically modified products is inseparable from the application of reference materials (RMs). In this study, a batch of genomic DNA (gDNA) certified reference materials (CRMs) was developed using genetically modified rice Kemingdao (KMD) homozygotes as the raw material. The gDNA CRMs in this batch showed good homogeneity; the minimum sample intake was determined to be 2 µL. The stability study showed that transportation by cold chain is preferable, no significant degradation trend was observed during a 12-month period when storing the gDNA CRMs at 4 °C and - 20 °C, and the number of freeze-thaw cycles cannot exceed 10. The property values of the copy number ratio of transgene and endogenous gene and the copy number concentration for gDNA CRMs were determined by a collaborative characterization of eight laboratories using the duplex KMD/PLD droplet digital PCR (ddPCR) assays. The uncertainty components of characterization, potential between-unit heterogeneity, and potential degradation during long-term storage were combined to estimate the expanded uncertainty of the certified value with a coverage factor k of 2.0. The certified value of copy number ratio for KMD gDNA CRM is 0.99 ± 0.05, and that of copy number concentration is (1.76 ± 0.10) × 105 copies/µL. Compared to the gDNA CRMs in availability, this batch of KMD gDNA CRMs is assigned accurate property values and can be directly used for qualitative and quantitative detection of GMOs as well as evaluation of the parameters of analytical methods with no need of further DNA concentration measurement. Graphical abstract.


Assuntos
DNA de Plantas/normas , Genoma de Planta , Oryza/genética , Plantas Geneticamente Modificadas , Variações do Número de Cópias de DNA , Homozigoto , Reação em Cadeia da Polimerase/métodos , Padrões de Referência , Incerteza
10.
Regul Toxicol Pharmacol ; 113: 104644, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32194133

RESUMO

Afidopyropen is an insecticide that acts as a TRPV channel modulator in chordotonal organs of target insects and has been assessed for a wide range of toxicity endpoints including developmental toxicity in rats and rabbits. The GLP developmental toxicity study in rabbits did not produce evidence of maternal or fetal toxicity at the highest dose tested (32 mg/kg/day) but pharmacokinetics (PK) in pregnant rabbits in this study exhibited onset of PK nonlinearity from 5 mg/kg/day on, as measured by plasma Cmax and AUC. The NOAEL (32 mg/kg/day) is 9000X higher than maximum expected human dietary exposures to afidopyropen; the dose range where nonlinear PK were observed (5-15 mg/kg/day) is 1400-4200X higher. As nonlinearity occurred between 5 and 15 mg/kg/day, 32 mg/kg/day is concluded to be a sufficiently high dose (kinetically derived maximum dose) for a prenatal developmental toxicity study. As recognized by regulatory dose-selection guidance, onset of saturated PK is evidence of excessive biological stress to test animals rendering any effects at such doses of questionable relevance for human risk assessment. These data demonstrate that consideration of PK is critical for improving the dose-selection in developmental toxicity studies to enhance human relevance of animal toxicity studies.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Lactonas/metabolismo , Lactonas/farmacocinética , Administração Oral , Animais , Relação Dose-Resposta a Droga , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Lactonas/administração & dosagem , Conformação Molecular , Gravidez , Coelhos , Medição de Risco , Testes de Toxicidade
11.
Regul Toxicol Pharmacol ; 114: 104659, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32334038

RESUMO

The KMD (kinetically-derived maximum dose) is an increasingly advocated concept that uses toxicokinetic data in the top dose selection for toxicity testing. Application of this concept may have serious regulatory implications though, especially in the European Union. The basic assumption is that the relationship between internal and external dose (IED) shows an inflection point where linearity transits into non-linearity due to saturation of underlying processes; top doses in toxicity tests should not be above the inflection point, provided human exposures are well below this point. A critical analysis of the KMD concept and its underlying assumptions shows, however, that the IED relationship is non-linear over the whole dose range, without any point of inflection. The KMD concept thus aims to estimate a non-existing point, rendering it invalid for use in toxicity testing. Moreover, the concept ignores the key question in toxicology: What kind of toxic effects occur at which doses? These and several other reservations against the KMD concept are discussed and illustrated with three existing applications of the KMD approach. Hence, we recommend to abolish the KMD concept for selecting top doses in toxicity testing. This requires the updating of regulations, guidance documents and OECD test guidelines.


Assuntos
Substâncias Perigosas/administração & dosagem , Substâncias Perigosas/toxicidade , Testes de Toxicidade , Relação Dose-Resposta a Droga , União Europeia , Humanos , Cinética , Gestão de Riscos
12.
Regul Toxicol Pharmacol ; 79: 110-117, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27074386

RESUMO

An important aspect of safety assessment of chemicals (industrial and agricultural chemicals and pharmaceuticals) is determining their potential reproductive and developmental toxicity. A number of guidelines have outlined a series of separate reproductive and developmental toxicity studies from fertilization through adulthood and in some cases to second generation. The Extended One-Generation Reproductive Toxicity Study (EOGRTS) is the most recent and comprehensive guideline in this series. EOGRTS design makes toxicity testing progressive, comprehensive, and efficient by assessing key endpoints across multiple life-stages at relevant doses using a minimum number of animals, combining studies/evaluations and proposing tiered-testing approaches based on outcomes. EOGRTS determines toxicity during preconception, development of embryo/fetus and newborn, adolescence, and adults, with specific emphasis on the nervous, immunological, and endocrine systems, EOGRTS also assesses maternal and paternal toxicity. However, EOGRTS guideline is complex, criteria for selecting doses is unclear, and monitoring systemic dose during the course of the study for better interpretation and human relevance is not clear. This paper discusses potential simplification of EOGRTS, suggests procedures for relevant dose selection and monitors systemic dose at multiple life-stages for better interpretation of data and human relevance.


Assuntos
Agroquímicos/toxicidade , Preparações Farmacêuticas , Reprodução/efeitos dos fármacos , Testes de Toxicidade Crônica/métodos , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , Exposição Ocupacional/efeitos adversos , Farmacocinética , Guias de Prática Clínica como Assunto , Medição de Risco , Especificidade da Espécie , Testes de Toxicidade Crônica/normas
13.
Biochim Biophys Acta ; 1838(7): 1817-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24680655

RESUMO

The small multi-drug resistant (SMR) transporter EmrE functions as a homodimer. Although the small size of EmrE would seem to make it an ideal model system, it can also make it challenging to work with. As a result, a great deal of controversy has surrounded even such basic questions as the oligomeric state. Here we show that the purified protein is a homodimer in isotropic bicelles with a monomer-dimer equilibrium constant (KMD(2D)) of 0.002-0.009mol% for both the substrate-free and substrate-bound states. Thus, the dimer is stabilized in bicelles relative to detergent micelles where the KMD(2D) is only 0.8-0.95mol% (Butler et al. 2004). In dilauroylphosphatidylcholine (DLPC) liposomes KMD(2D) is 0.0005-0.0008mol% based on Förster resonance energy transfer (FRET) measurements, slightly tighter than bicelles. These results emphasize the importance of the lipid membrane in influencing dimer affinity.


Assuntos
Antiporters/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipídeos de Membrana/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Micelas , Multimerização Proteica
15.
Regul Toxicol Pharmacol ; 72(2): 423-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25980640

RESUMO

The guidelines for risk assessment of plant protection products (PPPs) and other non-pharmaceuticals were developed over three decades ago and have generally not been updated to incorporate advancements in toxicology and exposure sciences. These guidelines recommend using maximum-tolerated-dose (MTD) even when human relevance of such high doses is mostly limited due to orders of magnitude margin-of-exposure. Conducting animal studies at such high doses often requires further mode-of-action (MoA) studies elucidating human relevance. In order to improve data, ILSI/HESI-ACSA technical committee proposed a tiered approach with emphasis on determining systemic dose of parent and/or metabolite(s) in test animals as biological effects are reflective of systemic rather than administered dose. Any deviation from linearity in systemic dose (saturation of absorption or elimination) in animal studies may have profound toxic effect(s) not expected to occur in likely human exposure scenarios and should be avoided. Toxicity studies should ideally be conducted at kinetically linear doses or slightly above the point of departure from linearity or kinetically-derived maximum dose (KMD) as the systemic dose nonlinearity is a more sensitive parameter occurring much earlier than the MTD endpoints. Therefore, determining systemic dose, especially KMD, in study animals is an improvement to hazard assessment of PPPs and other non-pharmaceuticals allowing toxicologists to better understand findings in animals at systemically linear as well as nonlinear doses to likely human exposures which can easily be accomplished using core study animals as outlined below. Determining systemic dose in studies will also increase the understanding of initial potential MoA of a PPPs and other non-pharmaceuticals and reduce the use of animals by avoiding unnecessary additional MoA studies.


Assuntos
Relação Dose-Resposta a Droga , Praguicidas/toxicidade , Testes de Toxicidade , Animais , Guias como Assunto , Substâncias Perigosas/toxicidade , Humanos , Medição de Risco/métodos
16.
Anal Biochem ; 464: 1-8, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25026190

RESUMO

The three most well-known genetically modified (GM) rice lines in China are TT51-1, KMD1, and KF6. The purposes of this study were to establish a multiplex event-specific qualitative polymerase chain reaction (meqPCR) system for simultaneous detection of the three transgenic rice events and to construct a plasmid as the reference molecule for quantitative analysis. Event-specific primers for each event were selected or designed by focusing on the transgene borders between the inserted DNA and the flanking rice DNA. The developed meqPCR was anticipated to detect distinct amplicons as 454, 398, 301, and 250bp from KF6, KMD1, TT51-1, and the rice endogenous reference gene, respectively. The robustness of the meqPCR was tested with different levels of the three transgenic rice genomic DNAs, and the sensitivity threshold of the meqPCR was at least 50ng of 0.1% rice DNA for each event when the three transgenic rice events present and with other GM materials together. The constructed plasmid was evaluated using mixed samples with known GM contents in real-time quantitative PCR. The results indicated that the constructed plasmid was acceptable and suitable for GM rice quantitative analysis.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Oryza/genética , Plantas Geneticamente Modificadas/genética , Plasmídeos , Sequência de Bases , DNA de Plantas , Genes de Plantas , Dados de Sequência Molecular
17.
J Urol ; 190(3): 1116-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23545103

RESUMO

PURPOSE: We investigated the effects of the selective α1A-adrenoceptor antagonist silodosin on bladder blood flow and bladder function in a rat model of atherosclerosis induced chronic bladder ischemia without bladder outlet obstruction. MATERIALS AND METHODS: The chronic bladder ischemia model was prepared by creating balloon endothelial injury of the bilateral iliac arteries in male rats. Using an osmotic pump, chronic bladder ischemia rats received silodosin subcutaneously at a rate of 0.1 or 0.3 mg/kg per day, or vehicle for 8 weeks. All groups received a 2% cholesterol diet throughout the experiment. For each α1-adrenoceptor subtype mRNA expression in bladder microvessels was examined by in situ hybridization. Bladder blood flow was measured using a laser speckle blood flow imager. Malondialdehyde in bladder tissue and 8-hydroxy-2'-deoxyguanosine in urine were measured as markers of oxidative stress. A metabolic cage study and cystometry were performed in conscious rats. RESULTS: The expression of all α1-adrenoceptor subtype mRNA was observed in rat bladder microvessels. Silodosin abrogated the decreased bladder blood flow in the empty bladder and during bladder distention that were evident in rats with chronic bladder ischemia. Levels of oxidative stress markers in these rats were significantly decreased by silodosin administration. Silodosin ameliorated bladder dysfunction in rats with chronic bladder ischemia in the metabolic cage study and on cystometry. CONCLUSIONS: Results suggest that in ischemic conditions α1-adrenoceptor antagonists such as silodosin may improve bladder function by restoring bladder blood flow.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Indóis/farmacologia , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Bexiga Urinária/irrigação sanguínea , Bexiga Urinária/efeitos dos fármacos , Animais , Aterosclerose/fisiopatologia , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Imuno-Histoquímica , Hibridização In Situ , Isquemia/patologia , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Obstrução do Colo da Bexiga Urinária
18.
Mass Spectrom (Tokyo) ; 12(1): A0139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107657

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is a suitable method for polymer analysis. MALDI is a soft ionization technique that can generate mainly singly charged ions. Therefore, the polymer's molecular weight distribution is easy to analyze, facilitating the calculation of the number average molecular weight and weight average molecular weight and polydispersity. However, there are polymers that are difficult to detect by MALDI-TOFMS. For example, polyacrylic acid includes carboxylic acid in the main chain, which is difficult to measure due to its low ionization efficiency. As a solution, the ionization efficiency was improved by methylation. In this technical report, we introduce a method to utilize derivatization to determine the degree of polymerization by accurate mass spectrometry (MS). Furthermore, the structures of both ends of the polymers were estimated by tandem time-of-flight MS.

19.
Chemosphere ; 313: 137443, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464021

RESUMO

The growing application of high resolution mass spectrometry (HRMS) over the last decades has dramatically improved our knowledge about the occurrence of environmental contaminants. However, most of the compounds detected remain unknown and the large volume of data generated requires specific processing approaches. Therefore, this study presents the concepts of mass defect (MD), Kendrick mass (KM) and Kendrick mass defect (KMD) to the expert and non-expert reader along with relevant examples of applications in environmental HRMS data processing. A preliminary bibliometric overview indicates that the potential benefits of KMD analysis are rather overlooked in environmental science. In practice, a simple calculation allows transforming a mass from the IUPAC system (normalized so that the mass of 12C is exactly 12) to its corresponding KM normalized on a specific moiety such as CH2 (the mass of CH2 is exactly 14). Then, plotting the KMD according to the nominal KM allows revealing groups of compounds that differ only by their number of CH2 moieties. For instance, data processing using KM and KMD was proven particularly useful to characterize natural organic matter in a sample, to reveal the occurrence of polymers as well as poly/perfluorinated alkylated substances (PFASs), and to search for transformation products (TPs) of a given chemical.


Assuntos
Polímeros , Espectrometria de Massas/métodos
20.
Sci Total Environ ; 837: 155850, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35568168

RESUMO

Most bioaccumulation assessments select one or several compound classes a priori for analysis performed by either liquid or gas chromatography coupled with mass spectrometry (LC-MS or GC-MS). When organisms are exposed to complex mixtures of trace organic contaminants (TOrCs), targeted chemical assays limit understanding of contaminant profiles in biological tissues and associated risks. We used a semi-quantitative suspect-screening approach to assess the bioaccumulation potential of diverse TOrCs in black soldier fly larvae (BSFL) using almond hulls (by-products of the booming almond industry in California) as test substrates. BSFL digestion is gaining traction as a resource recovery strategy to generate animal feed from low-value organic wastes. We screened almond hulls from six California farms for the presence of 5728 TOrCs using high resolution mass spectrometry. We then categorized the risk potential of 46 TOrCs detected in the hulls based on their predicted bioaccumulation, persistence, and toxicity in order to select two hulls for an in situ BSFL bioaccumulation screening study. We analyzed larvae tissues and feeding substrate initially and after 14 days of growth using targeted, suspect-screening, and nontarget-screening methods. The survival rate of BSFL in all rearing reactors was greater than 90%, indicating low toxicity of the substrates to BSFL. Esfenvalerate, cyhalothrin, and bifenthrin were the most abundant pyrethroids quantified (81.7 to 381.6 ng/g-dw) in the hulls. Bifenthrin bioaccumulated in BSFL tissues (14-day bioaccumulation factor, BAF, of 2.17 ± 0.24). For nontarget analysis, kendrick mass defect (KMD) analysis of PFAS homologous series revealed hydrogen-substituted perfluoroalkyl carboxylic acids (H-PFCAs) in the hulls and BSFL tissues after growth. Our approach demonstrates the utility of suspect-screening in chemical safety assessments when organic wastes with highly diverse and variable contaminant profiles are used in resource recovery pipelines.


Assuntos
Dípteros , Ração Animal/análise , Animais , Bioacumulação , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA