Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Toxicol Pathol ; 52(2-3): 88-98, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38742644

RESUMO

Emerging urinary kidney safety biomarkers have been evaluated in recent years and have been shown to be superior to the serum parameters blood urea nitrogen (BUN) and creatinine (sCr) for monitoring kidney injury in the proximal tubule. However, their potential application in differentiating the location of the initial kidney injury (eg, glomerulus vs tubule) has not been fully explored. Here, we assessed the performance of two algorithms that were constructed using either an empirical or a mathematical model to predict the site of kidney injury using a data set consisting of 22 rat kidney toxicity studies with known urine biomarker and histopathologic outcomes. Two kidney safety biomarkers used in both models, kidney injury molecule 1 (KIM-1) and albumin (ALB), were the best performers to differentiate glomerular injury from tubular injury. The performance of algorithms using these two biomarkers against the gold standard of kidney histopathologic examination showed high sensitivity in differentiating the location of the kidney damage to either the glomerulus or the proximal tubules. These data support the exploration of such an approach for use in clinical settings, leveraging urinary biomarker data to aid in the diagnosis of either glomerular or tubular injury where histopathologic assessments are not conducted.


Assuntos
Biomarcadores , Glomérulos Renais , Animais , Ratos , Glomérulos Renais/patologia , Biomarcadores/urina , Biomarcadores/sangue , Albuminúria , Masculino , Túbulos Renais/patologia , Algoritmos , Ratos Sprague-Dawley , Albuminas/metabolismo , Albuminas/análise , Receptor Celular 1 do Vírus da Hepatite A/análise , Injúria Renal Aguda/urina , Injúria Renal Aguda/patologia , Moléculas de Adesão Celular
2.
Arch Toxicol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361050

RESUMO

Thallium (Tl) is one of the most toxic heavy metals, associated with accidental poisoning and homicide. It causes acute and chronic systemic diseases, including gastrointestinal and cardiovascular diseases and kidney failure. However, few studies have investigated the mechanism by which Tl induces acute kidney injury (AKI). This study investigated the toxic effects of Tl on the histology and function of rat kidneys using biochemical and histopathological assays after intraperitoneal thallium sulfate administration (30 mg/kg). Five days post-administration, rats exhibited severely compromised kidney function. Low-vacuum scanning electron microscopy revealed excessive calcium (Ca) deposition in the outer medulla of Tl-loaded rats, particularly in the medullary thick ascending limb (mTAL) of the loop of Henle. Tl accumulated in the mTAL, accompanied by mitochondrial dysfunction in this segment. Tl-loaded rats showed reduced expression of kidney transporters and channels responsible for Ca2+ reabsorption in the mTAL. Pre-administration of the Na-K-Cl cotransporter 2 (NKCC2) inhibitor furosemide alleviated Tl accumulation and mitochondrial abnormalities in the mTAL. These findings suggest that Tl nephrotoxicity is associated with preferential Tl reabsorption in the mTAL via NKCC2, leading to mTAL mitochondrial dysfunction and disrupted Ca2+ reabsorption, culminating in mTAL-predominant Ca crystal deposition and AKI. These findings on the mechanism of Tl nephrotoxicity may contribute to the development of novel therapeutic approaches to counter Tl poisoning. Moreover, the observation of characteristic Ca crystal deposition in the outer medulla provides new insights into diagnostic challenges in Tl intoxication.

3.
Environ Toxicol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105312

RESUMO

Aluminum oxide nanoparticles (Al2O3 NPs) are among the most extensively utilized nanoparticles in nanotechnology and that have negative impacts on the environment. Therefore, the intention of this work is to investigate the protective and therapeutic effects of curcumin in nanoform (Cur NPs) against Al2O3 NPs induced kidney toxicity, oxidative stress, DNA damage, and changes in necrosis factor alpha (TNFα) and proliferating cell nuclear antigen (PCNA) expressions in male rats. Fifty healthy adult male were divided into five groups [G1, control; G2, received 50 mg/kg/day for 4 weeks of Cur NPs orally; G3, received 6 mg/kg BW orally for 4 weeks of Al2O3 NPs; G4, (Cur NPs + Al2O3 NPs) received Cur NPs and Al2O3 NPs at a dose similar to G2 and G3, respectively for 4 weeks; G5, (Al2O3 NPs + Cur NPs) received Al2O3 NPs at a dose similar to G3 for 4 weeks then received Cur NPs at a dose similar to G2 for another 4 weeks]. Current results revealed that Al2O3 NPs induced a significant elevation in serum urea, creatinine, chloride, calcium, kidney malondialdehyde (MDA), DNA damage, injury, TNFα and PCNA expressions and a significant depletion in serum potassium, kidney superoxide dismutase (SOD), glutathione (GSH) as compared to control. On the other hand, treatments of Al2O3 NPs with Cur NPs induced modulation in all altered parameters and improved kidney functions and structure, with best results for the Al2O3 NPs + Cur NPs than Cur NPs + Al2O3 NPs. In conclusion, Cur NPs has the capacity to mitigate the renal toxicity induced by Al2O3 NPs in male albino rats.

4.
Ren Fail ; 46(2): 2319330, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39049729

RESUMO

AIM: This study explores the possible therapeutic role of rats and mice bone marrow-derived mesenchymal stem cells (BM-MSCs) on renal damage and toxicity brought on by carbon tetrachloride (CCl4) in Wistar rats. METHODS: Following an intraperitoneal injection of CCl4 (0.5 mL/kg b.w. twice weekly) for eight weeks, male Wistar rats were intravenously treated with rats and mice BM-MSCs (1 × 106 cells in 0.2 mL Dulbecco's Modified Eagle Medium (DMEM)/rat/week) a week for four weeks. Kidney functions were evaluated and kidney samples were examined using hematoxylin and eosin (H&E), Masson's trichrome (MT) staining techniques, and electron microscopy analysis. Kidney cyclooxygenase-2 (COX-2), protein 53 (p53), and tumor necrosis factor-α (TNF-α) were detected by immunohistochemical staining techniques. Additionally, bioindicators of oxidative stress and antioxidant defense systems were identified in kidney tissue. RESULTS: In CCl4-injected rats, serum creatinine, urea, and uric acid levels significantly increased, as did renal lipid peroxidation (LPO), while superoxide dismutase, glutathione peroxidase (GPx), glutathione (GSH) transferase, and GSH levels significantly dropped in the kidneys. Histologically, the kidneys displayed a wide range of structural abnormalities, such as glomerular shrinkage, tubular dilations, inflammatory leukocytic infiltration, fibroblast proliferation, and elevated collagen content. Inflammatory cytokines like COX-2 and TNF-α as well as the pro-apoptotic mediator p53 were considerably upregulated. Treatment of BM-MSCs from mice and rats with CCl4-injected rats considerably reduced the previously noted abnormalities. CONCLUSIONS: By boosting antioxidant defense and reducing apoptosis and inflammation, BM-MSCs from mice and rats were able to enhance kidney function and histological integrity in rats that had received CCl4 injections.


Assuntos
Tetracloreto de Carbono , Fibrose , Rim , Células-Tronco Mesenquimais , Animais , Masculino , Camundongos , Ratos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/terapia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/induzido quimicamente , Tetracloreto de Carbono/toxicidade , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Rim/patologia , Peroxidação de Lipídeos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
5.
Toxicol Pathol ; 51(1-2): 15-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078689

RESUMO

Activating mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are associated with Parkinson disease (PD), prompting development of LRRK2 inhibitors as potential treatment for PD. However, kidney safety concerns have surfaced from LRRK2 knockout (KO) mice and rats and from repeat-dose studies in rodents administered LRRK2 inhibitors. To support drug development of this therapeutic target, we conducted a study of 26 weeks' duration in 2-month-old wild-type and LRRK2 KO Long-Evans Hooded rats to systematically examine the performance of urinary safety biomarkers and to characterize the nature of the morphological changes in the kidneys by light microscopy and by ultrastructural evaluation. Our data reveal the time course of early-onset albuminuria at 3 and 4 months in LRRK2 KO female and male rats, respectively. The increases in urine albumin were not accompanied by concurrent increases in serum creatinine, blood urea nitrogen, or renal safety biomarkers such as kidney injury molecule 1 or clusterin, although morphological alterations in both glomerular and tubular structure were identified by light and transmission electron microscopy at 8 months of age. Diet optimization with controlled food intake attenuated the progression of albuminuria and associated renal changes.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Proteínas Serina-Treonina Quinases , Animais , Feminino , Masculino , Camundongos , Ratos , Albuminúria/patologia , Biomarcadores , Rim/patologia , Leucina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos Knockout , Mutação , Doença de Parkinson/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Long-Evans
6.
Environ Res ; 237(Pt 1): 116908, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597833

RESUMO

The increasing use of the herbicide mixture of glyphosate, dicamba and 2-4-D to deal with glyphosate-resistant weeds raises concerns regarding human health and environmental risks. This study aimed to evaluate the effects of developmental exposure to glyphosate and a herbicide mixture containing glyphosate, dicamba and 2-4-D on rat dams' kidney and thyroid function and offspring's health. Pregnant Wistar rats were exposed from day-6 of gestation till weaning to regulatory relevant doses of glyphosate corresponding to the European Union (EU) acceptable daily intake (ADI; 0.5 mg/kg bw/day), and the no-observed-adverse-effect level (NOAEL; 50 mg/kg bw/day), and to a mixture of glyphosate, dicamba and 2,4-D all at the EU ADI (0.5, 0.002 and 0.3 mg/kg bw/day) respectively. After weaning the dams were sacrificed and blood and organs were collected. The pups' health was assessed by measuring viability, gestational and anogenital indices. Perinatal exposure to GLY alone and the herbicide mixture resulted in anti-androgenic effects in male offspring. In dams, exposure to glyphosate resulted in kidney glomerular and tubular dysfunction as well as increased thyroid hormone levels in a dose-dependent manner. Furthermore, exposure to the herbicide mixture resulted in effects similar to those observed with glyphosate at the NOAEL, suggesting at least an additive effect of the herbicide mixture at doses individually considered safe for humans.

7.
Ecotoxicol Environ Saf ; 242: 113842, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810668

RESUMO

Because of essential role in homeostasis of the body fluid and excretion of wastes, kidney damage can lead to severe impacts on health and survival of humans. For most chemicals, nephrotoxic potentials and associated mechanisms are unclear. Hence, fast and sensitive screening measures for nephrotoxic chemicals are required. In this study, the utility of zebrafish (Danio rerio) was evaluated for the investigation of chemical-induced kidney toxicity and associated modes of toxicity, based on the literature review. Zebrafish has a well-understood biology, and many overlapping physiological characteristics with mammals. One such characteristic is its kidneys, of which histology and functions are similar to those of mammals, although unique differences of zebrafish kidneys, such as kidney marrow, should be noted. Moreover, the zebrafish kidney is simpler in structure and easy to observe. For these advantages, zebrafish has been increasingly used as an experimental model for screening nephrotoxicity of chemicals and for understanding related mechanisms. Multiple endpoints of zebrafish model, from functional level, i.e., glomerular filtration, to transcriptional changes of key genes, have been assessed to identify chemical-induced kidney toxicities, and to elucidate underlying mechanisms. The most frequently studied mechanisms of chemical-induced nephrotoxicity in zebrafish include oxidative stress, inflammation, DNA damage, apoptosis, fibrosis, and cell death. To date, several pharmaceuticals, oxidizing agents, natural products, biocides, alcohols, and consumer chemicals have been demonstrated to exert different types of kidney toxicities in zebrafish. The present review shows that zebrafish model can be efficiently employed for quick and reliable assessment of kidney damage potentials of chemicals, and related toxic mechanisms. The toxicological information obtained from this model can be utilized for identification of nephrotoxic chemicals and hence for protection of public health.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Embrião não Mamífero/metabolismo , Humanos , Mamíferos/metabolismo , Estresse Oxidativo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
8.
Toxicol Appl Pharmacol ; 423: 115578, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34004237

RESUMO

Sotorasib is a first-in class KRASG12C covalent inhibitor in clinical development for the treatment of tumors with the KRAS p.G12C mutation. In the nonclinical toxicology studies of sotorasib, the kidney was identified as a target organ of toxicity in the rat but not the dog. Renal toxicity was characterized by degeneration and necrosis of the proximal tubular epithelium localized to the outer stripe of the outer medulla (OSOM), which suggested that renal metabolism was involved. Here, we describe an in vivo mechanistic rat study designed to investigate the time course of the renal toxicity and sotorasib metabolites. Renal toxicity was dose- and time-dependent, restricted to the OSOM, and the morphologic features progressed from vacuolation and necrosis to regeneration of tubular epithelium. The renal toxicity correlated with increases in renal biomarkers of tubular injury. Using mass spectrometry and matrix-assisted laser desorption/ionization, a strong temporal and spatial association between renal toxicity and mercapturate pathway metabolites was observed. The rat is reported to be particularly susceptible to the formation of nephrotoxic metabolites via this pathway. Taken together, the data presented here and the literature support the hypothesis that sotorasib-related renal toxicity is mediated by a toxic metabolite derived from the mercapturate and ß-lyase pathway. Our understanding of the etiology of the rat specific renal toxicity informs the translational risk assessment for patients.


Assuntos
Acetilcisteína/metabolismo , Injúria Renal Aguda/metabolismo , Piperazinas/metabolismo , Piperazinas/toxicidade , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/metabolismo , Piridinas/toxicidade , Pirimidinas/metabolismo , Pirimidinas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
9.
Biomed Chromatogr ; 35(6): e5064, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33450093

RESUMO

Fructus Psoraleae (FP) is commonly used in the treatment of vitiligo, osteoporosis, and other diseases in clinic. As a result, the toxicity caused by FP is frequently encountered in clinical practice; however, the underlying toxicity mechanism remains unclear. The purpose of this study was to investigate the toxic effect of the ethanol extract of FP (EEFP) in rats and to explore the underlying toxic mechanisms using a metabolomics approach. The toxicity was evaluated by hematological indicators, biochemical indicators, and histological changes. In addition, a serum metabolomic method based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight MS (UPLC-Q-TOF-MS) had been established to investigate the hepatorenal toxicity of FP. Multivariate statistical approaches, such as partial least squares discriminant analysis and orthogonal partial least squares discriminant analysis, were built to evaluate the toxic effects of FP and find potential biomarkers and metabolic pathways. Ten endogenous metabolites had been identified and the related metabolic pathways were involved in phospholipid metabolism, amino acid metabolism, purine metabolism, and antioxidant system activities. The results showed that long-term exposure to high-dose EEFP may cause hepatorenal toxicity in rats. Therefore, serum metabolomics can improve the diagnostic efficiency of FP toxicity and make it more accurate and comprehensive.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Extratos Vegetais/toxicidade , Psoralea/química , Animais , Biomarcadores/sangue , Rim/patologia , Fígado/patologia , Masculino , Espectrometria de Massas , Metaboloma/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
10.
Ecotoxicol Environ Saf ; 203: 111008, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678766

RESUMO

Glutathione peroxidases (Gpxs) play vital roles in elimination of hydroperoxide and other reactive oxygen species through catalyzing reduced glutathione to protect from oxidative stress caused by heavy metals such as lead. Among the family of Gpxs, Gpx3 is the only extracellular enzyme synthesized in the kidney and actively secreted into the plasma. This study investigated mechanisms of lead-induced GPx3 inactivation both at the animal and molecular levels. Six-week-old mice were randomly divided into 4 groups, and exposed to different lead concentrations (0, 1, 2 and 4 g/L) in their drinking water for 4 weeks. Contents of GPx3 in blood serum were tested by enzyme-linked immunosorbent assay (ELISA) and the mRNA levels of Gpx3 in mice nephrocytes were determined by quantitative real-time PCR (qPCR), both of which showed significantly inhibited at higher lead concentrations accompanied by the decreased Gpx3 activities and the elevated levels of malondialdehyde (MDA) in nephrocytes, which indicated that lead could induce strongly oxidative stress through affecting Gpx3 function. So we further investigated molecular mechanisms of GPx3 inactivation caused by lead with multiple spectroscopic techniques, isothermal titration calorimetry (ITC) and molecular docking studies in vitro. Results showed that lead statically quenched GPx3 fluorescence by tightly binding to the structural domain of GPx3 in a 3:1 ratio with high binding affinity (K = 3.1(±0.087) × 107 mol-1). Further investigation of the conformation of GPx3 by UV-visible spectroscopy and circular dichroism (CD) spectroscopy indicated that lead changed the secondary structure of GPx3 by loosening the GPx3 skeleton and decreasing the hydrophobicity around tryptophan residues. This work proved in vivo and in vitro experiments that lead could induce oxidative stress in mice nephrocytes by interacting with GPx3.


Assuntos
Glutationa Peroxidase/metabolismo , Rim/efeitos dos fármacos , Chumbo/toxicidade , Poluentes da Água/toxicidade , Animais , Glutationa Peroxidase/química , Rim/metabolismo , Rim/patologia , Chumbo/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Estrutura Secundária de Proteína , Selênio/metabolismo , Poluentes da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA