Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Mol Divers ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775996

RESUMO

To address the escalating rates of diabetes mellitus worldwide, there is a growing need for novel compounds. The demand for more affordable and efficient methods of managing diabetes is increasing due to the inevitable side effects associated with existing antidiabetic medications. In this present research, various chalcone-sulfonyl piperazine hybrid compounds (5a-k) were designed and synthesized to develop inhibitors against alpha-glucosidase and alpha-amylase. In addition, several spectroscopic methods, including FT-IR, 1H-NMR, 13C-NMR, and HRMS, were employed to confirm the exact structures of the synthesized derivatives. All synthesized compounds were evaluated for their ability to inhibit alpha-glucosidase and alpha-amylase in vitro using acarbose as the reference standard and they showed excellent to good inhibitory potentials. Compound 5k exhibited excellent inhibitory activity against alpha-glucosidase (IC50 = 0.31 ± 0.01 µM) and alpha-amylase (IC50 = 4.51 ± 1.15 µM), which is 27-fold more active against alpha-glucosidase and 7-fold more active against alpha-amylase compared to acarbose, which had IC50 values of 8.62 ± 1.66 µM for alpha-glucosidase and 30.97 ± 2.91 µM for alpha-amylase. It was discovered from the Lineweaver-Burk plot that 5k exhibited competitive inhibition against alpha-glucosidase. Furthermore, cytotoxicity screening assay results against human fibroblast HT1080 cells showed that all compounds had a good level of safety profile. To explore the binding interactions of the most potent compound (5k) with the active site of enzymes, molecular docking research was conducted, and the results obtained supported the experimental data.

2.
Arch Biochem Biophys ; 741: 109602, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084804

RESUMO

Although ADP-dependent sugar kinases were first described in archaea, at present, the presence of an ADP-dependent glucokinase (ADP-GK) in mammals is well documented. This enzyme is mainly expressed in hematopoietic lineages and tumor tissues, although its role has remained elusive. Here, we report a detailed kinetic characterization of the human ADP-dependent glucokinase (hADP-GK), addressing the influence of a putative signal peptide for endoplasmic reticulum (ER) destination by characterizing a truncated form. The truncated form revealed no significant impact on the kinetic parameters, showing only a slight increase in the Vmax value, higher metal promiscuity, and the same nucleotide specificity as the full-length enzyme. hADP-GK presents an ordered sequential kinetic mechanism in which MgADP is the first substrate to bind and AMP is the last product released, being the same mechanism described for archaeal ADP-dependent sugar kinases, in agreement with the protein topology. Substrate inhibition by glucose was observed due to sugar binding to nonproductive species. Although Mg2+ is an essential component for kinase activity, it also behaves as a partial mixed-type inhibitor for hADP-GK, mainly by decreasing the MgADP affinity. Regarding its distribution, phylogenetic analysis shows that ADP-GK's are present in a wide diversity of eukaryotic organisms although it is not ubiquitous. Eukaryotic ADP-GKs sequences cluster into two main groups, showing differences in the highly conserved sugar-binding motif reported for archaeal enzymes [NX(N)XD] where a cysteine residue is found instead of asparagine in a significant number of enzymes. Site directed mutagenesis of the cysteine residue by asparagine produces a 6-fold decrease in Vmax, suggesting a role for this residue in the catalytic process, probably by facilitating the proper orientation of the substrate to be phosphorylated.


Assuntos
Asparagina , Cisteína , Humanos , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Glucoquinase/química , Glucose/metabolismo , Cinética , Filogenia , Açúcares
3.
Environ Sci Technol ; 57(40): 15138-15152, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782022

RESUMO

Hymexazol is a volatile fungicide widely used in agriculture, causing its abundance in the atmosphere; thus, its atmospheric fate and conversion are of great importance when assessing its environmental impacts. Herein, we report a theoretical kinetic mechanism for the oxidation of hymexazol by OH radicals, as well as the subsequent reactions of its main products with O2 and then with NO by using the Rice-Ramsperger-Kassel-Marcus-based Master equation kinetic model on the potential energy surface explored at the ROCBS-QB3//M06-2X/aug-cc-pVTZ level. The predicted total rate constants ktotal(T, P) for the reaction between hymexazol and OH radicals show excellent agreement with scarcely available experimental values (e.g., 3.6 × 10-12 vs (4.4 ± 0.8) × 10-12 cm3/molecule/s at T = 300 K and P = 760 Torr); thus, the calculated kinetic parameters can be confidently used for modeling/simulation of N-heterocycle-related applications under atmospheric and even combustion conditions. The model shows that 3,4-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-5-yl (IM2), 3,5-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-4-yl (IM3), and (3-hydroxy-1,2-oxazol-5-yl)methyl (P8) are the main primary intermediates, which form the main secondary species of (3,4-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-5-yl)dioxidanyl (IM4), (3,5-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-4-yl)dioxidanyl (IM7), and ([(3-hydroxy-1,2-oxazol-5-yl)methyl]dioxidanyl (IM11), respectively, through the reactions with O2. The main secondary species then can react with NO to form the main tertiary species, namely, (3,4-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-5-yl)oxidanyl (P19), (3,5-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-4-yl)oxidanyl (P21), and [(3-hydroxy-1,2-oxazol-5-yl)methyl]oxidanyl (P23), respectively, together with NO2. Besides, hymexazol could be a persistent organic pollutant in the troposphere due to its calculated half-life τ1/2 of 13.7-68.1 h, depending on the altitude.


Assuntos
Atmosfera , Cinética , Oxirredução
4.
Bioorg Med Chem ; 86: 117292, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37137270

RESUMO

Considering the biological significance of 1,3,4-thiadiazole/oxadiazole heterocyclic scaffolds, a novel series of 1,3,4-thiadiazole-1,3,4-oxadiazole-acetamide derivatives (7a-j) was designed and synthesized using molecular hybridization. The inhibitory effects of the target compounds on elastase were evaluated, and all of these molecules were found to be potent inhibitors compared to the standard reference oleanolic acid. Compound 7f exhibited the excellent inhibitory activity (IC50 = 0.06 ± 0.02 µM), which is 214-fold more active than oleanolic acid (IC50 = 12.84 ± 0.45 µM). Kinetic analysis was also performed on the most potent compound (7f) to determine the mode of binding with the target enzyme, and it was discovered that 7f inhibits the enzyme in a competitive manner. Furthermore, the MTT assay method was used to assess their toxicity on the viability of B16F10 melanoma cell lines, and all compounds did not display any toxic effect on the cells even at high concentrations. The molecular docking studies of all compounds also justified with their good docking score and among them, compound 7f had a good conformational state with hydrogen bond interactions within the receptor binding pocket, which is consistent with the experimental inhibition studies.


Assuntos
Melanoma , Ácido Oleanólico , Tiadiazóis , Humanos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Elastase Pancreática , Oxidiazóis/química , Cinética , Tiadiazóis/química , Amidas , Acetamidas/farmacologia , Estrutura Molecular
5.
Mol Divers ; 27(1): 193-208, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35344136

RESUMO

In this work, we have synthesized various organic compounds possessing 1,3,4-oxadiazole as a core structure and the structure of the newly synthesized target compounds has been revealed using different analytical approaches such as FT-IR, LCMS, and NMR (proton and carbon), respectively. The in vitro carbonic anhydrase potentials of these synthesized 17 different analogues were investigated. The result suggests that compound 7g, a 3-pyridine substituted analogue with an IC50 of 0.1 µM, was found to have the most potent carbonic inhibitory activity (11-fold more active) than the positive control (acetazolamide) with an IC50 of 1.1 ± 0.1 µM. Besides, among the series 7(a-q) approved in the identification of four potent carbonic anhydrase inhibitors with the IC50 standards varies from 0.1 to 1.0 ± 0.1 µM. Additionally, the non-competitive behaviour for potent compound 7g was analysed using the Lineweaver-Burk plot from the kinetic study. Furthermore, the anticancer activity of all the synthesized compounds screened against B16F10 melanoma cells using the MTT assay method. Additionally, the molecular docking studies revealed that 7g inhibitor shows good binding energy as well as good binding interaction pattern along with enzyme.


Assuntos
Anidrases Carbônicas , Anidrases Carbônicas/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Espectroscopia de Infravermelho com Transformada de Fourier , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Estrutura Molecular
6.
Angew Chem Int Ed Engl ; 62(41): e202306185, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507837

RESUMO

Prussian blue (PB) has emerged as a promising cathode material in aqueous batteries. It possesses two distinct redox centers, and the potassium ions (K+ ) are unevenly distributed throughout the compound, adding complexity to the interpretation of the K+ insertion/de-insertion kinetic mechanism. Traditional ensemble-averaged measurements are limited in uncovering the precise kinetic information of the PB particles, as the results are influenced by the construction of the porous composite electrode and the redox behavior from different particles. In this study, the electrochemical processes of individual PB particles were investigated using nano-impact electrochemistry. By varying the potentials, different types of transient current signals were obtained that revealed the kinetic mechanism of each oxidation/reduction reaction in combination with theoretical simulation. Additionally, a partially contradictory conclusion between single-particle analysis and the ensemble-averaged measurement was discussed. These findings contribute to a better understanding of the electrochemical processes of cathode materials with multiple redox centers, which facilitates the development of effective strategies to optimize these materials.

7.
Environ Res ; 207: 112171, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610326

RESUMO

A novel catalyst based on bivalent copper oligopyrocatecholate was first successfully synthesized and dispersed in a polymer matrix for oxidative degradation of mercaptan in aqueous caustic solution. X-ray diffraction analysis has demonstrated that the synthesized catalyst was a crystalline phase with a minimum amorphous component. Mechanism analysis and kinetic experiments were conducted to investigate the kinetic mechanism of the reaction of isopropyl mercaptan oxidation catalyzed by copper oligopyrocatecholate dispersed in a polymer matrix. The influences of temperature, initial concentrations of reactants, and catalytic surface area on the reaction rate were studied to obtain the rate expression of intrinsic kinetics. The research results showed that the subsequent electron-transfer step was the rate-limiting step of the reaction. Additionally, the mercaptan oxidation rate in caustic solution was inversely proportional to the first power of the alkali concentration. The apparent activation energy was approximately 27.71 ± 1.12 kJ/mol. Importantly, this rate law for mercaptan oxidation can be used to design industrial reactors for the light oil sweetening process.

8.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012257

RESUMO

Heavy metal ions can disrupt biological functions via multiple molecular mechanisms, including inhibition of enzymes. We investigate the interactions of human papain-like cysteine endopeptidases cathepsins L, K, and S with gallium and cerium ions, which are associated with medical applications. We compare these results with zinc and lead, which are known to inhibit thiol enzymes. We show that Ga3+, Ce3+, and Ce4+ ions inhibit all tested peptidases with inhibition constants in the low micromolar range (between 0.5 µM and 10 µM) which is comparable to Zn2+ ions, whereas inhibition constants of Pb2+ ions are one order of magnitude higher (30 µM to 150 µM). All tested ions are linear specific inhibitors of cathepsin L, but cathepsins K and S are inhibited by Ga3+, Ce3+, and Ce4+ ions via hyperbolic inhibition mechanisms. This indicates a mode of interaction different from that of Zn2+ and Pb2+ ions, which act as linear specific inhibitors of all peptidases. All ions also inhibit the degradation of insoluble elastin, which is a common target of these peptidases in various inflammatory diseases. Our results suggest that these ions and their compounds have the potential to be used as cysteine cathepsin inhibitors in vitro and possibly in vivo.


Assuntos
Cério , Gálio , Catepsina K/metabolismo , Catepsinas/metabolismo , Cisteína , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Endopeptidases/metabolismo , Humanos , Íons , Cinética , Chumbo
9.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268831

RESUMO

A series of nine novel 1,2,4-triazole based compounds were synthesized through a multistep reaction pathway and their structures were scrutinized by using spectral methods such as FTIR, LC-MS, 1H NMR, and 13C NMR. The synthesized derivatives were screened for inhibitory activity against the mushroom tyrosinase and we found that all the synthesized compounds demonstrated decent inhibitory activity against tyrosinase. However, among the series of compounds, N-(4-fluorophenyl)-2-(5-(2-fluorophenyl)-4-(4-fluorophenyl)-4H-1,2,4-triazol-3-ylthio) acetamide exhibited more prominent activity when accompanied with the standard drug kojic acid. Furthermore, the molecular docking studies identified the interaction profile of all synthesized derivatives at the active site of tyrosinase. Based on these results, N-(4-fluorophenyl)-2-(5-(2-fluorophenyl)-4-(4-fluorophenyl)-4H-1,2,4-triazol-3-ylthio) acetamide could be used as a novel scaffold to design some new drugs against melanogenesis.


Assuntos
Monofenol Mono-Oxigenase
10.
Biotechnol Bioeng ; 118(10): 4028-4040, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34232503

RESUMO

Mechanism-based kinetic models are rigorous tools to analyze enzymatic reactions, but their extension to actual conditions of the biocatalytic synthesis can be difficult. Here, we demonstrate (mechanistic-empirical) hybrid modeling for systematic optimization of the sucrose phosphorylase-catalyzed glycosylation of glycerol from sucrose, to synthesize the cosmetic ingredient α-glucosyl glycerol (GG). The empirical model part was developed to capture nonspecific effects of high sucrose concentrations (up to 1.5 M) on microscopic steps of the enzymatic trans-glycosylation mechanism. Based on verified predictions of the enzyme performance under initial rate conditions (Level 1), the hybrid model was expanded by microscopic terms of the reverse reaction to account for the full-time course of GG synthesis (Level 2). Lastly (Level 3), the application of the hybrid model for comprehensive window-of-operation analysis and constrained optimization of the GG production (~250 g/L) was demonstrated. Using two candidate sucrose phosphorylases (from Leuconostoc mesenteroides and Bifidobacterium adolescentis), we reveal the hybrid model as a powerful tool of "process decision making" to guide rational selection of the best-suited enzyme catalyst. Our study exemplifies a closing of the gap between enzyme kinetic models considered for mechanistic research and applicable in technologically relevant reaction conditions; and it highlights the important benefit thus realizable for biocatalytic process development.


Assuntos
Bifidobacterium adolescentis/metabolismo , Biocatálise , Glucosídeos/metabolismo , Leuconostoc mesenteroides/metabolismo , Modelos Biológicos , Sacarose/metabolismo
11.
Biotechnol Bioeng ; 117(10): 2933-2943, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32573774

RESUMO

Chemical group-transfer reactions by hydrolytic enzymes have considerable importance in biocatalytic synthesis and are exploited broadly in commercial-scale chemical production. Mechanistically, these reactions have in common the involvement of a covalent enzyme intermediate which is formed upon enzyme reaction with the donor substrate and is subsequently intercepted by a suitable acceptor. Here, we studied the glycosylation of glycerol from sucrose by sucrose phosphorylase (SucP) to clarify a peculiar, yet generally important characteristic of this reaction: partitioning between glycosylation of glycerol and hydrolysis depends on the type and the concentration of the donor substrate used (here: sucrose, α-d-glucose 1-phosphate (G1P)). We develop a kinetic framework to analyze the effect and provide evidence that, when G1P is used as donor substrate, hydrolysis occurs not only from the ß-glucosyl-enzyme intermediate (E-Glc), but additionally from a noncovalent complex of E-Glc and substrate which unlike E-Glc is unreactive to glycerol. Depending on the relative rates of hydrolysis of free and substrate-bound E-Glc, inhibition (Leuconostoc mesenteroides SucP) or apparent activation (Bifidobacterium adolescentis SucP) is observed at high donor substrate concentration. At a G1P concentration that excludes the substrate-bound E-Glc, the transfer/hydrolysis ratio changes to a value consistent with reaction exclusively through E-Glc, independent of the donor substrate used. Collectively, these results give explanation for a kinetic behavior of SucP not previously accounted for, provide essential basis for design and optimization of the synthetic reaction, and establish a theoretical framework for the analysis of kinetically analogous group-transfer reactions by hydrolytic enzymes.


Assuntos
Bifidobacterium adolescentis/enzimologia , Glucosiltransferases/metabolismo , Leuconostoc mesenteroides/enzimologia , Sacarose/metabolismo , Catálise , Glicosilação , Hidrólise , Cinética , Especificidade por Substrato
12.
Bioorg Med Chem Lett ; 30(1): 126722, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732410

RESUMO

The inhibition of tyrosinase is an established strategy for treating hyperpigmentation. Our previous findings demonstrated that cinnamic acid and benzoic acid scaffolds can be effective tyrosinase inhibitors with low toxicity. The hydroxyl substituted benzoic and cinnamic acid moieties of these precursors were incorporated into new chemotypes that displayed in vitro inhibitory effect against mushroom tyrosinase. The most active compound, (2-(3-methoxyphenoxy)-2-oxoethyl (E)-3-(4-hydroxyphenyl) acrylate) 6c, inhibited tyrosinase with an IC50 of 5.7 µM, while (2-(3-methoxyphenoxy)-2-oxoethyl 2, 4-dihydroxybenzoate) 4d had an IC50 of 23.8 µM. In comparison, the positive control, kojic acid showed tyrosinase inhibition with an IC50 = 16.7 µM. Analysis of enzyme kinetics revealed that 6c and 4d displayed noncompetitive reversible inhibition of the second tyrosinase enzymatic reaction with Ki values of 11 µM and 130 µM respectively. In silico docking studies with mushroom tyrosinase (PDB ID 2Y9X) predicted possible binding modes in the catalytic site for these active compounds. The phenolic para-hydroxy group of the most active compound 6c is predicted to interact with the catalytic site Cu++ ion. The methoxy part of this compound is predicted to form a hydrogen bond with Arg 268. Compound 6c had no observable toxic effects on cell morphology or cell viability at the highest tested concentration of 91.4 µM. When dosed at 91.4 µM onto B16F10 melanoma cells in vitro6c showed anti-melanogenic effects equivalent to kojic acid at 880 µM. 6c displayed no PAINS (pan-assay interference compounds) alerts. Our results show that compound 6c is a more potent tyrosinase inhibitor than kojic acid and is a candidate for further development. Our exposition of the details of the interactions between 6c and the catalytic pocket of tyrosinase provides a basis for rational design of additional potent inhibitors of tyrosinase, built on the cinnamic acid scaffold.


Assuntos
Ácido Benzoico/uso terapêutico , Cinamatos/uso terapêutico , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular/métodos , Ácido Benzoico/farmacologia , Cinamatos/farmacologia , Humanos , Relação Estrutura-Atividade
13.
Arch Biochem Biophys ; 661: 107-116, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452894

RESUMO

The arylalkylamine N-acyltransferases (AANATs) are enzymes that catalyze the acyl-CoA-dependent formation of N-acylarylalkylamides: acyl-CoA + arylalkylamine → N-acylarylalkylamides + CoA-SH. Herein, we describe our study of a previously uncharacterized AANAT from Bombyx mori: Bm-iAANAT3. Bm-iAANAT3 catalyzes the direct formation of N-acylarylalkylamides and accepts a broad range of short-chain acyl-CoA thioesters and amines as substrates. Acyl-CoA thioesters possessing an acyl chain length >10 carbon atoms are not substrates for Bm-iAANAT3. We report that Bm-iAANAT3 is a "versatile generalist", most likely, functioning in amine acetylation - a reaction in amine inactivation/excretion, cuticle sclerotization, and melanism. We propose a kinetic and chemical mechanism for Bm-iAANAT3 that is consistent with our steady-state kinetic analysis, dead-end inhibition studies, determination of the pH-rate profiles, and site-directed mutagenesis of a catalytically important amino acid in Bm-iAANAT3. These mechanistic studies of Bm-iAANAT3 will foster the development of novel compounds targeted against this enzyme and other insect AANATs for the control of insect pests.


Assuntos
Arilalquilamina N-Acetiltransferase/química , Bombyx , Expressão Gênica , Proteínas de Insetos/química , Acetilação , Animais , Arilalquilamina N-Acetiltransferase/biossíntese , Arilalquilamina N-Acetiltransferase/genética , Bombyx/enzimologia , Bombyx/genética , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Cinética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
14.
Bioorg Chem ; 86: 473-481, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30772648

RESUMO

The increasing resistance of pathogens to common antibiotics, as well as the need to control urease activity to improve the yield of soil nitrogen fertilization in agricultural applications, has stimulated the development of novel classes of molecules that target urease as an enzyme. In this context, the newly developed compounds on the basis of 1-heptanoyl-3-arylthiourea family were evaluated for Jack bean urease enzyme inhibition activity to validate their role as potent inhibitors of this enzyme. 1-Heptanoyl-3-arylthioureas were obtained in excellent yield and characterized through spectral and elemental analysis. All the compounds displayed remarkable potency against urease inhibition as compared to thiourea standard. It was found that novel compounds fulfill the criteria of drug-likeness by obeying Lipinski's rule of five. Particularly compound 4a and 4c can serve as lead molecules in 4D (drug designing discovery and development). Kinetic mechanism and molecular docking studies also carried out to delineate the mode of inhibition and binding affinity of the molecules.


Assuntos
Canavalia/enzimologia , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Tioureia/farmacologia , Urease/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Cinética , Estrutura Molecular , Relação Estrutura-Atividade , Tioureia/química , Urease/metabolismo
15.
Proc Natl Acad Sci U S A ; 113(40): 11220-11225, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647911

RESUMO

The ATP synthase (F-ATPase) is a highly complex rotary machine that synthesizes ATP, powered by a proton electrochemical gradient. Why did evolution select such an elaborate mechanism over arguably simpler alternating-access processes that can be reversed to perform ATP synthesis? We studied a systematic enumeration of alternative mechanisms, using numerical and theoretical means. When the alternative models are optimized subject to fundamental thermodynamic constraints, they fail to match the kinetic ability of the rotary mechanism over a wide range of conditions, particularly under low-energy conditions. We used a physically interpretable, closed-form solution for the steady-state rate for an arbitrary chemical cycle, which clarifies kinetic effects of complex free-energy landscapes. Our analysis also yields insights into the debated "kinetic equivalence" of ATP synthesis driven by transmembrane pH and potential difference. Overall, our study suggests that the complexity of the F-ATPase may have resulted from positive selection for its kinetic advantage.


Assuntos
Trifosfato de Adenosina/biossíntese , Fenômenos Biofísicos , Rotação , Cinética , Modelos Biológicos , Força Próton-Motriz , Soluções , Termodinâmica
16.
Molecules ; 24(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999646

RESUMO

A series of symmetrical salicylaldehyde-bishydrazine azo molecules, 5a-5h, have been synthesized, characterized by 1H-NMR and 13C-NMR, and evaluated for their in vitro α-glucosidase and α-amylase inhibitory activities. All the synthesized compounds efficiently inhibited both enzymes. Compound 5g was the most potent derivative in the series, and powerfully inhibited both α-glucosidase and α-amylase. The IC50 of 5g against α-glucosidase was 0.35917 ± 0.0189 µM (standard acarbose IC50 = 6.109 ± 0.329 µM), and the IC50 value of 5g against α-amylase was 0.4379 ± 0.0423 µM (standard acarbose IC50 = 33.178 ± 2.392 µM). The Lineweaver-Burk plot indicated that compound 5g is a competitive inhibitor of α-glucosidase. The binding interactions of the most active analogues were confirmed through molecular docking studies. Docking studies showed that 5g interacts with the residues Trp690, Asp548, Arg425, and Glu426, which form hydrogen bonds to 5g with distances of 2.05, 2.20, 2.10 and 2.18 Å, respectively. All compounds showed high mutagenic and tumorigenic behaviors, and only 5e showed irritant properties. In addition, all the derivatives showed good antioxidant activities. The pharmacokinetic evaluation also revealed promising results.


Assuntos
Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Glucosidases/química , Animais , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Estrutura Molecular , Suínos
17.
Molecules ; 24(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934979

RESUMO

The activities of enzymes are the basis of evaluating the quality of honey. Beekeepers usually use concentrators to process natural honey into concentrated honey by concentrating it under high temperatures. Active enzymes are very sensitive to high temperatures and will lose their activity when they exceed a certain temperature. The objective of this work is to study the kinetic mechanism of the temperature effect on diastase activity and to develop a nondestructive approach for quick determination of the diastase activity of honey through a heating process based on visible and near-infrared (Vis/NIR) spectroscopy. A total of 110 samples, including three species of botanical origin, were used for this study. To explore the kinetic mechanism of diastase activity under high temperatures, the honey of three kinds of botanical origins were processed with thermal treatment to obtain a variety of diastase activity. Diastase activity represented with diastase number (DN) was measured according to the national standard method. The results showed that the diastase activity decreased with the increase of temperature and heating time, and the sensitivity of acacia and longan to temperature was higher than linen. The optimum temperature for production and processing is 60 °C. Unsupervised clustering analysis was adopted to detect spectral characteristics of these honeys, indicating that different botanical origins of honeys can be distinguished in principal component spaces. Partial least squares (PLS) and least squares-support vector machine (LS-SVM) algorithms were applied to develop quantitative relationships between Vis/NIR spectroscopy and diastase activity. The best result was obtained through Gaussian filter smoothing-standard normal variate (GF-SNV) pretreatment and the LS-SVM model, known as GF-SNV-LS-SVM, with a determination coefficient (R²) of prediction of 0.8872, and root mean square error (RMSE) of prediction of 0.2129. The overall results of this paper showed that the diastase activity of honey can be determined quickly and non-destructively with Vis/NIR spectral methods, which can be used to detect DN in the process of honey production and processing, and to maximize the nutrient content of honey.


Assuntos
Amilases/química , Mel/análise , Espectroscopia de Luz Próxima ao Infravermelho , Ativação Enzimática , Cinética , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise Espectral , Temperatura
18.
Molecules ; 23(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469543

RESUMO

P-glycoprotein (P-gp) effluxes lots of chemotherapeutic agents and leads to multidrug resistance (MDR) in cancer treatments. The development of P-gp inhibitors from natural products provide a potential strategy for the beneficial clinical outcomes. This study aimed to evaluate the effects of the natural flavonoid taxifolin, luteolin, (-)-gallocatechin, and (-)-catechin on human P-gp activity. The kinetic interactions and underlying mechanisms of taxifolin-mediated transporter inhibition were further investigated. The transporter inhibition ability was evaluated in human P-gp stable expression cells (ABCB1/Flp-InTM-293) by calcein-AM uptake assays. The kinetics study for P-gp inhibition was evaluated by doxorubicin and rhodamine123 efflux assays. The MDR reversal ability of taxifolin were performed by SRB assays to detect the cell viability in sensitive cancer cell line (HeLaS3), and resistant cancer cell line (KB-vin). Cell cycle analysis and ABCB1 real-time RT-PCR were used for mechanical exploration. The results demonstrated that taxifolin decreased ABCB1 expression in a concentration-dependent manner. The function of P-gp was inhibited by taxifolin through uncompetitive inhibition of rhodamine 123 and doxorubicin efflux. The combination of taxifolin significantly resensitized MDR cancer cells to chemotherapeutic agents. These results suggested that taxifolin may be considered as a potential P-gp modulator for synergistic treatment of MDR cancers.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quercetina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Quercetina/farmacologia
19.
Arch Biochem Biophys ; 623-624: 9-19, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499743

RESUMO

trans- and cis-3-Chloroacrylic acid dehalogenase (CaaD and cis-CaaD, respectively) catalyze the hydrolytic dehalogenation of their respective isomers and represent key steps in the bacterial conversion of 1,3-dichloropropene to acetaldehyde. In prior work, a kinetic mechanism for the CaaD-catalyzed reaction could not be unequivocally determined because (1) the order of product release could not be determined and (2) the fluorescence factor for the enzyme species, E*PQ (where P = bromide and Q = malonate semialdehyde, the two products of the reaction) could not be assigned. The ambiguities in the model have now been resolved by stopped-flow experiments following the reaction using an active site fluorescent probe, αY60W-CaaD and 3-bromopropiolate, previously shown to be a mechanism-based inhibitor of CaaD, coupled with the rate of bromide release in the course of CaaD inactivation. A global fit of the combined datasets provides a complete minimal model for the reaction of αY60W-CaaD and 3-bromoacrylate. In addition, the global fit produces kinetic constants for CaaD inactivation by 3-bromopropiolate and implicates the acyl bromide as the inactivating species. Finally, a comparison of the model with that for cis-CaaD shows that for both enzymes turnover is limited by product release and not chemistry.


Assuntos
Hidrolases/metabolismo , Pseudomonas/enzimologia , Brometos/metabolismo , Domínio Catalítico , Ativação Enzimática , Humanos , Hidrolases/química , Hidrólise , Cinética , Malonatos/metabolismo , Simulação de Acoplamento Molecular , Pseudomonas/química , Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Incerteza
20.
Bioorg Med Chem ; 25(21): 5929-5938, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28988751

RESUMO

The present article describes the synthesis and enzyme inhibitory kinetics of methyl[2-(arylmethylene-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates 5a-j as mushroom tyrosinase inhibitors. The title compounds were synthesized via cyclocondensation of thiosemicarbazones 3a-j with dimethyl but-2-ynedioate (DMAD) 4 in good yields under solvent-free conditions. The synthesized compounds were evaluated for their potential to inhibit the activity of mushroom tyrosinase. It was unveiled that compounds 5i showed excellent enzyme inhibitory activity with IC50 3.17µM while IC50 of standard kojic acid is 15.91µM. The presence of heterocyclic pyridine ring in compound 5i play important role in enzyme inhibitory activity as rest of the functional groups are common in all synthesized compounds. The enzyme inhibitory kinetics of the most potent derivative 5i determined by Lineweaver-Burk plots and Dixon plots showed that it is non-competitive inhibitor with Ki value 1.5µM. It was further investigated that the wet lab results are in good agreement with the computational results. The molecular docking of the synthesized compounds was performed against tyrosinase protein (PDBID 2Y9X) to delineate ligand-protein interactions at molecular level. The docking results showed that the major interacting residues are His244, His85, His263, Val 283, His 296, Asn260, Val248, His260, His261 and Phe264 which are located in active binding site of the protein. The molecular modeling demonstrates that the oxygen atom of the compound 5i coordinated with the key residues in the active site of mushroom tyrosinase contribute significantly against inhibitory ability and diminishing the human melanin synthesis. These results evident that compound 5i is a lead structure in developing most potent mushroom tyrosinase inhibitors.


Assuntos
Agaricales/enzimologia , Inibidores Enzimáticos/farmacologia , Hidrazonas/farmacologia , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Tiazolidinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Hidrazonas/síntese química , Hidrazonas/química , Cinética , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Tiazolidinas/síntese química , Tiazolidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA