RESUMO
Autophagy and the ubiquitin-proteasome system are the two major quality control pathways responsible for cellular homeostasis. As such, they provide protection against age-associated changes and a plethora of human diseases. Ubiquitination is utilized as a degradation signal by both systems, albeit in different ways, to mark cargoes for proteasomal and lysosomal degradation. Both systems intersect and communicate at multiple points to coordinate their actions in proteostasis and organelle homeostasis. This review summarizes molecular details of how proteasome and autophagy pathways are functionally interconnected in cells and indicates common principles and nodes of communication that can be therapeutically exploited.
Assuntos
Autofagia/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Sequestossoma-1/metabolismo , Ubiquitina/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Mitofagia/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/genética , Conformação Proteica , Proteólise , Proteína Sequestossoma-1/química , Proteína Sequestossoma-1/genética , Transdução de Sinais , Ubiquitina/genética , UbiquitinaçãoRESUMO
Autophagy is implicated in the pathogenesis of pulmonary arterial hypertension (PAH). We aimed to investigate whether the p62-Keap1-Nrf2 pathway affects the development of PAH by mediating autophagy. A PAH rat model was established using monocrotaline (MCT). Pulmonary artery smooth muscle cells (PASMCs) were extracted, and the changes in proliferation, migration, autophagy, and oxidative stress were analyzed following overexpression or knockdown of p62. The impact of p62 on the symptoms of PAH rats was assessed by the injection of an adenovirus overexpressing p62. We found that the knockdown of p62 increased the proliferation and migration of PASMCs, elevating the oxidative stress of PASMCs and upregulating gene expression of NADPH oxidases. Co-IP assay results demonstrated that p62 interacted with Keap1. p62 knockdown enhanced Keap1 protein stability and Nrf2 ubiquitination. LC3II/I and ATG5 were expressed more often when p62 was knocked down. Treating with an inhibitor of autophagy reversed the impact of p62 knockdown on PASMCs. Nrf2 inhibitor treatment reduced the expression of Nrf2 and p62, while increasing the expression of Keap1, LC3II/I, and ATG5 in PASMCs. However, overexpressing p62 diminished mRVP, SPAP, and Fulton index in PAH rats and attenuated pulmonary vascular wall thickening. Overexpression of p62 also decreased the expression of Keap1, LC3II/I, and ATG5 and increased the nuclear expression of Nrf2 in PAH rats. Importantly, overexpression of p62 reduced oxidative stress and the NADPH oxidase expression in PAH rats. Overall, activation of the p62-Keap1-Nrf2 positive feedback signaling axis reduces the proliferation and migration of PASMCs and alleviates PAH by inhibiting autophagy and oxidative stress.
Assuntos
Hipertensão Arterial Pulmonar , Animais , Ratos , Autofagia/fisiologia , Proliferação de Células , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Monocrotalina , Miócitos de Músculo Liso/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/metabolismoRESUMO
Acute lung injury (ALI) is a major pathophysiological problem characterized by severe inflammation, resulting in high morbidity and mortality. Plumbagin (PL), a major bioactive constituent extracted from the traditional Chinese herb Plumbago zeylanica, has been shown to possess anti-inflammatory and antioxidant pharmacological activities. However, its protective effect on ALI has not been extensively studied. The objective of this study was to investigate the protective effect of PL against ALI induced by LPS and to elucidate its possible mechanisms both in vivo and in vitro. PL treatment significantly inhibited pathological injury, MPO activity, and the wet/dry ratio in lung tissues, and decreased the levels of inflammatory cells and inflammatory cytokines TNF-α, IL-1ß, IL-6 in BALF induced by LPS. In addition, PL inhibited the activation of the PI3K/AKT/mTOR signalling pathway, increased the activity of antioxidant enzymes CAT, SOD, GSH and activated the Keap1/Nrf2/HO-1 signalling pathway during ALI induced by LPS. To further assess the association between the inhibitory effects of PL on ALI and the PI3K/AKT/mTOR and Keap1/Nrf2/HO-1 signalling, we pretreated RAW264.7 cells with 740Y-P and ML385. The results showed that the activation of PI3K/AKT/mTOR signalling reversed the protective effect of PL on inflammatory response induced by LPS. Moreover, the inhibitory effects of PL on the production of inflammatory cytokines induced by LPS also inhibited by downregulating Keap1/Nrf2/HO-1 signalling. In conclusion, the results indicate that the PL ameliorate LPS-induced ALI by regulating the PI3K/AKT/mTOR and Keap1-Nrf2/HO-1 signalling, which may provide a novel therapeutic perspective for PL in inhibiting ALI.
Assuntos
Lesão Pulmonar Aguda , Proteína 1 Associada a ECH Semelhante a Kelch , Lipopolissacarídeos , Fator 2 Relacionado a NF-E2 , Naftoquinonas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/toxicidade , Naftoquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Masculino , Citocinas/metabolismo , Heme Oxigenase-1/metabolismo , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Proteínas de Membrana/metabolismoRESUMO
Currently, the clinical outcomes of peripheral nerve injuries are suboptimal, highlighting the urgent need to understand the mechanisms of nerve injury to enhance treatment strategies. Muscle-derived stem cells (MDSCs) are a diverse group of multipotent cells that hold promise for peripheral nerve regeneration due to their strong antioxidant and regenerative properties. Our research has revealed that severe ferroptosis occurs in the sciatic nerve and ipsilateral dorsal root ganglion following sciatic nerve injury. Interestingly, we have observed that MDSC-derived exosomes effectively suppress cell ferroptosis and enhance cell viability in Schwann cells and dorsal root ganglion cells. Treatment with exosomes led to increased expression of BDNF and P62 in Schwann cells, decreased expression of Keap1, Nrf2, and HO-1 in Schwann cells, and upregulated dorsal root ganglion cells. Rats treated with exosomes exhibited improvements in sciatic nerve function, sensitivity to stimuli, and reduced muscle atrophy, indicating a positive impact on post-injury recovery. In conclusion, our findings demonstrate the occurrence of ferroptosis in the sciatic nerve and dorsal root ganglion post-injury, with MDSC exosomes offering a potential therapeutic strategy by inhibiting ferroptosis, activating the Keap1-Nrf2-HO-1 pathway, and optimizing the post-injury repair environment.
Assuntos
Exossomos , Ferroptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Traumatismos dos Nervos Periféricos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Exossomos/metabolismo , Exossomos/transplante , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ratos , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Masculino , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Células de Schwann/metabolismo , Transdução de Sinais , Heme Oxigenase (Desciclizante)/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Regeneração NervosaRESUMO
IMPORTANCE: The Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is one of the most important defense mechanisms against oxidative stress. We previously reported that a cellular hydrogen peroxide scavenger protein, peroxiredoxin 1, a target gene of transcription factor Nrf2, acts as a novel HBV X protein (HBx)-interacting protein and negatively regulates hepatitis B virus (HBV) propagation through degradation of HBV RNA. This study further demonstrates that the Nrf2/ARE signaling pathway is activated during HBV infection, eventually leading to the suppression of HBV replication. We provide evidence suggesting that Keap1 interacts with HBx, leading to Nrf2 activation and inhibition of HBV replication via suppression of HBV core promoter activity. This study raises the possibility that activation of the Nrf2/ARE signaling pathway is a potential therapeutic strategy against HBV. Our findings may contribute to an improved understanding of the negative regulation of HBV replication by the antioxidant response.
Assuntos
Vírus da Hepatite B , Hepatite B , Proteína 1 Associada a ECH Semelhante a Kelch , Transdução de Sinais , Replicação Viral , Humanos , Elementos de Resposta Antioxidante , Hepatite B/genética , Vírus da Hepatite B/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse OxidativoRESUMO
Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Replicação Viral , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/virologia , Antivirais/farmacologia , Transcrição Gênica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Elementos de Resposta Antioxidante/efeitos dos fármacos , Linhagem Celular , HumanosRESUMO
Actin-interacting proteins are important molecules for filament assembly and cytoskeletal signaling within vascular endothelium. Disruption in their interactions causes endothelial pathogenesis through redox imbalance. Actin filament redox regulation remains largely unexplored, in the context of pharmacological treatment. This work focused on the peptidyl methionine (M) redox regulation of actin-interacting proteins, aiming at elucidating its role on governing antioxidative signaling and response. Endothelial EA.hy926 cells were subjected to treatment with salvianolic acid B (Sal B) and tert-butyl-hydroperoxide (tBHP) stimulation. Mass spectrometry was employed to characterize redox status of proteins, including actin, myosin-9, kelch-like erythroid-derived cap-n-collar homology-associated protein 1 (Keap1), plastin-3, prelamin-A/C and vimentin. The protein redox landscape revealed distinct stoichiometric ratios or reaction site transitions mediated by M sulfoxide reductase and reactive oxygen species. In comparison with effects of tBHP stimulation, Sal B treatment prevented oxidation at actin M325, myosin-9 M1489/1565, Keap1 M120, plastin-3 M592, prelamin-A/C M187/371/540 and vimentin M344. For Keap1, reaction site was transitioned within its scaffolding region to the actin ring. These protein M oxidation regulations contributed to the Sal B cytoprotective effects on actin filament. Additionally, regarding the Keap1 homo-dimerization region, Sal B preventive roles against M120 oxidation acted as a primary signal driver to activate nuclear factor erythroid 2-related factor 2 (Nrf2). Transcriptional splicing of non-POU domain-containing octamer-binding protein was validated during the Sal B-mediated overexpression of NAD(P)H dehydrogenase [quinone] 1. This molecular redox regulation of actin-interacting proteins provided valuable insights into the phenolic structures of Sal B analogs, showing potential antioxidative effects on vascular endothelium.
Assuntos
Actinas , Antioxidantes , Benzofuranos , Depsídeos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Actinas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Vimentina/metabolismo , Estresse Oxidativo , Metionina , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Proteínas do Citoesqueleto/metabolismo , Miosinas/metabolismo , Miosinas/farmacologiaRESUMO
Sinomenine is a pure alkaloid isolated from Sinomenium acutum. This study is aimed to investigate the critical role of the nuclear factor erythroid 2-related factor 2 (Nrf2)-kelch-like ECH-associated protein-1(Keap1)-antioxidant response element (ARE) antioxidative signaling pathway in protecting sinomenine against H2O2-induced oxidative injury. Cytotoxicity and antioxidant experiments to initially determine the protective effects of sinomenine show that sinomenine has no effect on the decreased cell viability and presents similar potency in scavenging all three free radicals. The binding affinity between sinomenine and Keap1 was determined via fluorescence polarization assay, with IC50 of 13.52 µM. Quantum chemical calculation and theoretical simulation illustrated that sinomenine located into the Nrf2-binding site of Keap1 via hydrophobic and hydrogen interactions, showing high stability and binding affinity. On the basis of the stable binding of sinomenine with Keap1, sinomenine efficiently induced nuclear translocation of Nrf2, and increased in ARE activity in a concentration-dependent manner. Quantitative polymerase chain reaction provided further evidences that sinomenine-induced protection upregulated ARE-dependent genes, such as NAD(P)H quinone oxidoreductase 1, hemeoxygenase-1, and glutamate-cysteine ligase modiï¬er subunit. Western blot confirmed that sinomenine increased the expressions of these antioxidative enzymes. Taken together, in vitro and in silico evaluations demonstrate that sinomenine inhibits the binding of Keap1 to Nrf2, promotes the nuclear accumulation of Nrf2 and thus leads to the upregulated expressions of Nrf2-dependent antioxidative genes. Our findings also highlight the use of sinomenine for pharmacological or therapeutic regulation of the Nrf2-Keap1-ARE system, which is a novel strategy to prevent the progression of oxidative injury.
Assuntos
Elementos de Resposta Antioxidante , Antioxidantes , Morfinanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , NADH NADPH Oxirredutases/genéticaRESUMO
As a dominant mycotoxin, zearalenone (ZEA) has attracted extensive attention due to its estrogen-like effect and oxidative stress damage in cells. In order to find a way to relieve cell oxidative stress damage caused by ZEA, we treated goat granulosa cells (GCs) with ZEA and did a whole transcriptome sequencing. The results showed that the expression level of Sesterin2 (SESN2) was promoted extremely significantly in the ZEA group (p < .01). In addition, our research demonstrated that SESN2 could regulate oxidative stress level in GCs through Recombinant Kelch Like ECH Associated Protein 1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. The overexpression of SESN2 could reduce the oxidative damage, whereas knockdown of SESN2 would aggravate the oxidative damage caused by ZEA. What's more, microRNA (miRNA) chi-miR-130b-3p can bind to SESN2 3'-untranslated region (3'UTR) to regulate the expression of SESN2. The mimics/inhibition of chi-miR-130b-3p would have an effect on oxidative damage triggered by ZEA in GCs as well. In summary, these results elucidate a new pathway by which chi-miR-130b-3p affects the KEAP1/NRF2 pathway in GCs by modulating SESN2 expression in response to ZEA-induced oxidative stress damage.
Assuntos
MicroRNAs , Zearalenona , Animais , Feminino , Zearalenona/metabolismo , Zearalenona/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Zea mays/genética , Zea mays/metabolismo , MicroRNAs/metabolismo , Cabras/metabolismo , Estresse Oxidativo , Transdução de SinaisRESUMO
Ferroptosis is a regulatory cell death process pivotal in myocardial ischemia-reperfusion (I/R) injury. However, the precise mechanism underlying myocardial ferroptosis remains less known. In this study, we investigated the pathophysiological mechanisms of methylmalonic acid (MMA) associated with ferroptosis activation in cardiomyocytes after I/R. We found an increase level of MMA in patients with acute myocardial injury after reperfusion and AC16 cells under hypoxia/reoxygenation (H/R) condition. MMA treatment was found to be associated with excessive oxidative stress in cardiomyocytes, leading to ferroptosis-related myocardial injury. In mice with I/R injury, MMA treatment aggravated myocardial oxidative stress and ferroptosis, which amplified the myocardial infarct size and cardiac dysfunction. Mechanistically, MMA promoted NOX2/4 expression to increase reactive oxygen species (ROS) production in cardiomyocytes, aggravating myocardial injury. Notably, the increased ROS further activated ferroptosis by inhibiting solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression. In addition, MMA decreased the ectopic nuclear distribution of nuclear factor E2-related factor 2 (NRF2) by increasing the interaction between NRF2 and kelch-like ECH-associated protein 1 (KEAP1). This impeded the activation of GPX4/SLC7A11, downstream of NRF2, activating ferroptosis and aggravating myocardial cell injury. Collectively, our study indicates that MMA activates oxidative stress and ROS generation, which induces ferroptosis to exacerbate cardiomyocyte injury in an I/R model. These findings may provide a new perspective for the clinical treatment of I/R injury and warrant further investigation.
Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio , Proteína 1 Associada a ECH Semelhante a Kelch , Ácido Metilmalônico , Fator 2 Relacionado a NF-E2 , MitocôndriasRESUMO
NEK2 is a serine/threonine protein kinase that is involved in regulating the progression of various tumors. Our previous studies have found that NEK2 is highly expressed in gastric cancer and suggests that patients have a worse prognosis. However, its role and mechanism in gastric cancer are only poorly studied. In this study, we established a model of ferroptosis induced by RSL3 or Erastin in AGS cells in vitro, and konckdown NEK2, HOMX1, Nrf2 by siRNA. The assay kit was used to analyzed cell viability, MDA levels, GSH and GSSG content, and FeRhoNox™-1 fluorescent probe, BODIPY™ 581/591 C11 lipid oxidation probe, CM-H2DCFDA fluorescent probe were used to detected intracellular Fe2+, lipid peroxidation, and ROS levels, respectively. Calcein-AM/PI staining was used to detect the ratio of live and dead cells, qRT-PCR and Western blot were used to identify the mRNA and protein levels of genes in cells, immunofluorescence staining was used to analyze the localization of Nrf2 in cells, RNA-seq was used to analyze changes in mRNA expression profile, and combined with the FerrDb database, ferroptosis-related molecules were screened to elucidate the impact of NEK2 on the sensitivity of gastric cancer cells to ferroptosis. We found that inhibition of NEK2 could enhance the sensitivity of gastric cancer cells to RSL3 and Erastin-induced ferroptosis, which was reflected in the combination of inhibition of NEK2 and ferroptosis induction compared with ferroptosis induction alone: cell viability and GSH level were further decreased, while the proportion of dead cells, Fe2+ level, ROS level, lipid oxidation level, MDA level, GSSG level and GSSG/GSH ratio were further increased. Mechanism studies have found that inhibiting NEK2 could promote the expression of HMOX1, a gene related to ferroptosis, and enhance the sensitivity of gastric cancer cells to ferroptosis by increasing HMOX1. Further mechanism studies have found that inhibiting NEK2 could promote the ubiquitination and proteasome degradation of Keap1, increase the level of Nrf2 in the nucleus, and thus promote the expression of HMOX1. This study confirmed that NEK2 can regulate HMOX1 expression through Keap1/Nrf2 signal, and then affect the sensitivity of gastric cancer cells to ferroptosis, enriching the role and mechanism of NEK2 in gastric cancer.
RESUMO
GAD67 impacts insomnia as a key enzyme catalysing the conversion of glutamate (Glu) to gamma-aminobutyric acid (GABA). Senegenin enhances neuroprotection and is used widely to treat insomnia and other neurological diseases. This study aimed to investigate how senegenin regulates insomnia through a GAD67-mediated signalling pathway. We measured GAD67 expression levels in insomnia patients and evaluated the expression levels of GAD67 and Keap1/Nrf2/Parkin/PINK1-related cytokines following GAD67 lentiviral transfection in PC12 cells and in rat models. We also assessed cellular reactive oxygen species (ROS) and mitochondrial membrane potential levels. Additionally, EEG/EMG was used to analyse the sleep phases of rats and to assess memory and exploration functions. Pathological changes and the expression of GAD67 and sleep-related proteins in the hippocampus were examined. The results showed that GAD67 expression was increased in insomnia patients, ROS levels were elevated, and the mitochondrial membrane potential was decreased in the GAD67-KD group. Insomnia rats exhibited changes in sleep rhythm, learning, and exploration dysfunction, pathological changes in the CA1 region of the hippocampus, and differential expression of GAD67 and sleep-related factors. Inhibitory neurofactor expression levels were decreased in insomnia rats, showing a positive correlation in the GAD67-KD group and a negative correlation in the GAD67-OE group. Conversely, excitatory factor expression levels were increased in insomnia rats, showing a positive correlation in the GAD67-KD group and a negative correlation in the GAD67-OE group. Senegenin intervention modulated cytokine expression levels. In conclusion, GAD67 negatively regulates insomnia, and senegenin can regulate insomnia by mediating the expression of cytokines in the GAD67-regulated Keap1/Nrf2/Parkin/PINK1 pathway.
RESUMO
OBJECTIVES: The gut-liver axis disruption is a unified pathogenetic principle of cholestatic liver disease (CSLD). Increased gut permeability is the leading cause of gut-liver axis disruption. HO-1 is capable of protecting against gut-liver axis injury. However, it has rarely been reported whether autophagy is involved in HO-1 protecting gut-liver barrier integrity and the underlying mechanism. MATERIALS AND METHODS: Mice underwent bile duct ligation (BDL) was established as CSLD model in vivo. Caco-2 cells with LPS treatment was established as in vitro cell model. Immunofluorescence, western blot and transepithelial electrical resistance (TER) assay were used to observe epithelial tight junction (TJ) and autophagy. Liver injury and fibrosis were evaluated as well through H&E staining, masson staining, sirius red staining and ELISA. RESULTS AND CONCLUSIONS: Our study demonstrated that the epithelial TJ and TER were notably reduced both in BDL mice and in LPS treated intestinal epithelial cells. Increased HO-1 expression could significantly induce intestinal epithelial cell autophagy. Additionally, this increased autophagy level reversed the reduction effects of BDL or LPS on epithelial TJ and TER in vivo and in vitro, therefore decreased transaminase level in serum and relieved liver fibrosis in BDL mice. Besides, increased autophagy level in turn upregulated the expression of HO-1 by p62 degradation of Keap1 and subsequent activation of Nrf2 pathway. Collectively, these results indicate that HO-1 reduces gut permeability by enhancing autophagy level in CSLD, the increased autophagy establishes a HO-1-p62-Nrf2 positive feedback loop to further improve gut-liver axis disruption. Therefore, our study confirms the critical role of autophagy in HO-1 ameliorating gut-liver axis injury during CSLD, highlighting HO-1 as a promising therapeutic target.
Assuntos
Autofagia , Colestase , Modelos Animais de Doenças , Heme Oxigenase-1 , Fator 2 Relacionado a NF-E2 , Permeabilidade , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Humanos , Heme Oxigenase-1/metabolismo , Células CACO-2 , Colestase/metabolismo , Colestase/patologia , Masculino , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Fígado/metabolismo , Fígado/patologia , Junções Íntimas/metabolismo , Ductos Biliares/cirurgia , Lipopolissacarídeos , Transdução de Sinais , Proteínas de MembranaRESUMO
BACKGROUND: Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied. METHODS: QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg. RESULTS: In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and ß-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1ß and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels. CONCLUSION: In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.
Assuntos
Cádmio , Inflamação , Estresse Oxidativo , Piroptose , Fumarato de Quetiapina , Estresse Oxidativo/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Animais , Cádmio/toxicidade , Fumarato de Quetiapina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismoRESUMO
Nuclear factor erythroid 2-related factor 2 (Nrf2) functions as a central regulator in modulating the activities of diverse antioxidant enzymes, maintaining cellular redox balance, and responding to oxidative stress (OS). Kelch-like ECH-associated protein 1 (Keap1) serves as a principal negative modulator in controlling the expression of detoxification and antioxidant genes. It is widely accepted that OS plays a pivotal role in the pathogenesis of various diseases. When OS occurs, leading to inflammatory infiltration of neutrophils, increased secretion of proteases, and the generation of large quantities of reactive oxygen radicals (ROS). These ROS can oxidize or disrupt DNA, lipids, and proteins either directly or indirectly. They also cause gene mutations, lipid peroxidation, and protein denaturation, all of which can result in disease. The Keap1-Nrf2 signaling pathway regulates the balance between oxidants and antioxidants in vivo, maintains the stability of the intracellular environment, and promotes cell growth and repair. However, the antioxidant properties of the Keap1-Nrf2 signaling pathway are reduced in disease. This review overviews the mechanisms of OS generation, the biological properties of Keap1-Nrf2, and the regulatory role of its pathway in health and disease, to explore therapeutic strategies for the Keap1-Nrf2 signaling pathway in different diseases.
Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , OxirreduçãoRESUMO
BACKGROUND: The Keap1-Nrf2 pathway serves as a central regulator that mediates transcriptional responses to xenobiotic and oxidative stimuli. Recent studies have shown that Keap1 and Nrf2 can regulate transcripts beyond antioxidant and detoxifying genes, yet the underlying mechanisms remain unclear. Our research has uncovered that Drosophila Keap1 (dKeap1) and Nrf2 (CncC) proteins can control high-order chromatin structure, including heterochromatin. METHODS AND RESULTS: In this study, we identified the molecular interaction between dKeap1 and lamin Dm0, the Drosophila B-type lamin responsible for the architecture of nuclear lamina and chromatin. Ectopic expression of dKeap1 led to an ectopic localization of lamin to the intra-nuclear area, corelated with the spreading of the heterochromatin marker H3K9me2 into euchromatin regions. Additionally, mis-regulated dKeap1 disrupted the morphology of the nuclear lamina. Knocking down of dKeap1 partially rescued the lethality induced by lamin overexpression, suggesting their genetic interaction during development. CONCLUSIONS: The discovered dKeap1-lamin interaction suggests a novel role for the Keap1 oxidative/xenobiotic response factor in regulating chromatin architecture.
Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Laminas , Lâmina Nuclear , Xenobióticos , Animais , Cromatina/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Heterocromatina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Laminas/genética , Laminas/química , Laminas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Xenobióticos/metabolismo , Núcleo Celular/metabolismo , Lâmina Nuclear/metabolismoRESUMO
Molecular hybridization between structural fragments from the structures of curcumin (1) and resveratrol (2) was used as a designing tool to generate a new N-acyl-cinnamoyl-hydrazone hybrid molecular architecture. Twenty-eight new compounds were synthesized and evaluated for multifunctional activities related to Parkinson's disease (PD), including neuroprotection, antioxidant, metal chelating ability, and Keap1/Nrf2 pathway activation. Compounds 3b (PQM-161) and 3e (PQM-164) were highlighted for their significant antioxidant profile, acting directly as induced free radical stabilizers by DPPH and indirectly by modulating intracellular inhibition of t-BOOH-induced ROS formation in neuronal cells. The mechanism of action was determined as a result of Keap1/Nrf2 pathway activation by both compounds and confirmed by different experiments. Furthermore, compound 3e (PQM-164) exhibited a significant effect on the accumulation of α-synuclein and anti-inflammatory activity, leading to an expressive decrease in gene expression of iNOS, IL-1ß, and TNF-α. Overall, these results highlighted compound 3e as a promising and innovative multifunctional drug prototype candidate for PD treatment.
Assuntos
Hidrazonas , Fármacos Neuroprotetores , Doença de Parkinson , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Hidrazonas/farmacologia , Hidrazonas/química , Hidrazonas/síntese química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Desenho de Fármacos , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Animais , Cinamatos/farmacologia , Cinamatos/química , Cinamatos/síntese químicaRESUMO
Colostrum/Milk is a chief repertoire of antioxidant peptides. Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a viable target for Parkinson's Disease (PD), as this pathway deduced to be impaired in PD. Cullin-3 is one of the crucial E3 ligase responsible for its regulation. The present study screened peptide libraries of buffalo colostrum & milk peptides for Cullin-3 inhibition, thus ensuing activation of Nrf2 to alleviate the molecular etiopathology in PD using the C. elegans as a model. The structure was modelled, binding sites analyzed and peptide-interactions analyzed by docking. Among the 55 sequences (≤1 kDa), the peptide SFVSEVPEL having the highest dock score (-16.919) was synthesized and evaluated for its effects on oxidative stress markers, antioxidant enzymes, neurochemical marker and Nrf2/Skn-1 levels. The lead peptide alleviated the oxidative pathophysiology and behavioural deficits associated with PD in C. elegans.
Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Feminino , Gravidez , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Antioxidantes/farmacologia , Búfalos/metabolismo , Proteínas Culina/metabolismo , Caenorhabditis elegans/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Colostro/metabolismo , Estresse Oxidativo , Peptídeos/farmacologia , Peptídeos/metabolismo , Fármacos Neuroprotetores/farmacologiaRESUMO
This study investigated the stability of milk fat globule membrane (MFGM) protein under simulated gastrointestinal conditions using an in vitro enzymatic digestion method. The optimal hydrolysis conditions were determined by monitoring the changes in particle size and zeta-potential of MFGM protein hydrolysates over time. Furthermore, the distribution of small molecular weight peptides with antioxidant activity was explored through DEAE-52 combined with in vitro cell experiments. Two novel antioxidant peptides (TGIIT and IITQ) were identified based on molecular docking technology and evaluated their potential scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS+) radicals. TGIIT and IITQ also demonstrated remarkable abilities in promoting mitochondrial biogenesis and activating Keap1/Nrf2 signaling pathway, which can effectively counteract skeletal muscle dysfunction induced by oxidative stress. Thus, MFGM-derived antioxidant peptides have the potential to be employed in food to regulate muscle protein metabolism and alleviate sarcopenia.
Assuntos
Antioxidantes , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , DigestãoRESUMO
As a major contributor to neonatal death and neurological sequelae, hypoxic-ischemic encephalopathy (HIE) lacks a viable medication for treatment. Oxidative stress induced by hypoxic-ischemic brain damage (HIBD) predisposes neurons to ferroptosis due to the fact that neonates accumulate high levels of polyunsaturated fatty acids for their brain developmental needs but their antioxidant capacity is immature. Ferroptosis is a form of cell death caused by excessive accumulation of iron-dependent lipid peroxidation and is closely associated with mitochondria. Mitophagy is a type of mitochondrial quality control mechanism that degrades damaged mitochondria and maintains cellular homeostasis. In this study we employed mitophagy agonists and inhibitors to explore the mechanisms by which mitophagy exerted ferroptosis resistance in a neonatal rat HIE model. Seven-days-old neonatal rats were subjected to ligation of the right common carotid artery, followed by exposure to hypoxia for 2 h. The neonatal rats were treated with a mitophagy activator Tat-SPK2 peptide (0.5, 1 mg/kg, i.p.) 1 h before hypoxia, or in combination with mitochondrial division inhibitor-1 (Mdivi-1, 20 mg/kg, i.p.), and ferroptosis inhibitor Ferrostatin-1 (Fer-1) (2 mg/kg, i.p.) at the end of the hypoxia period. The regulation of ferroptosis by mitophagy was also investigated in primary cortical neurons or PC12 cells in vitro subjected to 4 or 6 h of OGD followed by 24 h of reperfusion. We showed that HIBD induced mitochondrial damage, ROS overproduction, intracellular iron accumulation, lipid peroxidation and ferroptosis, which were significantly reduced by the pretreatment with Tat-SPK2 peptide, and aggravated by the treatment with Mdivi-1 or BNIP3 knockdown. Ferroptosis inhibitors Fer-1 and deferoxamine B (DFO) reversed the accumulation of iron and lipid peroxides caused by Mdivi-1, hence reducing ferroptosis triggered by HI. We demonstrated that Tat-SPK2 peptide-activated BNIP3-mediated mitophagy did not alleviate neuronal ferroptosis through the GPX4-GSH pathway. BNIP3-mediated mitophagy drove the P62-KEAP1-NRF2 pathway, which conferred ferroptosis resistance by maintaining iron and redox homeostasis via the regulation of FTH1, HO-1, and DHODH/FSP1-CoQ10-NADH. This study may provide a new perspective and a therapeutic drug for the treatment of neonatal HIE.