Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(2): 289-297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086976

RESUMO

In this study, the potential of ultrafiltered xylano-pectinolytic enzymatic bleaching approach was investigated, for manufacturing wheat straw-based paper. The enzymatic step was found to be most effective, with xylanase-pectinase dose of 4-1.7 IU/g pulp and time period of 180 min. The absorption spectra of the pulp free filtrate samples obtained after treatment of the pulp with ultrafiltered enzymes showed the removal of more impurities, in comparison to the treatment with crude enzymes. Microscopic analysis also showed the removal of lignin impurities in enzymatically bleached pulp samples. This bleaching approach using enzymes resulted in 27% reduction in ClO2 dose. Ultrafiltered enzymes treated pulp samples also showed improved quality-related parameters, and Gurley porosity, burst index, breaking length, double fold, tear index, and viscosity increased by 19.05, 13.70, 8.18, 29.27, 4.41, and 13.27%, respectively. The lignin content, TDS, TSS, BOD and COD values also decreased in the effluent samples obtained after enzymatic bleaching plus 73% chemical bleaching dose. The BOD and COD values of the effluent samples improved by 23.01 and 23.66%, respectively. Thus, indicating the potential of ultrafiltered xylano-pectinolytic enzymes in reducing pollution during bleaching of wheat straw. This is the first study, mentioning the efficacy of ultrafiltered enzymes in the bleaching of wheat straw-based paper with better optical-strength-related properties and effluent characteristics.


Assuntos
Lignina , Papel , Triticum/química , Endo-1,4-beta-Xilanases/química , Poligalacturonase
2.
Bioprocess Biosyst Eng ; 44(12): 2513-2524, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34402971

RESUMO

A cellulase-free xylanolytic enzyme consortia consisting of a xylanase, arabinofuranosidase, and acetyl xylan esterase produced by Bacillus sp. NIORKP76 isolate under solid-state fermentation was assessed for its bio-bleaching ability on kraft pulp. In the biobleaching analysis, the xylanase dose of 5 Ug-1 dry pulp denoted the optimum bleaching of pulp at 40 °C and pH 8.0 after 2 h of treatment. The reduction in kappa number of pre-treated hardwood pulp using xylanolytic enzyme consortium (XEC) was found to be ~ 55%, while solo xylanase could reduce the kappa number to 44-46%. In the case of chemical bagasse pulp, a reduction of ~ 27.5% and 19-20% was seen in kappa number using XEC and solo xylanase, respectively. Enzyme-treated pulp (HW and CB) showed a 50% reduction in hypochlorite consumption during the chlorine treatment. The current study results reveal the significant potential of xylanolytic enzyme consortium from Bacillus sp. NIORKP76 on the environmentally friendly bio-bleaching process.


Assuntos
Bacillus/enzimologia , Madeira , Xilanos/metabolismo , Celulase/metabolismo , Fermentação , Hidrólise , Temperatura
3.
Mol Biol Rep ; 46(1): 569-580, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30474775

RESUMO

A newly identified ligninolytic Rhodococcus strain (Rhodococcus sp. T1) was isolated from forestry wastes (Trabzon/Turkey). The DyP type peroxidase of Rhodococcus sp. T1 (DyPT1) was cloned, characterized and paper treated for industrial applications. Molecular weight of the protein was about 38 kDa. The kinetic parameters were 0.94 mM and 1417.53 µmol/min/mg for Km and Vmax, respectively. The enzyme was active at the temperature range of 25-65 °C and optimum temperature was 35 °C, enzyme was stable up to 6 days at room temperature. Optimum pH of the DyPT1 was 4.0 and it was stable between pH 4.0-6.0 up to 8 days at room temperature. Effects of some metal ions, Hemin, and some chemical agents on DyPT1 were determined. Hemin has implemented protective effects on the stability and the activity of the enzyme in long time periods when added into growing medium. DyPT1 was applied to eucalyptus kraft pulp for analyzing the bleaching efficiency, physical and optical tests of the manufuctared paper were carried out. Application of lignin peroxidase to kraft pulp caused a decrease of 5.2 units for kappa number and an increase from 52.05 to 64.18% in the delignification rate.


Assuntos
Peroxidase/metabolismo , Rhodococcus/enzimologia , Rhodococcus/isolamento & purificação , Proteínas de Bactérias/metabolismo , Eucalyptus/metabolismo , Concentração de Íons de Hidrogênio , Papel , Peroxidase/fisiologia , Peroxidases/metabolismo , Turquia
4.
Molecules ; 21(1): 85, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26771596

RESUMO

Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.


Assuntos
Celulose/química , Química Verde/métodos , Indústria Manufatureira/métodos , Papel , Álcalis/química , Temperatura Alta , Humanos , Oxigênio/química , Pressão , Viscosidade
5.
Can J Microbiol ; 61(9): 671-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26220821

RESUMO

Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is an actinomycete that produces industrially important and environmentally safer thermostable cellulase-free xylanase, which is used in the pulp and paper industry as an alternative to the use of toxic chlorinated compounds. Strain CKMX1 was previously characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis, and 16S rDNA and was found to be C. cellulans CKMX1. Crude enzyme (1027.65 U/g DBP) produced by C. cellulans CKMX1, having pH and temperature optima of 8.0 and 60 °C, respectively, in solid state fermentation of apple pomace, was used in the production of bleached wheat straw pulp. Pretreatment with xylanase at a dose of 5 U/g after pulping decreased pulp kappa points by 1.4 as compared with the control. Prebleaching with a xylanase dose of 5 U/g pulp reduced the chlorine charge by 12.5%, increased the final brightness points by approximately 1.42% ISO, and improved the pulp strength properties. Xylanase could be substituted for alkali extraction in C-Ep-D sequence and used for treating chemically bleached pulp, resulting in bleached pulp with higher strength properties. Modification of bleached pulp with 5 U of enzyme/g increased pulp whiteness and breaking length by 1.03% and 60 m, respectively; decreased tear factor of pulp by 7.29%; increased bulk weight by 3.99%, as compared with the original pulp. Reducing sugars and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. Cellulosimicrobium cellulans CKMX1 has a potential application in the pulp and paper industries.


Assuntos
Actinomycetales/enzimologia , Endo-1,4-beta-Xilanases/química , Triticum/química , Actinomycetales/química , Actinomycetales/metabolismo , Celulase/química , Endo-1,4-beta-Xilanases/metabolismo , Fermentação , Lignina/química , Papel , Caules de Planta/química , Temperatura
6.
Folia Microbiol (Praha) ; 68(1): 135-149, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36048323

RESUMO

The use of microbial enzymes is highly encouraged in paper and pulp industries to reduce the excessive use of hazardous chemicals. During the study, xylanase of Bacillus stratosphericus EB-11 was characterized for pulp bleaching applications. The extracellular xylanase was produced under submerged fermentation using bamboo waste as a natural carbon source. There was fast cell division and enzyme production under optimized fermentation conditions in the bioreactor. The highest activity was 91,200U after 30 h of growth with Km and Vmax of 3.52 mg/mL and 391.5 µmol/min per mg respectively. The purified enzyme with molecular mass ~ 60 kDa had conferred positive activity on native PAGE. The strong inhibition by ethylenediaminetetraacetate and SDS showed the metallo-xylanase nature of the purified enzyme. The bacterial xylanase reduces the use of hydrogen peroxide by 0.4%. Similarly, biological oxygen demand and chemical oxygen demand were reduced by 42.6 and 35.2%. The xylanase-hydrogen peroxide combined treatment and conventional chlorine dioxide-alkaline (CDE1D1D2) bleaching showed almost similar improvement in physicochemical properties of bamboo pulp. Xylanase-peroxide bleaching reduces the lignin content to 4.95% from 13.32% unbleached pulp. This content after CDE1D1D2 treatment was 4.21%. The kappa number decreased from 15.2 to 9.46 with increasing the burst factor (15.51), crystallinity index (60.25%), viscosity (20.1 cp), and brightness (65.4%). The overall finding will encourage the development of new cleaner methods of bleaching in the paper and pulp industry.


Assuntos
Bacillus , Elefantes , Animais , Peróxido de Hidrogênio , Lignina/química , Endo-1,4-beta-Xilanases
7.
Environ Sci Pollut Res Int ; 28(14): 18284-18293, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33665692

RESUMO

The objective of this study was to check the potential of crude xylano-pectinolytic enzymes in bleaching of rice straw pulp, in order to reduce the toxic waste load for managing the environmental pollution. The xylano-pectinolytic enzymatic bleaching step for delignification was found to be most effective at pulp consistency 1:10 g/ml, xylanase:pectinase dose of 9:4 IU/ml, pH 8.5 and treatment time 180 min at temperature of 55 °C, and resulted in lowering of kappa number of the rice straw pulp by 15.29%. In subsequent bleaching stages, this enzymatic pre-bleaching treatment also resulted in 30% reduction of active chlorine dioxide dose without any loss of optical properties. Significant improvement in various physical properties of the enzymes treated pulp, tear index (15.43%), breaking length (11.11%), double fold number (25.92%), burst index (9.88%) and viscosity (13.63%), and Gurley porosity (39.86%) was also noticed. This approach resulted in reduction of BOD and COD values by 21.07% and 26.57%, respectively. This is the first study on the use of crude xylano-pectinolytic enzymes for bio-bleaching of rice straw pulp.


Assuntos
Oryza , Papel , Poligalacturonase , Compostos de Sódio , Temperatura
8.
Environ Sci Pollut Res Int ; 28(31): 42990-42998, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34218371

RESUMO

Bio-bleaching effect on bagasse pulp using xylano-pectinolytic enzymes produced by a bacterial species was studied in order to evaluate the potential of these enzymes in paper industry. In this study, action of enzymes was maximum with xylanase/pectinase dose 7/1.75 IU/g, pulp consistency 1:12.5 g/L, pH 8.5, temperature 50° C and 180 min of treatment time. Under the optimized bio-bleaching conditions, removal of reducing sugars (6.15±0.05 mg/L), brightness (16.08%), whiteness (25.54%) and release of chromophores (hydrophobic and phenolic compounds and lignin impurities) were maximum, along with decrease in kappa number (26.28%), and yellowness (27.88%) values were obtained. Improvement in the various physical properties like breaking length (10.28%), burst index (29.55%), tear index (5.02%), double fold (14.89%), Gurley porosity (15%) and viscosity (8.6%), along with the reduction of chlorine dioxide dose by 27%, was also observed. There is also reduction in COD and BOD values of bio-bleached effluents by 27.62% and 20.52%, respectively. This is the first report on bio-bleaching of bagasse pulp using xylano-pectinolytic enzymes.


Assuntos
Poligalacturonase , Saccharum , Celulose , Endo-1,4-beta-Xilanases , Papel
9.
Indian J Microbiol ; 50(3): 332-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23100849

RESUMO

Crude xylanase from Aspergillus sydowii SBS 45 was tested for enzymatic bleaching of kraft (Decker) pulp. After optimization of three parameters, consistency of pulp, retention time and enzyme dose, considerable increase in the release of UV and visible absorbance spectra of materials and reducing sugars was observed, which clearly indicated the action of xylanase on pulp. Final brightness of pulp was increased from 29.42 to 70.42% and kappa number was reduced from 15.93 to 1.61, when 25 U of xylanase was given with a retention time of 5 h and at a consistency of 10%. When 10 U g(-1) xylanase was given, 14.3% elemental chlorine and 14.3% H(2)O(2) could be reduced and when 25 U g(-1) xylanase was given 14.3% elemental chlorine and 28.6% H (2)O(2) could be reduced thereby retaining the brightness at control level.

10.
Environ Sci Pollut Res Int ; 27(29): 36498-36509, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32562224

RESUMO

Lipase enzyme has a critical role in deinking process along with other lignocellulosic enzymes. In this paper, we try to demonstrate the role of lipase in the enzyme cocktail used for enzymatic deinking. For this, we identified a potential lipolytic bacterium, Pseudomonas mendocina ED9 isolated from elephant dung with a molecular weight of 35 kDa. During the Box-Benhken model optimization, a maximum lipase activity of 105.12 U/g, which was 12.36-fold higher than the initial enzyme activity and 1.3-fold higher than the activity obtained during the Plackett Burman design, was achieved. A maximum lipase activity of 105.12 U/g was obtained after optimization. Ammonium sulphate (60%) precipitation resulted in a specific activity of 68.19 U/mg with a 1.4-fold purification and yield of 64%. Lipase from P. mendocina ED9 exhibited a Km of 0.5306 mM and Vmax of 25.0237 µmol/min/mg. A Δ brightness of approximately 14.5% were achieved during the enzymatic deinking using cocktail comprised of cellulase, xylanase and lipase. This reports the significant role and efficacy of lipase in enzyme cocktails for deinking applications. This formulation will reduce the pollution and environmental toxicity of conventional chemical deinking.


Assuntos
Celulase , Pseudomonas mendocina , Concentração de Íons de Hidrogênio , Tinta , Lipase , Papel
11.
Environ Sci Pollut Res Int ; 27(35): 44637-44646, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33063206

RESUMO

In this study, action of ultrafiltered xylano-pectinolytic enzymes from a bacterial strain has been evaluated for bleaching of rice straw soda-anthraquinone pulp. Maximum bio-bleaching effect and release of non-cellulosic impurities were noticed with xylano:pectinolytic enzymes dose of 6.0:2.1-IU/g pulp, treatment time of 180 min at 10% pulp consistency, pH 8.5, and temperature 55 °C. Microscopic images of bio-bleached rice straw pulp also confirmed the efficacy of ultrafiltered enzymes, as bleaching agent. This bio-bleaching treatment resulted in 15.38% and 32% reduction in kappa number and active chlorine dioxide dose, respectively, along with increase in various physical properties, burst index (12.50%), tear index (19.07%), breaking length (14.30%), double fold number (26.31%), Gurley porosity (45.32%) and viscosity (16.17%). This bio-bleaching approach not only improved the pulp quality but also reduced environmental pollution load by decreasing effluent parameters values of BOD and COD by 23.67% and 27.44%, respectively. This study indicates that use of ultrafiltered xylano-pectinolytic synergism for rice straw pulp bleaching will ultimately help in making the process eco-friendly, along with better quality pulp. This is the first report on use of ultrafiltered xylanase and pectinase, produced from a bacterial isolate, for bleaching of rice straw pulp.


Assuntos
Oryza , Endo-1,4-beta-Xilanases , Papel , Poligalacturonase , Temperatura
12.
BMC Res Notes ; 12(1): 26, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646950

RESUMO

THE OBJECTIVES: The work was carried out for extraction of natural anthrasesamones from roots of Sesamum Indicum using different organic solvents and utilization of extracts as catalyst in pulping with sodium hydroxide for a by-product of sugar industry (Sudanese bagasse). RESULTS: Sesamum Indicum roots when extracted with ethanol, it gave the highest extracts yield % (0.964), followed by ethyl acetate, chloroform, dichloromethane and petroleum ether extracts. The chemical pulping of Bagasse was done by using of sodium hydroxide, sodium hydroxide with anthraquinone, and sodium hydroxide with extract instead of anthraquinone keeping constant conditions at temperature 160 °C and applied sodium oxide 10.9% and time was 120 min, gave promising screened yield between 49.84 and 53.68%, bleachable kappa number between 15.57 and 8.26 for sodium hydroxide only and cooking with sodium hydroxide with anthraquinone. Cooking with sodium hydroxide of bagasse with anthrasesamones gave good pulping yields and kappa number.


Assuntos
Antraquinonas , Celulose , Indústria Manufatureira , Papel , Raízes de Plantas , Sesamum , Humanos , Hidróxido de Sódio , Sudão
13.
3 Biotech ; 7(1): 2, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28389896

RESUMO

The effect of ultrafiltered xylanase-pectinase concoction produced simultaneously by a bacterial isolate using agro-waste-based media was assessed in prebleaching of plywood waste pulp. Ultrafiltered enzymes caused 12.5% reduction in kappa number at reduced enzyme dose of xylanase-pectinase (4.0-0.8 IU) per gram of pulp under optimized conditions at pH 8.5, temperature 55 °C, and treatment period of 2 h. Using this methodology, amount of Cl2-ClO2 consumption can be reduced up to 30 and 28.86%. Significant improvement in physical and optical properties of pulp was obtained along with an additional reduction in BOD and COD values up to 18.13 and 21.66% using this novel biodelignification approach. This is the first report showing the advantages of using ultrafiltered xylanase-pectinase over crude enzymes in enhancing the bleaching capacity of pulp. This study focussing on the development of good quality paper with less pollution generating strategy will definitely prove a boon for industries.

14.
3 Biotech ; 7(1): 20, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28401458

RESUMO

Xylanases have important industrial applications but are most extensively utilized in the pulp and paper industry as a pre-bleaching agent. We characterized a xylanase from Bacillus amyloliquefaciens strain SK-3 and studied it for kraft pulp bleaching. The purified enzyme had a molecular weight of ~50 kDa with optimal activity at pH 9.0 and 50 °C. The enzyme showed good activity retention (85%) after 2 h incubation at 50 °C and pH 9.0. This enzyme obeyed Michaelis-Menten kinetics with regard to beechwood xylan with K m and V max values of 5.6 mg/ml, 433 µM/min/mg proteins, respectively. The enzyme activity was stimulated by Mn2+, Ca2+ and Fe2+ metal ions. Further, it also showed good tolerance to phenolics (2 mM) in the presence of syringic acid (no loss), cinnamic acid (97%), benzoic acid (94%) and phenol (97%) activity retention. The thermostability of xylanase was increased by 6.5-fold in presence of sorbitol (0.75 M). Further, pulp treated with 20U/g of xylanase (20IU/g) alone and with sorbitol (0.75M) reduced kappa number by 18.3 and 23.8%, respectively after 3 h reaction. In summary, presence of xylanase shows good pulp-bleaching activity, good tolerance to phenolics, lignin and metal ions and is amenable to thermostability improvement by addition of polyols. The SEM image showed significant changes on the surface of xylanase-treated pulp fiber as a result of xylan hydrolysis.

15.
Bioresour Technol ; 219: 445-450, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27518034

RESUMO

Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp.


Assuntos
Celulose/química , Hidróxidos/química , Oryza/química , Compostos de Potássio/química , Álcalis , Dióxido de Silício , Temperatura
16.
Carbohydr Polym ; 151: 821-826, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27474629

RESUMO

Utilization of the polymeric parts of lignocellulose is expected to gain increasing importance in future biorefinery scenarios. In that respect, a particular focus is placed on hemicelluloses from different wood species gained from an industrially feasible upgrading step in the production of dissolving pulps from paper pulps. During alkaline post-extractions for hemicellulose removal, residual lignins are extracted as well. They are either covalently linked to the extracted hardwood xylans or simply co-dissolved in the alkaline lye. In order to better describe the lignin in xylan containing lyes, a method for lignin profiling was set up by hyphenating size-exclusion chromatography of xylans with UV detection which facilitates visualization of the residual lignin distribution. Simultaneous lignin quantification was achieved with lignin standards prepared from Kraft cooking liquors. The setup presented may serve as advanced characterization for novel xylan products.


Assuntos
Cromatografia em Gel , Lignina/análise , Xilanos/química , Xilanos/isolamento & purificação , Lignina/química , Peso Molecular , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA