Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(12): e202300265, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146230

RESUMO

G-quadruplexes (G4s) are nucleic acid secondary structures that have been linked to the functional regulation of eukaryotic organisms. G4s have been extensively characterised in humans and emerging evidence suggests that they might also be biologically relevant for human pathogens. This indicates that G4s might represent a novel class of therapeutic targets for tackling infectious diseases. Bioinformatic studies revealed a high prevalence of putative quadruplex-forming sequences (PQSs) in the genome of protozoans, which highlights their potential roles in regulating vital processes of these parasites, including DNA transcription and replication. In this work, we focus on the neglected trypanosomatid parasites, Trypanosoma and Leishmania spp., which cause debilitating and deadly diseases across the poorest populations worldwide. We review three examples where G4-formation might be key to modulate transcriptional activity in trypanosomatids, providing an overview of experimental approaches that can be used to exploit the regulatory roles and relevance of these structures to fight parasitic infections.


Assuntos
Quadruplex G , Parasitos , Trypanosoma , Animais , Humanos , Parasitos/genética , Trypanosoma/genética , DNA/química , Genoma
2.
J Biol Chem ; 294(34): 12815-12825, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31292194

RESUMO

J-DNA-binding protein 1 (JBP1) contributes to the biosynthesis and maintenance of base J (ß-d-glucosyl-hydroxymethyluracil), an epigenetic modification of thymidine (T) confined to pathogenic protozoa such as Trypanosoma and Leishmania JBP1 has two known functional domains: an N-terminal T hydroxylase (TH) homologous to the 5-methylcytosine hydroxylase domain in TET proteins and a J-DNA-binding domain (JDBD) that resides in the middle of JBP1. Here, we show that removing JDBD from JBP1 results in a soluble protein (Δ-JDBD) with the N- and C-terminal regions tightly associated together in a well-ordered structure. We found that this Δ-JDBD domain retains TH activity in vitro but displays a 15-fold lower apparent rate of hydroxylation compared with JBP1. Small-angle X-ray scattering (SAXS) experiments on JBP1 and JDBD in the presence or absence of J-DNA and on Δ-JDBD enabled us to generate low-resolution three-dimensional models. We conclude that Δ-JDBD, and not the N-terminal region of JBP1 alone, is a distinct folding unit. Our SAXS-based model supports the notion that binding of JDBD specifically to J-DNA can facilitate T hydroxylation 12-14 bp downstream on the complementary strand of the J-recognition site. We postulate that insertion of the JDBD module into the Δ-JDBD scaffold during evolution provided a mechanism that synergized J recognition and T hydroxylation, ensuring inheritance of base J in specific sequence patterns following DNA replication in kinetoplastid parasites.


Assuntos
DNA de Protozoário/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Leishmania/química , Oxigenases de Função Mista/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma/química , Sítios de Ligação , DNA de Protozoário/química , Proteínas de Ligação a DNA/genética , Leishmania/metabolismo , Oxigenases de Função Mista/química , Modelos Moleculares , Conformação Proteica , Proteínas de Protozoários/genética , Trypanosoma/metabolismo
3.
Curr Genomics ; 19(2): 87-97, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29491737

RESUMO

Trypanosomatids are a group of kinetoplastid parasites including some of great public health importance, causing debilitating and life-long lasting diseases that affect more than 24 million people worldwide. Among the trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the Leishmania genus are the most well studied parasites, due to their high prevalence in human infections. These parasites have an extreme genomic and phenotypic variability, with a massive expansion in the copy number of species-specific multigene families enrolled in host-parasite interactions that mediate cellular invasion and immune evasion processes. As most trypanosomatids are heteroxenous, and therefore their lifecycles involve the transition between different hosts, these parasites have developed several strategies to ensure a rapid adaptation to changing environments. Among these strategies, a rapid shift in the repertoire of expressed genes, genetic variability and genome plasticity are key mechanisms. Trypanosomatid genomes are organized into large directional gene clusters that are transcribed polycistronically, where genes derived from the same polycistron may have very distinct mRNA levels. This particular mode of transcription implies that the control of gene expression operates mainly at post-transcriptional level. In this sense, gene duplications/losses were already associated with changes in mRNA levels in these parasites. Gene duplications also allow the generation of sequence variability, as the newly formed copy can diverge without loss of function of the original copy. Recently, aneuploidies have been shown to occur in several Leishmania species and T. cruzi strains. Although aneuploidies are usually associated with debilitating phenotypes in superior eukaryotes, recent data shows that it could also provide increased fitness in stress conditions and generate drug resistance in unicellular eukaryotes. In this review, we will focus on gene and chromosomal copy number variations and their relevance to the evolution of trypanosomatid parasites.

4.
Curr Genomics ; 19(2): 98-109, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29491738

RESUMO

INTRODUCTION: Understanding how the nuclear genome of kinetoplastid parasites is replicated received experimental stimulus from sequencing of the Leishmania major, Trypanosoma brucei and Trypanosoma cruzi genomes around 10 years ago. Gene annotations suggested key players in DNA replication initiation could not be found in these organisms, despite considerable conservation amongst characterised eukaryotes. Initial studies that indicated trypanosomatids might possess an archaeal-like Origin Recognition Complex (ORC), composed of only a single factor termed ORC1/CDC6, have been supplanted by the more recent identification of an ORC in T. brucei. However, the constituent subunits of T. brucei ORC are highly diverged relative to other eukaryotic ORCs and the activity of the complex appears subject to novel, positive regulation. The availability of whole genome sequences has also allowed the deployment of genome-wide strategies to map DNA replication dynamics, to date in T. brucei and Leishmania. ORC1/CDC6 binding and function in T. brucei displays pronounced overlap with the unconventional organisation of gene expression in the genome. Moreover, mapping of sites of replication initiation suggests pronounced differences in replication dynamics in Leishmania relative to T. brucei. CONCLUSION: Here we discuss what implications these emerging data may have for parasite and eukaryotic biology of DNA replication.

5.
IUBMB Life ; 67(9): 668-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26599841

RESUMO

All kinetoplastid parasites, including protozoa such as Leishmania species, Trypanosoma brucei, and Trypanosoma cruzi that cause devastating diseases in humans and animals, are flagellated throughout their life cycles. Although flagella were originally thought of primarily as motility organelles, flagellar functions in other critical processes, especially in sensing and signal transduction, have become more fully appreciated in the recent past. The flagellar membrane is a highly specialized subdomain of the surface membrane, and flagellar membrane proteins are likely to be critical components for all the biologically important roles of flagella. In this review, we summarize recent discoveries relevant to flagellar membrane proteins in these parasites, including the identification of such proteins, investigation of their biological functions, and mechanisms of selective trafficking to the flagellar membrane. Prospects for future investigations and current unsolved problems are highlighted.


Assuntos
Membrana Celular/metabolismo , Flagelos/metabolismo , Kinetoplastida/fisiologia , Proteínas de Membrana/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Humanos , Kinetoplastida/classificação
6.
Microbiol Mol Biol Rev ; 84(2)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32238446

RESUMO

While flagella have been studied extensively as motility organelles, with a focus on internal structures such as the axoneme, more recent research has illuminated the roles of the flagellar surface in a variety of biological processes. Parasitic protists of the order Kinetoplastida, which include trypanosomes and Leishmania species, provide a paradigm for probing the role of flagella in host-microbe interactions and illustrate that this interface between the flagellar surface and the host is of paramount importance. An increasing body of knowledge indicates that the flagellar membrane serves a multitude of functions at this interface: attachment of parasites to tissues within insect vectors, close interactions with intracellular organelles of vertebrate cells, transactions between flagella from different parasites, junctions between the flagella and the parasite cell body, emergence of nanotubes and exosomes from the parasite directed to either host or microbial targets, immune evasion, and sensing of the extracellular milieu. Recent whole-organelle or genome-wide studies have begun to identify protein components of the flagellar surface that must mediate these diverse host-parasite interactions. The increasing corpus of knowledge on kinetoplastid flagella will likely prove illuminating for other flagellated or ciliated pathogens as well.


Assuntos
Membrana Celular/metabolismo , Flagelos/metabolismo , Interações Hospedeiro-Parasita , Kinetoplastida/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Flagelos/genética , Humanos , Kinetoplastida/genética , Camundongos , Proteínas de Protozoários/genética
7.
Trends Parasitol ; 35(4): 274-277, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30655057

RESUMO

Kinetoplastid parasites such as trypanosomes and Leishmania must adapt to their environments to survive within their hosts, yet they do not express many of the well established families of signal transduction receptors. Evidence suggests that other membrane proteins, including transporters and channels, play central roles in environmental sensing in these parasites.


Assuntos
Adaptação Fisiológica/fisiologia , Meio Ambiente , Kinetoplastida/fisiologia , Proteínas de Membrana/metabolismo
8.
Mol Biochem Parasitol ; 227: 39-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590069

RESUMO

Kinetoplastid parasites such as Trypanosoma brucei, Trypanosoma cruzi, and Leishmania species rely upon their insect and vertebrate hosts to provide a plethora of nutrients throughout their life cycles. Nutrients and ions critical for parasite survival are taken up across the parasite plasma membrane by transporters and channels, polytopic membrane proteins that provide substrate-specific pores across the hydrophobic barrier. However, transporters and channels serve a wide range of biological functions beyond uptake of nutrients. This article highlights the diversity of activities that these integral membrane proteins serve and underscores the emerging complexity of their functions.


Assuntos
Leishmania/enzimologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia , Transporte Biológico , Leishmania/genética , Leishmania/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA