Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Ophthalmol Sci ; 3(1): 100229, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36420180

RESUMO

Purpose: Pathogenic variants in FAM161A are the most common cause of retinitis pigmentosa in Israel. Two founder pathogenic variants explain the vast majority of cases of Jewish origin, 1 being a nonsense variant (p.Arg523∗). The aim of this study was to generate a knock-in (KI) mouse model harboring the corresponding p.Arg512∗ pathogenic variant and characterize the course of retinal disease. Design: Experimental study of a mouse animal model. Subjects/Participants/Controls: A total of 106 Fam161a knock-in mice and 29 wild-type mice with C57BL/6J background particiapted in this study. Methods: Homozygous Fam161a p.Arg512∗ KI mice were generated by Cyagen Biosciences. Visual acuity (VA) was evaluated using optomotor tracking response and retinal function was assessed by electroretinography (ERG). Retinal structure was examined in vivo using OCT and fundus autofluorescence imaging. Retinal morphometry was evaluated by histologic and immunohistochemical (IHC) analyses. Main Outcome Measures: Visual and retinal function assessments, clinical imaging examinations, quantitative histology, and IHC studies of KI as compared with wild-type (WT) mice retinas. Results: The KI model was generated by replacing 3 bp, resulting in p.Arg512∗. Homozygous KI mice that had progressive loss of VA and ERG responses until the age of 18 months, with no detectable response at 21 months. OCT showed complete loss of the outer nuclear layer at 21 months. Fundus autofluorescence imaging revealed progressive narrowing of blood vessels and formation of patchy hyper-autofluorescent and hypo-autofluorescent spots. Histologic analysis showed progressive loss of photoreceptor nuclei. Immunohistochemistry staining showed Fam161a expression mainly in photoreceptors cilia and the outer plexiform layer (OPL) in WT mice retinas, whereas faint expression was evident mainly in the cilia and OPL of KI mice. Conclusions: The Fam161a - p.Arg512∗ KI mouse model is characterized by widespread retinal degeneration with relatively slow progression. Surprisingly, disease onset is delayed and progression is slower compared with the previously reported knock-out model. The common human null mutation in the KI mouse model is potentially amenable for correction by translational read-through-inducing drugs and by gene augmentation therapy and RNA editing, and can serve to test these treatments as a first step toward possible application in patients. Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

2.
JACC Basic Transl Sci ; 7(10): 1021-1037, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337919

RESUMO

Modulation of sarcomere contractility represents a new therapeutic opportunity for the treatment of heart failure by directly targeting the thick and thin filament proteins of the sarcomere to increase cardiac muscle contraction. This study compared the effect of 2 small molecules (M and T) that selectively alter myosin thick filament (M) or troponin thin filament (T) activity on overall cardiac muscle mechanics. This study revealed key differences related to the mechanism utilized by M and T to increase contractile force generation and suggests that targeting different proteins within the sarcomere may result in differentiating therapeutic profiles.

3.
Regen Ther ; 21: 62-72, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35765545

RESUMO

Introduction: Previously, we performed gene knockout (KO) of interleukin-2 receptor gamma (IL2RG) in porcine fetal fibroblasts using zinc finger nuclease-encoding mRNAs, subsequently generating IL2RG KO pigs using these cells through somatic cell nuclear transfer. The IL2RG KO pigs lacked a thymus and were deficient in T lymphocytes and natural killer cells, similar to human X-linked severe combined immunodeficiency (SCID) patients. The present study aimed to evaluate whether pigs can support the growth of xenografted human cells and have the potential to be an effective animal model. Methods: The IL2RG XKOY pigs used in this study were obtained by mating IL2RG XKOX females with wild-type boars. This permitted the routine production of IL2RG KO pigs via natural breeding without complicated somatic cell cloning procedures; therefore, a sufficient number of pigs could be prepared. We transplanted human HeLa S3 cells expressing the tandem dimer tomato into the ears and pancreas of IL2RG KO pigs. Additionally, a newly developed method for the aseptic rearing of SCID pigs was used in case of necessity. Results: Tumors from the transplanted cells quickly developed in all pigs and were verified by histology and immunohistochemistry. We also transplanted these cells into the pancreas of designated pathogen-free pigs housed in novel biocontainment facilities, and large tumors were confirmed. Conclusions: IL2RG KO pigs have the potential to become useful animal models in a variety of translational biology fields.

4.
Hear Res ; 412: 108378, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34735822

RESUMO

Acoustic trauma induces an inflammatory response in the cochlea, resulting in debilitating hearing function. Clinically, amelioration of inflammation substantially prevents noise-induced hearing loss. The Limulus factor C, Cochlin, and Lgl1 (LCCL) peptide plays an important role in innate immunity during bacteria-induced inflammation in the cochlea. We aimed to investigate the LCCL-induced innate immune response to noise exposure and its impact on hearing function. METHODS: We used Coch (encodes cochlin harboring LCCL peptide) knock-out and p.G88E knock-in mice to compare the immune responses before and after noise exposure. We explored their hearing function and hair cell degeneration. Moreover, we investigated distinct characteristics of immune responses upon noise exposure using flow cytometry and RNA sequencing. RESULTS: One day after noise exposure, the LCCL peptide cleaved from cochlin increased over time in the perilymph space. Both Coch-/- and CochG88E/G88E mutant mice revealed more preserved hearing following acoustic trauma compared to wild-type mice. The outer hair cells were more preserved in Coch-/- than in wild-type mice upon noise exposure. The RNA sequencing data demonstrated significantly upregulated cell migration gene ontology in wild-type mice than in Coch-/- mice following noise exposure, indicating that the infiltration of immune cells was dependent on cochlin. Notably, infiltrated monocytes from blood (C11b+/Ly6G-/Ly6C+) were remarkably higher in wild-type mice than in Coch-/- mice at 1 day after noise exposure. CONCLUSIONS: Noise-induced hearing loss was attributed to over-stimulated cochlin, and led to the cleavage and secretion of LCCL peptide in the cochlea. The LCCL peptide recruited more monocytes from the blood vessels upon noise stimulation, thus highlighting a novel therapeutic target for noise-induced hearing loss.


Assuntos
Perda Auditiva Provocada por Ruído , Monócitos , Animais , Cóclea , Proteínas da Matriz Extracelular/genética , Glicoproteínas , Camundongos , Peptídeos
5.
Curr Opin Endocr Metab Res ; 16: 1-9, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32835130

RESUMO

FFA2 and FFA3 are receptors for short-chain fatty acids which are produced in prodigious amounts by fermentation of poorly digested carbohydrates by gut bacteria. Understanding the roles of these receptors in regulating enteroendocrine, metabolic and immune functions has developed with the production and use of novel pharmacological tools and animal models. A complex (patho)physiological scenario is now emerging in which strategic expression of FFA2 and FFA3 in key cell types and selective modulation of their signalling might regulate body weight management, energy homoeostasis and inflammatory disorders.

6.
JACC Basic Transl Sci ; 4(6): 717-732, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31709320

RESUMO

Acute kidney injury is associated with increased risk of heart failure and mortality. This study demonstrates that acute kidney injury induces remote cardiac dysfunction, damage, injury, and fibrosis via a galectin-3 (Gal-3) dependent pathway. Gal-3 originates from bone marrow-derived immune cells. Cardiac damage could be prevented by blocking this pathway.

7.
Gene X ; 2: 100009, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32550545

RESUMO

BACKGROUND AND AIM: The Receptor Activity Modifying Proteins (RAMPs) are a group of accessory proteins, of which there are three in humans, that interact with a number of G-protein coupled receptors (GPCR) and play various roles in regulation of endocrine signaling. Studies in RAMP3 knockout (KO) mice reveal an age related phenotype with altered metabolic regulation and high bone mass. To translate these findings into a clinically relevant perspective, we investigated the association between RAMP3 gene variants, body composition and bone phenotypes in two population-based cohorts of Swedish women. METHODS: Five single nucleotide polymorphisms (SNP) in the vicinity of the RAMP3 gene were genotyped in the PEAK-25 cohort (n = 1061; 25 years) and OPRA (n = 1044; 75 years). Bone mineral density (BMD), fat mass and lean mass (total body; regional) were measured by DXA at baseline, 5 and 10 year follow-up. RESULTS: BMD did not differ with RAMP3 genotype in either cohort, although fracture risk was increased in the elderly women (OR 2.695 [95% CI 1.514-4.801]). Fat mass tended to be higher with RAMP3 SNPs; although only in elderly women. In the young women, changes in BMI and fat mass between ages 25-35 differed by genotype (p = 0.001; p < 0.001). CONCLUSION: Variation in RAMP3 may contribute to age-related changes in body composition and risk of fracture.

8.
Cell Mol Gastroenterol Hepatol ; 6(4): 477-493.e1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364784

RESUMO

Background & Aims: Microvillus inclusion disease (MVID) is a congenital intestinal malabsorption disorder caused by defective apical vesicular transport. Existing cellular models do not fully recapitulate this heterogeneous pathology. The aim of this study was to characterize 3-dimensional intestinal organoids that continuously generate polarized absorptive cells as an accessible and relevant model to investigate MVID. Methods: Intestinal organoids from Munc18-2/Stxbp2-null mice that are deficient for apical vesicular transport were subjected to enterocyte-specific differentiation protocols. Lentiviral rescue experiments were performed using human MUNC18-2 variants. Apical trafficking and microvillus formation were characterized by confocal and transmission electron microscopy. Spinning disc time-lapse microscopy was used to document the lifecycle of microvillus inclusions. Results: Loss of Munc18-2/Stxbp2 recapitulated the pathologic features observed in patients with MUNC18-2 deficiency. The defects were fully restored by transgenic wild-type human MUNC18-2 protein, but not the patient variant (P477L). Importantly, we discovered that the MVID phenotype was correlated with the degree of enterocyte differentiation: secretory vesicles accumulated already in crypt progenitors, while differentiated enterocytes showed an apical tubulovesicular network and enlarged lysosomes. Upon prolonged enterocyte differentiation, cytoplasmic F-actin-positive foci were observed that further progressed into classic microvillus inclusions. Time-lapse microscopy showed their dynamic formation by intracellular maturation or invagination of the apical or basolateral plasma membrane. Conclusions: We show that prolonged enterocyte-specific differentiation is required to recapitulate the entire spectrum of MVID. Primary organoids can provide a powerful model for this heterogeneous pathology. Formation of microvillus inclusions from multiple membrane sources showed an unexpected dynamic of the enterocyte brush border.


Assuntos
Diferenciação Celular , Enterócitos/patologia , Intestinos/patologia , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Proteínas Munc18/deficiência , Proteínas Munc18/metabolismo , Organoides/metabolismo , Actinas/metabolismo , Animais , Núcleo Celular/metabolismo , Enterócitos/metabolismo , Humanos , Lisossomos/metabolismo , Síndromes de Malabsorção/patologia , Camundongos Knockout , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Mucolipidoses/patologia , Organoides/patologia , Organoides/ultraestrutura
9.
Biochem Biophys Rep ; 10: 157-164, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955743

RESUMO

The cyclic AMP (cAMP) signaling pathway is implicated in the development of alcohol use disorder. Previous studies have demonstrated that ethanol enhances the activity of adenylyl cyclase (AC) in an isoform specific manner; AC7 is most enhanced by ethanol, and regions responsible for enhancement by ethanol are located in the cytoplasmic domains of the AC7 protein. We hypothesize that ethanol modulates AC activity by directly interacting with the protein and that ethanol effects on AC can be studied using recombinant AC in vitro. AC recombinant proteins containing only the C1a or C2 domains of AC7 and AC9 individually were expressed in bacteria, and purified. The purified recombinant AC proteins retained enzymatic activity and isoform specific alcohol responsiveness. The combination of the C1a or C2 domains of AC7 maintained the same alcohol cutoff point as full-length AC7. We also find that the recombinant AC7 responds to alcohol differently in the presence of different combinations of activators including MnCl2, forskolin, and Gsα. Through a series of concentration-response experiments and curve fitting, the values for maximum activities, Hill coefficients, and EC50 were determined in the absence and presence of butanol as a surrogate of ethanol. The results suggest that alcohol modulates AC activity by directly interacting with the AC protein and that the alcohol interaction with the AC protein occurs at multiple sites with positive cooperativity. This study indicates that the recombinant AC proteins expressed in bacteria can provide a useful model system to investigate the mechanism of alcohol action on their activity.

10.
Cell Mol Gastroenterol Hepatol ; 3(3): 447-468, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28462383

RESUMO

BACKGROUND & AIMS: Total parenteral nutrition (TPN), a crucial treatment for patients who cannot receive enteral nutrition, is associated with mucosal atrophy, barrier dysfunction, and infectious complications. Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) improve intestinal epithelial cell (IEC) responses and attenuate mucosal atrophy in several TPN models. However, it remains unclear whether these 2 factors use distinct or overlapping signaling pathways to improve IEC responses. We investigated the interaction of GLP-2 and EGF signaling in a mouse TPN model and in patients deprived of enteral nutrition. METHODS: Adult C57BL/6J, IEC-Egfrknock out (KO) and IEC-pik3r1KO mice receiving TPN or enteral nutrition were treated with EGF or GLP-2 alone or in combination with reciprocal receptor inhibitors, GLP-2(3-33) or gefitinib. Jejunum was collected and mucosal atrophy and IEC responses were assessed by histologic, gene, and protein expression analyses. In patients undergoing planned looped ileostomies, fed and unfed ileum was analyzed. RESULTS: Enteral nutrient deprivation reduced endogenous EGF and GLP-2 signaling in mice and human beings. In the mouse TPN model, exogenous EGF or GLP-2 attenuated mucosal atrophy and restored IEC proliferation. The beneficial effects of EGF and GLP-2 were decreased upon Gefitinib treatment and in TPN-treated IEC-EgfrKO mice, showing epidermal growth factor-receptor dependency for these IEC responses. By contrast, in TPN-treated IEC-pi3kr1KO mice, the beneficial actions of EGF were lost, although GLP-2 still attenuated mucosal atrophy. CONCLUSIONS: Upon enteral nutrient deprivation, exogenous GLP-2 and EGF show strong interdependency for improving IEC responses. Understanding the differential requirements for phosphatidylinositol 3-kinase/phosphoAKT (Ser473) signaling may help improve future therapies to prevent mucosal atrophy.

11.
Cell Mol Gastroenterol Hepatol ; 2(5): 584-604, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28090564

RESUMO

BACKGROUND & AIMS: Innate immune dysfunction can promote chronic inflammatory diseases of the liver. For example, mice lacking the flagellin receptor Toll-like receptor 5 (TLR5) show microbial dysbiosis and predisposition to high-fat diet (HFD)-induced hepatic steatosis. The extent to which hepatocytes play a direct role in detecting bacterial products in general, or flagellin in particular, is poorly understood. In the present study, we investigated the role of hepatocyte TLR5 in recognizing flagellin, policing bacteria, and protecting against liver disease. METHODS: Mice were engineered to lack TLR5 specifically in hepatocytes (TLR5ΔHep) and analyzed relative to sibling controls (TLR5fl/fl). TLR5 messenger RNA levels, responses to exogenous flagellin, elimination of circulating motile bacteria, and susceptibility of liver injury (concanavalin A, carbon tetrachloride, methionine- and choline-deficient diet, and HFD) were measured. RESULTS: TLR5ΔHep expressed similar levels of TLR5 as TLR5fl/fl in all organs examined, except in the liver, which showed a 90% reduction in TLR5 levels, indicating that hepatocytes accounted for the major portion of TLR5 expression in this organ. TLR5ΔHep showed impairment in responding to purified flagellin and clearing flagellated bacteria from the liver. Although TLR5ΔHep mice did not differ markedly from sibling controls in concanavalin A or carbon tetrachloride-induced liver injury models, they showed exacerbated disease in response to a methionine- and choline-deficient diet and HFD. Such predisposition of TLR5ΔHep to diet-induced liver pathology was associated with increased expression of proinflammatory cytokines, which was dependent on the Nod-like-receptor C4 inflammasome and rescued by microbiota ablation. CONCLUSIONS: Hepatocyte TLR5 plays a critical role in protecting liver against circulating gut bacteria and against diet-induced liver disease.

12.
Mol Metab ; 5(10): 959-969, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27689008

RESUMO

OBJECTIVE: We previously demonstrated that the handle-region peptide, a prorenin/renin receptor [(P)RR] blocker, reduces body weight and fat mass and may improve insulin sensitivity in high-fat fed mice. We hypothesized that knocking out the adipose tissue (P)RR gene would prevent weight gain and insulin resistance. METHODS: An adipose tissue-specific (P)RR knockout (KO) mouse was created by Cre-loxP technology using AP2-Cre recombinase mice. Because the (P)RR gene is located on the X chromosome, hemizygous males were complete KO and had a more pronounced phenotype on a normal diet (ND) diet compared to heterozygous KO females. Therefore, we challenged the female mice with a high-fat diet (HFD) to uncover certain phenotypes. Mice were maintained on either diet for 9 weeks. RESULTS: KO mice had lower body weights compared to wild-types (WT). Only hemizygous male KO mice presented with lower total fat mass, higher total lean mass as well as smaller adipocytes compared to WT mice. Although food intake was similar between genotypes, locomotor activity during the active period was increased in both male and female KO mice. Interestingly, only male KO mice had increased O2 consumption and CO2 production during the entire 24-hour period, suggesting an increased basal metabolic rate. Although glycemia during a glucose tolerance test was similar, KO males as well as HFD-fed females had lower plasma insulin and C-peptide levels compared to WT mice, suggesting improved insulin sensitivity. Remarkably, all KO animals exhibited higher circulating adiponectin levels, suggesting that this phenotype can occur even in the absence of a significant reduction in adipose tissue weight, as observed in females and, thus, may be a specific effect related to the (P)RR. CONCLUSIONS: (P)RR may be an important therapeutic target for the treatment of obesity and its associated complications such as type 2 diabetes.

13.
Cell Cycle ; 14(7): 1082-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25607347

RESUMO

Pseudoxanthoma elasticum (PXE) and generalized arterial calcification of infancy (GACI) are heritable ectopic mineralization disorders. Most cases of PXE and many cases of GACI harbor mutations in the ABCC6 gene. There is no effective treatment for these disorders. We explored the potential efficacy of bisphosphonates to prevent ectopic calcification caused by ABCC6 mutations by feeding Abcc6(-/-) mice with diet containing etidronate disodium (ETD) or alendronate sodium trihydrate (AST) in quantities corresponding to 1x, 5x, or 12x of the doses used to treat osteoporosis in humans. The mice were placed on diet at 4 weeks of age, and the degree of mineralization was assessed at 12 weeks by quantitation of the calcium deposits in the dermal sheath of vibrissae, a progressive biomarker of the mineralization, by computerized morphometry of histopathologic sections and by direct chemical assay of calcium. We found that ETD, but not AST, at the 12x dosage, significantly reduced mineralization, suggesting that selected bisphosphonates may be helpful for prevention of mineral deposits in PXE and GACI caused by mutations in the ABCC6 gene, when combined with careful monitoring of efficacy and potential side-effects.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Alendronato/farmacologia , Conservadores da Densidade Óssea/farmacologia , Ácido Etidrônico/farmacologia , Pseudoxantoma Elástico/tratamento farmacológico , Calcificação Vascular/tratamento farmacológico , Alendronato/uso terapêutico , Animais , Conservadores da Densidade Óssea/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Ácido Etidrônico/uso terapêutico , Feminino , Fêmur/efeitos dos fármacos , Fêmur/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Mutação , Pseudoxantoma Elástico/genética , Pele/efeitos dos fármacos , Pele/patologia , Calcificação Vascular/genética
14.
Oncoimmunology ; 4(3): e990793, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25949907

RESUMO

Harnessing the immune adjuvant properties of natural killer T (NKT) cells is an effective strategy to generate anticancer immunity. The objective of this study was to increase the potency and durability of vaccine-induced immunity against B cell lymphoma by combining α-galactosylceramide (α-GalCer)-loaded tumor cell vaccination with an agonistic antibody targeting the immune checkpoint molecule 4-1BB (CD137). We observed potent synergy when combining vaccination and anti-4-1BB antibody treatment resulting in significantly enhanced survival of mice harboring Eµ-myc tumors, including complete eradication of lymphoma in over 50% of mice. Tumor-free survival required interferon γ (IFNγ)-dependent expansion of CD8+ T cells and was associated with 4-1BB-mediated differentiation of KLRG1+ effector CD8+ T cells. 'Cured' mice were also resistant to lymphoma re-challenge 80 days later indicating successful generation of immunological memory. Overall, our results demonstrate that therapeutic anticancer vaccination against B cell lymphoma using an NKT cell ligand can be boosted by subsequent co-stimulation through 4-1BB leading to a sustainable immune response that may enhance outcomes to conventional treatment.

15.
Hum Vaccin Immunother ; 11(8): 2038-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26024409

RESUMO

Cross-presentation is the process by which professional APCs load peptides from an extracellularly derived protein onto class I MHC molecules to trigger a CD8(+) T cell response. The ability to enhance this process is therefore relevant for the development of antitumor and antiviral vaccines. We investigated a new TLR2-based adjuvant, Small Molecule Immune Potentiator (SMIP) 2.1, for its ability to stimulate cross-presentation. Using OVA as model antigen, we demonstrated that a SMIP2.1-adjuvanted vaccine formulation induced a greater CD8(+) T cell response, in terms of proliferation, cytokine production and cytolytic activity, than a non-adjuvanted vaccine. Moreover, using an OVA-expressing tumor model, we showed that the CTLs induced by the SMIP2.1 formulated vaccine inhibits tumor growth in vivo. Using a BCR transgenic mouse model we found that B cells could cross-present the OVA antigen when stimulated with SMIP2.1. We also used a flow cytometry assay to detect activation of human CD8(+) T cells isolated from human PBMCs of cytomegalovirus-seropositive donors. Stimulation with SMIP2.1 increased the capacity of human APCs, pulsed in vitro with the pp65 CMV protein, to activate CMV-specific CD8(+) T cells. Therefore, vaccination with an exogenous antigen formulated with SMIP2.1 is a successful strategy for the induction of a cytotoxic T cell response along with antibody production.


Assuntos
Adjuvantes Imunológicos/metabolismo , Células Apresentadoras de Antígenos/imunologia , Apresentação Cruzada , Receptor 2 Toll-Like/agonistas , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Proliferação de Células , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/terapia , Ovalbumina/imunologia
16.
Plant Signal Behav ; 10(2): e983351, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826258

RESUMO

The degree of methylesterification (DM) of homogalacturonans (HGs), the main constituent of pectins in Arabidopsis thaliana, can be modified by pectin methylesterases (PMEs). Regulation of PME activity occurs through interaction with PME inhibitors (PMEIs) and subtilases (SBTs). Considering the size of the gene families encoding PMEs, PMEIs and SBTs, it is highly likely that specific pairs mediate localized changes in pectin structure with consequences on cell wall rheology and plant development. We previously reported that PME17, a group 2 PME expressed in root, could be processed by SBT3.5, a co-expressed subtilisin-like serine protease, to mediate changes in pectin properties and root growth. Here, we further report that a PMEI, PMEI4, is co-expressed with PME17 and is likely to regulate its activity. This sheds new light on the possible interplay of specific PMEs, PMEIs and SBTs in the fine-tuning of pectin structure.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Modelos Biológicos , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética
17.
Oncoimmunology ; 3(8): e953423, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25610744

RESUMO

Chronic inflammation has been linked to cancer development and metastasis. We have recently demonstrated that γδ T cells are the major cellular source of IL-17 (γδT17) and accumulation of γδT17 cells correlates with human colorectal cancer progression through recruitment and expansion of myeloid-derived suppressor cells, thus converting tumor-elicited inflammation into immunosuppression.

18.
Cell Cycle ; 13(19): 3100-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25486569

RESUMO

The CDK inhibitor p27(kip1) is a critical regulator of cell cycle progression, but the mechanisms by which p27(kip1) controls cell proliferation in vivo are still not fully elucidated. We recently demonstrated that the microtubule destabilizing protein stathmin is a relevant p27(kip1) binding partner. To get more insights into the in vivo significance of this interaction, we generated p27(kip1) and stathmin double knock-out (DKO) mice. Interestingly, thorough characterization of DKO mice demonstrated that most of the phenotypes of p27(kip1) null mice linked to the hyper-proliferative behavior, such as the increased body and organ weight, the outgrowth of the retina basal layer and the development of pituitary adenomas, were reverted by co-ablation of stathmin. In vivo analyses showed a reduced proliferation rate in DKO compared to p27(kip1) null mice, linked, at molecular level, to decreased kinase activity of CDK4/6, rather than of CDK1 and CDK2. Gene expression profiling of mouse thymuses confirmed the phenotypes observed in vivo, showing that DKO clustered with WT more than with p27 knock-out tissue. Taken together, our results demonstrate that stathmin cooperates with p27(kip1) to control the early phase of G1 to S phase transition and that this function may be of particular relevance in the context of tumor progression.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , Estatmina/genética , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proliferação de Células , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Feminino , Fase G1 , Perfilação da Expressão Gênica , Gigantismo/metabolismo , Gigantismo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Hipófise/metabolismo , Hipófise/patologia , Fase S , Estatmina/deficiência , Timo/metabolismo , Timo/patologia
19.
Plant Signal Behav ; 9(12): e975659, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482782

RESUMO

The SALK_135513 line of Arabidopsis thaliana is annotated by GenBank to have the T-DNA insertion in the fourth exon of NBR1 (At4g24690). Careful molecular analyses of the homozygous plants of SALK_135513 line indicated the place of T-DNA insertion in the fourth intron. Unexpectedly, 2 kinds of NBR1 transcripts, the wild-type and the mutated, resulting from alternative splicing events, were detected in those plants. Our findings explain the problems encountered by us with phenotypic evaluation of this line and emphasize the necessity for independent verification of the exact insertion site followed by careful expression studies when working with Arabidopsis T-DNA insertional mutants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte/genética , DNA Bacteriano/genética , Íntrons/genética , Mutagênese Insercional/genética , Regulação da Expressão Gênica de Plantas , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico
20.
Mol Metab ; 3(4): 495-504, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24944910

RESUMO

Brain mitochondrial activity is centrally involved in the central control of energy balance. When studying mitochondrial functions in the brain, however, discrepant results might be obtained, depending on the experimental approaches. For instance, immunostaining experiments and biochemical isolation of organelles expose investigators to risks of false positive and/or false negative results. As an example, the functional presence of cannabinoid type 1 (CB1) receptors on brain mitochondrial membranes (mtCB1) was recently reported and rapidly challenged, claiming that the original observation was likely due to artifact results. Here, we addressed this issue by directly comparing the procedures used in the two studies. Our results show that the use of appropriate controls and quantifications allows detecting mtCB1 receptor with CB1 receptor antibodies, and that, if mitochondrial fractions are enriched and purified, CB1 receptor agonists reliably decrease respiration in brain mitochondria. These data further underline the importance of adapted experimental procedures to study brain mitochondrial functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA