Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35108356

RESUMO

Bacterial genomes are massively sequenced, and they provide valuable data to better know the complete set of genes of a species. The analysis of thousands of bacterial strains can identify both shared genes and those appearing only in the pathogenic ones. Current computational gene finders facilitate this task but often miss some existing genes. However, the present availability of different genomes from the same species is useful to estimate the selective pressure applied on genes of complete pangenomes. It may assist in evaluating gene predictions either by checking the certainty of a new gene or annotating it as a gene under positive selection. Here, we estimated the selective pressure of 19 271 genes that are part of the pangenome of the human opportunistic pathogen Acinetobacter baumannii and found that most genes in this bacterium are subject to negative selection. However, 23% of them showed values compatible with positive selection. These latter were mainly uncharacterized proteins or genes required to evade the host defence system including genes related to resistance and virulence whose changes may be favoured to acquire new functions. Finally, we evaluated the utility of measuring selection pressure in the detection of sequencing errors and the validation of gene prediction.


Assuntos
Acinetobacter baumannii , Genoma Bacteriano , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Bactérias/genética , Sequência de Bases , Humanos , Filogenia , Virulência/genética
2.
BMC Genomics ; 24(1): 757, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066414

RESUMO

As an economically important tree, Gleditsia sinensis Lam. is widely planted. A lack of background genetic information on G. sinensis hinders molecular breeding. Based on PacBio single-molecule real-time (SMRT) sequencing and analysis of G. sinensis, a total of 95,183 non-redundant transcript sequences were obtained, of which 93,668 contained complete open reading frames (ORFs), 2,858 were long non-coding RNAs (LncRNAs) and 18,855 alternative splicing (AS) events were identified. Genes orthologous to different Gleditsia species pairs were identified, stress-related genes had been positively selected during the evolution. AGA, AGG, and CCA were identified as the universal optimal codon in the genus of Gleditsia. EIF5A was selected as a suitable fluorescent quantitative reference gene. 315 Cytochrome P450 monooxygenases (CYP450s) and 147 uridine diphosphate (UDP)-glycosyltransferases (UGTs) were recognized through the PacBio SMRT transcriptome. Randomized selection of GsIAA14 for cloning verified the reliability of the PacBio SMRT transcriptome assembly sequence. In conclusion, the research data lay the foundation for further analysis of the evolutionary mechanism and molecular breeding of Gleditsia.


Assuntos
Gleditsia , Transcriptoma , Gleditsia/genética , Reprodutibilidade dos Testes , Processamento Alternativo
3.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934827

RESUMO

One of the unique features of SARS-CoV-2 is its apparent neutral evolution during the early pandemic (before February 2020). This contrasts with the preceding SARS-CoV epidemics, where viruses evolved adaptively. SARS-CoV-2 may exhibit a unique or adaptive feature which deviates from other coronaviruses. Alternatively, the virus may have been cryptically circulating in humans for a sufficient time to have acquired adaptive changes before the onset of the current pandemic. To test the scenarios above, we analyzed the SARS-CoV-2 sequences from minks (Neovision vision) and parental humans. In the early phase of the mink epidemic (April to May 2020), nonsynonymous to synonymous mutation ratio per site in the spike protein is 2.93, indicating a selection process favoring adaptive amino acid changes. Mutations in the spike protein were concentrated within its receptor-binding domain and receptor-binding motif. An excess of high-frequency derived variants produced by genetic hitchhiking was found during the middle (June to July 2020) and late phase I (August to September 2020) of the mink epidemic. In contrast, the site frequency spectra of early SARS-CoV-2 in humans only show an excess of low-frequency mutations, consistent with the recent outbreak of the virus. Strong positive selection in the mink SARS-CoV-2 implies that the virus may not be preadapted to a wide range of hosts and illustrates how a virus evolves to establish a continuous infection in a new host. Therefore, the lack of positive selection signal during the early pandemic in humans deserves further investigation.


Assuntos
COVID-19 , Evolução Molecular , SARS-CoV-2 , Animais , COVID-19/virologia , Humanos , Vison/virologia , Mutação , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
4.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139237

RESUMO

Sugars will eventually be exported transporters (SWEETs) are a novel class of sugar transport proteins that play a crucial role in plant growth, development, and response to stress. However, there is a lack of systematic research on SWEETs in Capsicum annuum L. In this study, 33 CaSWEET genes were identified through bioinformatics analysis. The Ka/Ks analysis indicated that SWEET genes are highly conserved not only among peppers but also among Solanaceae species and have experienced strong purifying selection during evolution. The Cis-elements analysis showed that the light-responsive element, abscisic-acid-responsive element, jasmonic-acid-responsive element, and anaerobic-induction-responsive element are widely distributed in the promoter regions of CaSWEETs. The expression pattern analysis revealed that CaSWEETs exhibit tissue specificity and are widely involved in pepper growth, development, and stress responses. The post-transcription regulation analysis revealed that 20 pepper miRNAs target and regulate 16 CaSWEETs through cleavage and translation inhibition mechanisms. The pathogen inoculation assay showed that CaSWEET16 and CaSWEET22 function as susceptibility genes, as the overexpression of these genes promotes the colonization of pathogens, whereas CaSWEET31 functions as a resistance gene. In conclusion, through systematic identification and characteristic analysis, a comprehensive understanding of CaSWEET was obtained, which lays the foundation for further studies on the biological functions of SWEET genes.


Assuntos
Capsicum , Capsicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Genes de Plantas , Família Multigênica , Regulação da Expressão Gênica de Plantas , Filogenia
5.
J Plant Res ; 135(6): 823-852, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36066757

RESUMO

Plant glutathione S-transferases are an ancient protein superfamily having antioxidant activity. These proteins are primarily involved in diverse plant functions such as plant growth and development, secondary metabolism, signaling pathways and defense against biotic and abiotic stresses. The current study aimed to comprehensively identify and characterize the GST gene family in the medicinally important crop Papaver somniferum. A total of 93 GST proteins were identified belonging to eight GST classes and found to be majorly localized in the cytoplasm. All GST genes were found on eleven opium chromosomes. Gene duplication analysis showed segmental duplication as a key factor for opium GST gene family expansion under strong purifying selection. Phylogenetic analysis with gymnosperm, angiosperm and bryophyte revealed the evolution of GSTs earlier than their division into separate groups and also prior to the divergence of monocot and dicot. The secondary structure prediction showed the dominance of α-helices indicative of PsomGSTs as structurally stable and elastic proteins. Gene architecture showed the conservation of number of exons across the classes. MEME analysis revealed only a few class specific and many across class conserved motifs. Ser was found to be the active site residue of tau, phi, theta and zeta class and Cys was catalytic residue of DHAR, lambda and GHR class. Promoter analyses identified many cis-acting regulatory elements related to hormonal, cellular, stress and light response functions. Ser was the key phosphorylation site. Only three glycosylation sites were found across the 93 PsomGSTs. 3D structure prediction was also performed and was validated. Interactome analyses revealed the correlation of PsomGSTs with glutathione metabolizing proteins. Gene enrichment analysis and KEGG pathway analyzed the involvement of PsomGSTs in three major pathways i.e. glutathione metabolism, tyrosine metabolism and ascorbate metabolism. The outcome revealed high model quality of PsomGSTs. The results of the current study will be of potential significance to understand the functional and structural importance of the GST gene family in opium, a medicinally important crop.


Assuntos
Glutationa Transferase , Papaver , Glutationa Transferase/genética , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Regulação da Expressão Gênica de Plantas , Papaver/genética , Papaver/metabolismo , Filogenia , Ópio , Plantas/genética , Glutationa/metabolismo
6.
BMC Genomics ; 21(1): 69, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969111

RESUMO

BACKGROUND: Members of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family are involved in various plant biological processes via protein-DNA and protein-protein interaction. However, no the systematic identification and analysis of AHL gene family have been reported in cotton. RESULTS: To investigate the potential functions of AHLs in cotton, genome-wide identification, expressions and structure analysis of the AHL gene family were performed in this study. 48, 51 and 99 AHL genes were identified from the G.raimondii, G.arboreum and G.hirsutum genome, respectively. Phylogenetic analysis revealed that the AHLs in cotton evolved into 2 clades, Clade-A with 4-5 introns and Clade-B with intronless (excluding AHL20-2). Based on the composition of the AT-hook motif(s) and PPC/DUF 296 domain, AHL proteins were classified into three types (Type-I/-II/-III), with Type-I AHLs forming Clade-B, and the other two types together diversifying in Clade-A. The detection of synteny and collinearity showed that the AHLs expanded with the specific WGD in cotton, and the sequence structure of AHL20-2 showed the tendency of increasing intron in three different Gossypium spp. The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates of orthologous gene pairs revealed that the AHL genes of G.hirsutum had undergone through various selection pressures, purifying selection mainly in A-subgenome and positive selection mainly in D-subgenome. Examination of their expression patterns showed most of AHLs of Clade-B expressed predominantly in stem, while those of Clade-A in ovules, suggesting that the AHLs within each clade shared similar expression patterns with each other. qRT-PCR analysis further confirmed that some GhAHLs higher expression in stems and ovules. CONCLUSION: In this study, 48, 51 and 99 AHL genes were identified from three cotton genomes respectively. AHLs in cotton were classified into two clades by phylogenetic relationship and three types based on the composition of motif and domain. The AHLs expanded with segmental duplication, not tandem duplication. The expression profiles of GhAHLs revealed abundant differences in expression levels in various tissues and at different stages of ovules development. Our study provided significant insights into the potential functions of AHLs in regulating the growth and development in cotton.


Assuntos
Proteínas de Ligação a DNA/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Gossypium/genética , Família Multigênica , Proteínas de Plantas/genética , Motivos de Aminoácidos , Mapeamento Cromossômico , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/classificação , Filogenia , Sintenia
7.
Genetica ; 147(2): 165-176, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30887216

RESUMO

The soft-shell turtles Apalone spinifera (AS) and Apalone ferox (AF) are two important economic species. AF is found in the Yellow River of China, and is a confirmed member of the Trionychidae family. However, the classification of AS was in dispute. Mitochondrial genomes (mitogenomes) have been widely used for species identification, as well as population and phylogenetic analysis. In order to understand the phylogenetic and mitogenomic features of AS and AF, the complete mitogenomes were sequenced, annotated and analyzed in this study. The complete mitogenomes of AS and AF are 16,817 bp and 16,756 bp in length, respectively. Both mitogenomes contain 37 genes, seven short intergenic spacers and two long intergenic spacers. Comparative analysis showed that there are 1,137 variation sites (6.79%) between the two mitogenomes. AS and AF mitogenomes both show a usage preference in terms of nucleotides, codons and amino acids. In addition, the non-synonymous substitution rate/synonymous substitution rate indicates that all protein-coding genes (PCGs) have undergone a strong purifying selection. Phylogenetic trees constructed by 13 PCGs show a clear phylogenetic relationship of the soft-shell turtles and suggest that AS is a sister species to AF of the genus Apalone. The data could be useful for further research of species identification, population analysis and the mitogenomic features of soft-shell turtles.


Assuntos
Genoma Mitocondrial , Filogenia , Tartarugas/genética , Animais , Polimorfismo Genético , Tartarugas/classificação
8.
Proteomics ; 18(16): e1800107, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30035391

RESUMO

Sperm proteins presumably play critical roles in reproduction, but in many non-model animals their identities are unknown. A total of 147 sperm proteins from the echiuran worm Urechis unicinctus, the first sperm proteome in the phylum Annelida, are reported. The echiuran sperm proteome can be classified into diverse functional groups: energy metabolism (31%), protein synthesis and degradation (18%), spermatogenesis and sperm motility (12%), signal pathway (11%), ion channel and transport proteins (6%), cytoskeleton (4%), immunity and stress responses (3%), and fertilization (1%). These results will facilitate studies of mechanisms of fertilization in echiurans, as well as comparative studies of reproduction and evolution across lophotrochozoans. Data are available via ProteomeXchange with identifier PXD009176.


Assuntos
Anelídeos/metabolismo , Biologia Computacional/métodos , Espectrometria de Massas/métodos , Proteínas/metabolismo , Proteoma/análise , Espermatozoides/metabolismo , Animais , Masculino , Motilidade dos Espermatozoides
9.
Genomics ; 106(4): 221-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206079

RESUMO

Chloroplasts are essential organelles, in which genes have widely been used in the phylogenetic analysis of green plants. Here, we took advantage of the breadth of plastid genomes (cpDNAs) sequenced species to investigate their dynamic changes. Our study showed that gene rearrangements occurred more frequently in the cpDNAs of green algae than in land plants. Phylogenetic trees were generated using 55 conserved protein-coding genes including 33 genes for photosynthesis, 16 ribosomal protein genes and 6 other genes, which supported the monophyletic evolution of vascular plants, land plants, seed plants, and angiosperms. Moreover, we could show that seed plants were more closely related to bryophytes rather than pteridophytes. Furthermore, the substitution rate for cpDNA genes was calculated to be 3.3×10(-10), which was almost 10 times lower than genes of nuclear genomes, probably because of the plastid homologous recombination machinery.


Assuntos
Chlorella/genética , Cloroplastos/genética , Genoma de Cloroplastos , Chlorella/classificação , DNA de Algas/análise , Evolução Molecular , Rearranjo Gênico , Fotossíntese , Filogenia
10.
J Proteome Res ; 14(10): 4296-308, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26290311

RESUMO

We compared the heat tolerance, proteomic responses to heat stress, and adaptive sequence divergence in the invasive snail Pomacea canaliculata and its noninvasive congener Pomacea diffusa. The LT50 of P. canaliculata was significantly higher than that of P. diffusa. More than 3350 proteins were identified from the hepatopancreas of the snails exposed to acute and chronic thermal stress using iTRAQ-coupled mass spectrometry. Acute exposure (3 h exposure at 37 °C with 25 °C as control) resulted in similar numbers (27 in P. canaliculata and 23 in P. diffusa) of differentially expressed proteins in the two species. Chronic exposure (3 weeks of exposure at 35 °C with 25 °C as control) caused differential expression of more proteins (58 in P. canaliculata and 118 in P. diffusa), with many of them related to restoration of damaged molecules, ubiquitinating dysfunctional molecules, and utilization of energy reserves in both species; but only in P. diffusa was there a shift from carbohydrate to lipid catabolism. Analysis of orthologous genes encoding the differentially expressed proteins revealed two genes having clear evidence of positive selection (Ka/Ks > 1) and seven candidates for more detailed analysis of positive selection (Ka/Ks between 0.5 and 1). These nine genes are related to energy metabolism, cellular oxidative homeostasis, signaling, and binding processes. Overall, the proteomic and base substitution rate analyses indicate genetic basis of differential resistance to heat stress between the two species, and such differences could affect their further range expansion in a warming climate.


Assuntos
Adaptação Fisiológica/genética , Mutação , Peptídeos/análise , Proteoma/isolamento & purificação , Caramujos/genética , Animais , Metabolismo dos Carboidratos/genética , Cromatografia Líquida , Metabolismo Energético/genética , Água Doce , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatopâncreas/química , Hepatopâncreas/metabolismo , Temperatura Alta , Metabolismo dos Lipídeos/genética , Anotação de Sequência Molecular , Proteólise , Proteoma/genética , Proteoma/metabolismo , Caramujos/química , Caramujos/metabolismo , Especificidade da Espécie , Coloração e Rotulagem , Estresse Fisiológico/genética , Sintenia , Espectrometria de Massas em Tandem , Tripsina/química
11.
Biosci Biotechnol Biochem ; 78(4): 588-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036954

RESUMO

Interferon gamma (IFNG) is a major cytokine and plays crucial roles in pathogen clearance. About the course of evolution of IFNG, it has been reported that IFNG is being subjected to adaptive selection, which is proved at the level of gene. Neighbor-joining method was used to reconstruct the phylogenetic tree of all IFNG protein-coding sequences. The pair-wise computation of Ka/Ks between every exon homologs, branch-specific model, and site-specific model of the likelihood method were performed to detect positive selection of IFNG. We reported, for the first time, that the signal peptide region of IFNG is under significant positive selection, evolving faster than other parts. We provide evidence at the level of individual exon and individual amino acid site that IFNG is under adaptive evolution, which establishes the basis for further researches about IFNG.


Assuntos
Evolução Molecular , Interferon gama/química , Interferon gama/genética , Sinais Direcionadores de Proteínas , Seleção Genética , Animais , Teorema de Bayes , Éxons/genética , Humanos , Funções Verossimilhança , Filogenia , Software
12.
Zool Res ; 45(1): 215-225, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247179

RESUMO

A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1 633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea (SCS). Based on mitochondrial genomic characteristics, morphological examination, and sclerite scanning electron microscopy, the samples were categorized into four suborders (Calcaxonia, Holaxonia, Scleraxonia, and Stolonifera), and identified as 9 possible new cold-water coral species. Assessments of GC-skew dissimilarity, phylogenetic distance, and average nucleotide identity (ANI) revealed a slow evolutionary rate for the octocoral mitochondrial sequences. The nonsynonymous ( Ka) to synonymous ( Ks) substitution ratio ( Ka/ Ks) suggested that the 14 protein-coding genes (PCGs) were under purifying selection, likely due to specific deep-sea environmental pressures. Correlation analysis of the median Ka/ Ks values of five gene families and environmental factors indicated that the genes encoding cytochrome b (cyt b) and DNA mismatch repair protein ( mutS) may be influenced by environmental factors in the context of deep-sea species formation. This study highlights the slow evolutionary pace and adaptive mechanisms of deep-sea corals.


Assuntos
Antozoários , Genoma Mitocondrial , Animais , Antozoários/genética , Filogenia , China , Citocromos b/genética
13.
mSystems ; 9(1): e0071323, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38095866

RESUMO

The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic that emerged in 2019 has been an unprecedented event in international science, as it has been possible to sequence millions of genomes, tracking their evolution very closely. This has enabled various types of secondary analyses of these genomes, including the measurement of their sequence selection pressure. In this work, we have been able to measure the selective pressure of all the described SARS-CoV-2 genes, even analyzed by sequence regions, and we show how this type of analysis allows us to separate the genes between those subject to positive selection (usually those that code for surface proteins or those exposed to the host immune system) and those subject to negative selection because they require greater conservation of their structure and function. We have also seen that when another gene with an overlapping reading frame appears within a gene sequence, the overlapping sequence between the two genes evolves under a stronger purifying selection than the average of the non-overlapping regions of the main gene. We propose this type of analysis as a useful tool for locating and analyzing all the genes of a viral genome when an adequate number of sequences are available.IMPORTANCEWe have analyzed the selection pressure of all severe acute respiratory syndrome coronavirus 2 genes by means of the nonsynonymous (Ka) to synonymous (Ks) substitution rate. We found that protein-coding genes are exposed to strong positive selection, especially in the regions of interaction with other molecules (host receptor and genome of the virus itself). However, overlapping coding regions are more protected and show negative selection. This suggests that this measure could be used to study viral gene function as well as overlapping genes.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Proteínas , Genoma Viral/genética , Genes Virais/genética
14.
Infect Genet Evol ; 123: 105629, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936527

RESUMO

Hydatigera kamiyai (H. kamiyai) is a new species within Hydatigera that has recently been resurrected. Voles and cats are hosts of H. kamiyai and have a certain impact on its health and economy. Moreover, the Qinghai-Tibetan plateau (QTP) is a research hotspot representing Earth's biodiversity, as its unique geographical environment and climatic conditions support the growth of a variety of mammals and provide favorable conditions for various parasites to complete their life history. The aim of this study was to reveal the phylogenetic relationships and divergence times of H. kamiyai strains isolated from Neodon fuscus on the QTP using morphological and molecular methods. In this study, we morphologically observed H. kamiyai and sequenced the whole mitochondrial genome. Then, we constructed phylogenetic trees with the maximum likelihood (ML) and Bayesian inference (BI) methods. The GTR alternative model was selected for divergence time analysis. These data demonstrated that the results were consistent with the general morphological characteristics of Hydatigera. The whole genome of H. kamiyai was 13,822 bp in size, and the A + T content (73%) was greater than the G + C content (27%). The Ka/Ks values were all <1, indicating that all 13 protein-coding genes (13 PCGs) underwent purifying selection during the process of evolution. The phylogenetic tree generated based on the 13 PCGs, cytochrom oxidase subunit I (COI), 18S rRNA and 28S rRNA revealed close phylogenetic relationships between H. kamiyai and Hydatigera, with high node support for the relationship. The divergence time based on 13 PCGs indicated that H. kamiyai diverged approximately 11.3 million years ago (Mya) in the Miocene. Interestingly, it diverged later than the period of rapid uplift in the QTP. We also speculated that H. kamiyai differentiation was caused by host differentiation due to the favorable living conditions brought about by the uplift of the QTP. As there have been relatively few investigations on the mitochondrial genome of H. kamiyai, our study could provide factual support for further studies of H. kamiyai on the QTP. We also emphasized the importance of further studies of its hosts, Neodon fuscus and cats, which will be important for further understanding the life cycle of H. kamiyai.

15.
Microbiol Spectr ; 12(5): e0236723, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38572997

RESUMO

Species delimitation based on lineage definition has become increasingly popular. However, these methods have been limited, especially for species that lack genomic data and are morphologically similar. The trickiest part for the species identification is that the interspecific and intraspecific boundaries are vague. Taking Prorocentrum (Dinophyta) as an example, analysis of cell morphology, growth, and toxin synthesis in both species of P. lima and P. arenarium does not provide a reliable basis for species delineation. However, through phylogenetic and genetic distance analyses of their ITS and LSU sequences, establishment of evolutionary tree based on orthologous gene sequences, and combining the results of automatic barcode gap discovery and Poisson tree processes models, it was sustained that P. arenarium does not belong to the P. lima complex and should be considered as an independent species. Interspecies genetic evolution analysis revealed that P. lima and P. arenarium may contribute to evolutionary direction that favors combating reverse environmental factors. In P. lima, viral invasion may be one of the reasons for its large genome size. In the study, P. lima complex has been selected as an example to enhance the taxonomic identification of microalgae through molecular and genetic evolution, offering valuable insights into refining taxonomic identification and promoting microbial biodiversity research in other species.IMPORTANCEMicroalgae, especially the species known as Prorocentrum, have received significant attention due to their ability to trigger harmful algal blooms and produce toxins. However, the boundaries between species and within species are ambiguous. Clear and comprehensive species delineation indicates that Prorocentrum arenarium should be considered as an independent species, separate from the Prorocentrum lima complex. Improving the classification and identification of microalgae through molecular and genetic evolution will provide reference points for other cryptic species. Prorocentrum occupy multiple ecological niches in marine environments, and studying their evolutionary direction contributes to understanding their ecological adaptations and community succession.


Assuntos
Dinoflagellida , Evolução Molecular , Microalgas , Filogenia , Microalgas/genética , Microalgas/classificação , Dinoflagellida/genética , Dinoflagellida/classificação , Código de Barras de DNA Taxonômico
16.
Comput Struct Biotechnol J ; 21: 2068-2074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936817

RESUMO

The SARS-CoV-2 virus, which causes the COVID-19, is rapidly accumulating mutations to adapt to the hosts. We collected SARS-CoV-2 sequence data from the end of 2019 to January 2023 to analyze for their evolutionary features during the pandemic. We found that most of the SARS-CoV-2 genes are undergoing negative purifying selection, while the spike protein gene (S-gene) is undergoing rapid positive selection. From the original strain to the alpha, delta and omicron variant types, the Ka/Ks of the S-gene increases, while the Ka/Ks within one variant type decreases over time. During the evolution, the codon usage did not evolve towards optimal translation and protein expression. In contrast, only S-gene mutations showed a remarkable trend on accumulating more positive charges. This facilitates the infection via binding human ACE2 for cell entry and binding furin for cleavage. Such a functional evolution emphasizes the survival strategy of SARS-CoV-2, and indicated new druggable target to contain the viral infection. The nearly fully positively-charged interaction surfaces indicated that the infectivity of SARS-CoV-2 virus may approach a limit.

17.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37812763

RESUMO

Forest trees provide critical ecosystem services for humanity that are under threat due to ongoing global change. Measuring and characterizing genetic diversity are key to understanding adaptive potential and developing strategies to mitigate negative consequences arising from climate change. In the area of forest genetic diversity, genetic divergence caused by large-scale changes at the chromosomal level has been largely understudied. In this study, we used the RNA-seq data of 20 co-occurring forest trees species from genera including Acer, Alnus, Amelanchier, Betula, Cornus, Corylus, Dirca, Fraxinus, Ostrya, Populus, Prunus, Quercus, Ribes, Tilia, and Ulmus sampled from Upper Peninsula of Michigan. These data were used to infer the origin and maintenance of gene family variation, species divergence time, as well as gene family expansion and contraction. We identified a signal of common whole genome duplication events shared by core eudicots. We also found rapid evolution, namely fast expansion or fast contraction of gene families, in plant-pathogen interaction genes amongst the studied diploid species. Finally, the results lay the foundation for further research on the genetic diversity and adaptive capacity of forest trees, which will inform forest management and conservation policies.


Assuntos
Ecossistema , Árvores , Árvores/genética , Florestas , Perfilação da Expressão Gênica
18.
Front Genet ; 14: 1220906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621704

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved to give rise to a highly transmissive and immune-escaping variant of concern, known as Omicron. Many aspects of the evolution of SARS-CoV-2 and the driving forces behind the ongoing Omicron outbreaks remain unclear. Substitution at the receptor-binding domain (RBD) in the spike protein is one of the primary strategies of SARS-CoV-2 Omicron to hinder recognition by the host angiotensin-converting enzyme 2 (ACE2) receptor and avoid antibody-dependent defense activation. Here, we scanned for adaptive evolution within the SARS-CoV-2 Omicron genomes reported from Bangladesh in the public database GISAID (www.gisaid.org; dated 2 April 2023). The ratio of the non-synonymous (Ka) to synonymous (Ks) nucleotide substitution rate, denoted as ω, is an indicator of the selection pressure acting on protein-coding genes. A higher proportion of non-synonymous to synonymous substitutions (Ka/Ks or ω > 1) indicates positive selection, while Ka/Ks or ω near zero indicates purifying selection. An equal amount of non-synonymous and synonymous substitutions (Ka/Ks or ω = 1) refers to neutrally evolving sites. We found evidence of adaptive evolution within the spike (S) gene of SARS-CoV-2 Omicron isolated from Bangladesh. In total, 22 codon sites of the S gene displayed a signature of positive selection. The data also highlighted that the receptor-binding motif within the RBD of the spike glycoprotein is a hotspot of adaptive evolution, where many of the codons had ω > 1. Some of these adaptive sites at the RBD of the spike protein are known to be associated with increased viral fitness. The M gene and ORF6 have also experienced positive selection. These results suggest that although purifying selection is the dominant evolutionary force, positive Darwinian selection also plays a vital role in shaping the evolution of SARS-CoV-2 Omicron in Bangladesh.

19.
Vavilovskii Zhurnal Genet Selektsii ; 27(3): 218-223, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293444

RESUMO

Studies of the nature of mitochondrial DNA (mtDNA) variability in human populations have shown that protein-coding genes are under negative (purifying) selection, since their mutation spectra are characterized by a pronounced predominance of synonymous substitutions over non-synonymous ones (Ka/Ks < 1). Meanwhile, a number of studies have shown that the adaptation of populations to various environmental conditions may be accompanied by a relaxation of negative selection in some mtDNA genes. For example, it was previously found that in Arctic populations, negative selection is relaxed in the mitochondrial ATP6 gene, which encodes one of the subunits of ATP synthase. In this work, we performed a Ka/Ks analysis of mitochondrial genes in large samples of three regional population groups in Eurasia: Siberia (N = 803), Western Asia/Transcaucasia (N = 753), and Eastern Europe (N = 707). The main goal of this work is to search for traces of adaptive evolution in the mtDNA genes of aboriginal peoples of Siberia represented by populations of the north (Koryaks, Evens) and the south of Siberia and the adjacent territory of Northeast China (Buryats, Barghuts, Khamnigans). Using standard Ka/Ks analysis, it was found that all mtDNA genes in all studied regional population groups are subject to negative selection. The highest Ka/Ks values in different regional samples were found in almost the same set of genes encoding subunits of ATP synthase (ATP6, ATP8), NADH dehydrogenase complex (ND1, ND2, ND3), and cytochrome bc1 complex (CYB). The highest Ka/Ks value, indicating a relaxation of negative selection, was found in the ATP6 gene in the Siberian group. The results of the analysis performed using the FUBAR method (HyPhy software package) and aimed at searching for mtDNA codons under the influence of selection also showed the predominance of negative selection over positive selection in all population groups. In Siberian populations, nucleotide sites that are under positive selection and associated with mtDNA haplogroups were registered not in the north (which is expected under the assumption of adaptive evolution of mtDNA), but in the south of Siberia.

20.
Genes (Basel) ; 13(11)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421803

RESUMO

The spotted catfish, Arius maculatus (Siluriformes), is an important economical aquaculture species inhabiting the Indian Ocean, as well as the western Pacific Ocean. The bioinformatics data in previous studies about the phylogenetic reconstruction of Siluriformes were insufficient and incomplete. In the present study, we presented a newly sequenced A. maculatus mitochondrial genome (mtDNA). The A. maculatus mtDNA was 16,710 bp in length and contained two ribosomal RNA (rRNA) genes, thirteen protein-coding genes (PCGs), twenty-two transfer RNA (tRNA) genes, and one D-loop region. The composition and order of these above genes were similar to those found in most other vertebrates. The relative synonymous codon usage (RSCU) of the 13 PCGs in A. maculatus mtDNA was consistent with that of PCGs in other published Siluriformes mtDNA. Furthermore, the average non-synonymous/synonymous mutation ratio (Ka/Ks) analysis, based on the 13 PCGs of the four Ariidae species, showed a strong purifying selection. Additionally, phylogenetic analysis, according to 13 concatenated PCG nucleotide and amino acid datasets, showed that A. maculatus and Netuma thalassina (Netuma), Occidentarius platypogon (Occidentarius), and Bagre panamensis (Bagre) were clustered as sister clade. The complete mtDNA of A. maculatus provides a helpful dataset for research on the population structure and genetic diversity of Ariidae species.


Assuntos
Peixes-Gato , Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Filogenia , Peixes-Gato/genética , DNA Mitocondrial/genética , RNA de Transferência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA