Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2215095120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585460

RESUMO

Cancer cachexia, and its associated complications, represent a large and currently untreatable roadblock to effective cancer management. Many potential therapies have been proposed and tested-including appetite stimulants, targeted cytokine blockers, and nutritional supplementation-yet highly effective therapies are lacking. Innovative approaches to treating cancer cachexia are needed. Members of the Kruppel-like factor (KLF) family play wide-ranging and important roles in the development, maintenance, and metabolism of skeletal muscle. Within the KLF family, we identified KLF10 upregulation in a multitude of wasting contexts-including in pancreatic, lung, and colon cancer mouse models as well as in human patients. We subsequently interrogated loss-of-function of KLF10 as a potential strategy to mitigate cancer associated muscle wasting. In vivo studies leveraging orthotopic implantation of pancreas cancer cells into wild-type and KLF10 KO mice revealed significant preservation of lean mass and robust suppression of pro-atrophy muscle-specific ubiquitin ligases Trim63 and Fbxo32, as well as other factors implicated in atrophy, calcium signaling, and autophagy. Bioinformatics analyses identified Transforming growth factor beta (TGF-ß), a known inducer of KLF10 and cachexia promoting factor, as a key upstream regulator of KLF10. We provide direct in vivo evidence that KLF10 KO mice are resistant to the atrophic effects of TGF-ß. ChIP-based binding studies demonstrated direct binding to Trim63, a known wasting-associated atrogene. Taken together, we report a critical role for the TGF-ß/KLF10 axis in the etiology of pancreatic cancer-associated muscle wasting and highlight the utility of targeting KLF10 as a strategy to prevent muscle wasting and limit cancer-associated cachexia.


Assuntos
Neoplasias Pancreáticas , Fator de Crescimento Transformador beta , Humanos , Camundongos , Animais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Caquexia/genética , Atrofia Muscular/genética , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo
2.
Exp Cell Res ; 437(1): 114007, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499142

RESUMO

Gastric cancer metastasis is a major cause of poor prognosis. Our previous research showed that methionine restriction (MR) lowers the invasiveness and motility of gastric carcinoma. In this study, we investigated the particular mechanisms of MR on gastric carcinoma metastasis. In vitro, gastric carcinoma cells (AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45) were grown in an MR medium for 24 h. In vivo, BALB/c mice were given a methionine-free (Met-) diet. Transwell assays were used to investigate cell invasion and migration. The amounts of Krüppel like factor 10 (KLF10) and cystathionine ß-synthase (CBS) were determined using quantitative real-time PCR and Western blot. To determine the relationship between KLF10 and CBS, chromatin immunoprecipitation and a dual-luciferase reporter experiment were used. Hematoxylin-eosin staining was used to detect lung metastasis. Liquid chromatography-mass spectrometry was used to determine cystathionine content. MR therapy had varying effects on the invasion and migration of gastric carcinoma cells AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45. KLF10 was highly expressed in AGS cells but poorly expressed in KATO III cells. KLF10 improved MR's ability to prevent gastric carcinoma cell invasion and migration. In addition, KLF10 may interact with CBS, facilitating transcription. Further detection revealed that inhibiting the KLF10/CBS-mediated trans-sulfur pathway lowered Met-'s inhibitory effect on lung metastasis development. KLF10 transcription activated CBS, accelerated the trans-sulfur pathway, and increased gastric carcinoma cells' susceptibility to MR.


Assuntos
Carcinoma , Neoplasias Pulmonares , Neoplasias Gástricas , Camundongos , Animais , Metionina/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Neoplasias Gástricas/patologia , Racemetionina , Enxofre , Neoplasias Pulmonares/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo
3.
Circ Res ; 130(11): 1662-1681, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35440172

RESUMO

BACKGROUND: Perivascular fibrosis, characterized by increased amount of connective tissue around vessels, is a hallmark for vascular disease. Ang II (angiotensin II) contributes to vascular disease and end-organ damage via promoting T-cell activation. Despite recent data suggesting the role of T cells in the progression of perivascular fibrosis, the underlying mechanisms are poorly understood. METHODS: TF (transcription factor) profiling was performed in peripheral blood mononuclear cells of hypertensive patients. CD4-targeted KLF10 (Kruppel like factor 10)-deficient (Klf10fl/flCD4Cre+; [TKO]) and CD4-Cre (Klf10+/+CD4Cre+; [Cre]) control mice were subjected to Ang II infusion. End point characterization included cardiac echocardiography, aortic imaging, multiorgan histology, flow cytometry, cytokine analysis, aorta and fibroblast transcriptomic analysis, and aortic single-cell RNA-sequencing. RESULTS: TF profiling identified increased KLF10 expression in hypertensive human subjects and in CD4+ T cells in Ang II-treated mice. TKO mice showed enhanced perivascular fibrosis, but not interstitial fibrosis, in aorta, heart, and kidney in response to Ang II, accompanied by alterations in global longitudinal strain, arterial stiffness, and kidney function compared with Cre control mice. However, blood pressure was unchanged between the 2 groups. Mechanistically, KLF10 bound to the IL (interleukin)-9 promoter and interacted with HDAC1 (histone deacetylase 1) inhibit IL-9 transcription. Increased IL-9 in TKO mice induced fibroblast intracellular calcium mobilization, fibroblast activation, and differentiation and increased production of collagen and extracellular matrix, thereby promoting the progression of perivascular fibrosis and impairing target organ function. Remarkably, injection of anti-IL9 antibodies reversed perivascular fibrosis in Ang II-infused TKO mice and C57BL/6 mice. Single-cell RNA-sequencing revealed fibroblast heterogeneity with activated signatures associated with robust ECM (extracellular matrix) and perivascular fibrosis in Ang II-treated TKO mice. CONCLUSIONS: CD4+ T cell deficiency of Klf10 exacerbated perivascular fibrosis and multi-organ dysfunction in response to Ang II via upregulation of IL-9. Klf10 or IL-9 in T cells might represent novel therapeutic targets for treatment of vascular or fibrotic diseases.


Assuntos
Linfócitos T CD4-Positivos , Hipertensão , Angiotensina II/farmacologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce , Fibrose , Humanos , Interleucina-9 , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA
4.
EMBO Rep ; 23(6): e54229, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35492028

RESUMO

Nonalcoholic steatohepatitis (NASH), characterized by hepatic steatosis, inflammation, and liver injury, has become a leading cause of end-stage liver diseases and liver transplantation. Krüppel-like factors 10 (KLF10) is a Cys2/His2 zinc finger transcription factor that regulates cell growth, apoptosis, and differentiation. However, whether it plays a role in the development and progression of NASH remains poorly understood. In the present study, we found that KLF10 expression was selectively upregulated in the mouse models and human patients with NASH, compared with simple steatosis (NAFL). Gain- and loss-of function studies demonstrated that hepatocyte-specific overexpression of KLF10 aggravated, whereas its depletion alleviated diet-induced NASH pathogenesis in mice. Mechanistically, transcriptomic analysis and subsequent functional experiments showed that KLF10 promotes hepatic lipid accumulation and inflammation through the palmitoylation and plasma membrane localization of fatty acid translocase CD36 via transcriptionally activation of zDHHC7. Indeed, both expression of zDHHC7 and palmitoylation of CD36 are required for the pathogenic roles of KLF10 in NASH development. Thus, our results identify an important role for KLF10 in NAFL-to-NASH progression through zDHHC7-mediated CD36 palmitoylation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Antígenos CD36 , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Hepatócitos/metabolismo , Humanos , Inflamação/patologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ativação Transcricional
5.
Mol Med ; 29(1): 156, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946098

RESUMO

BACKGROUND: Krüppel-like factor 10 (KLF10) is involved in a positive feedback loop that regulates transforming growth factor ß (TGFß) signaling, and TGFß plays an important role in the pathogenesis of liver disease. Here, we investigated whether KLF10 deletion affects the development of liver fibrosis and hepatocellular carcinoma (HCC). METHODS: We induced KLF10 deletion in C57BL/6 mice. Liver fibrosis was induced by feeding a diet high in fat and sucrose (high-fat diet [HFD]), whereas HCC was produced by intraperitoneal administration of N-diethylnitrosamine (DEN). An in vitro experiment was performed to evaluate the role of KLF10 in the cancer microenvironment using Hep3B and LX2 cells. An immunohistochemical study of KLF10 expression was performed using human HCC samples from 60 patients who had undergone liver resection. RESULTS: KLF10 deletion resulted in an increased DEN-induced HCC burden with significant upregulation of SMAD2, although loss of KLF10 did not alter HFD-induced liver fibrosis. DEN-treated mice with KLF10 deletion exhibited increased levels of mesenchymal markers (N-cadherin and SNAI2) and tumor metastasis markers (matrix metalloproteinases 2 and 9). KLF10 depletion in Hep3B and LX2 cells using siRNA was associated with increased invasiveness. Compared with co-culture of KLF10-preserved Hep3B cells and KLF10-intact LX2 cells, co-culture of KLF10-preserved Hep3B cells and KLF10-depleted LX2 cells resulted in significantly enhanced invasion. Low KLF10 expression in resected human HCC specimens was associated with poor survival. CONCLUSION: The results of this study suggest that loss of KLF10 facilitates liver cancer development with alteration in TGFß signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
6.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628783

RESUMO

Liver fibrosis is a progressive and debilitating condition characterized by the excessive deposition of extracellular matrix proteins. Stellate cell activation, a major contributor to fibrogenesis, is influenced by Transforming growth factor (TGF-ß)/SMAD signaling. Although Krüppel-like-factor (KLF) 10 is an early TGF-ß-inducible gene, its specific role in hepatic stellate cell activation remains unclear. Our previous study demonstrated that KLF10 knockout mice develop severe liver fibrosis when fed a high-sucrose diet. Based on these findings, we aimed to identify potential target molecules involved in liver fibrosis and investigate the mechanisms underlying the KLF10 modulation of hepatic stellate cell activation. By RNA sequencing analysis of liver tissues from KLF10 knockout mice with severe liver fibrosis induced by a high-sucrose diet, we identified ATF3 as a potential target gene regulated by KLF10. In LX-2 cells, an immortalized human hepatic stellate cell line, KLF10 expression was induced early after TGF-ß treatment, whereas ATF3 expression showed delayed induction. KLF10 knockdown in LX-2 cells enhanced TGF-ß-mediated activation, as evidenced by elevated fibrogenic protein levels. Further mechanistic studies revealed that KLF10 knockdown promoted TGF-ß signaling and upregulated ATF3 expression. Conversely, KLF10 overexpression suppressed TGF-ß-mediated activation and downregulated ATF3 expression. Furthermore, treatment with the chemical chaperone 4-PBA attenuated siKLF10-mediated upregulation of ATF3 and fibrogenic responses in TGF-ß-treated LX-2 cells. Collectively, our findings suggest that KLF10 acts as a negative regulator of the TGF-ß signaling pathway, exerting suppressive effects on hepatic stellate cell activation and fibrogenesis through modulation of ATF3 expression. These results highlight the potential therapeutic implications of targeting the KLF10-ATF3 axis in liver fibrosis treatment.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Humanos , Animais , Camundongos , Cirrose Hepática/genética , Fator de Crescimento Transformador beta , Camundongos Knockout , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fator 3 Ativador da Transcrição/genética
7.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770589

RESUMO

Osteoarthritis (OA) is the most prevalent degenerative joint disease in the elderly. Accumulation of evidence has suggested that chondrocyte senescence plays a significant role in OA development. Here, we show that Krüppel-like factor 10 (Klf10), also named TGFß inducible early gene-1 (TIEG1), is involved in the pathology of chondrocyte senescence. Knocking down the Klf10 in chondrocytes attenuated the tert-butyl hydroperoxide (TBHP)-induced senescence, inhibited generation of reactive oxygen species (ROS), and maintained mitochondrial homeostasis by activating mitophagy. These findings suggested that knocking down Klf10 inhibited senescence-related changes in chondrocytes and improved cartilage homeostasis, indicating that Klf10 may be a therapeutic target for protecting cartilage against OA.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Idoso , Condrócitos/patologia , Mitofagia , Osteoartrite/tratamento farmacológico , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Senescência Celular/fisiologia , Cartilagem Articular/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo
8.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565995

RESUMO

Diabetes-induced chronic kidney disease leads to mortality and morbidity and thus poses a great health burden worldwide. Krüppel-like factor 10 (KLF10), a zinc finger-containing transcription factor, regulates numerous cellular functions, such as proliferation, differentiation, and apoptosis. In this study, we explored the effects of KLF10 on diabetes-induced renal disease by using a KLF10 knockout mice model. Knockout of KLF10 obviously diminished diabetes-induced tumor growth factor-ß (TGF-ß), fibronectin, and type IV collagen expression, as evidenced by immunohistochemical staining. KLF10 knockout also repressed the expression of Dickkopf-1 (DKK-1) and phosphorylated ß-catenin in diabetic mice, as evidenced by immunohistochemical staining and Western blot analysis. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) revealed that significantly decreased type IV collagen, fibronectin, and DKK-1 existed in KLF10 knockout diabetic mice compared with control diabetic mice. Moreover, knockout of KLF10 reduced the renal fibrosis, as shown by Masson's Trichrome analysis. Overall, the results indicate that depletion of KLF10 ameliorated diabetic renal fibrosis via the downregulation of DKK-1 expression and inhibited TGF-ß1 and phosphorylated ß-catenin expression. Our findings suggest that KLF10 may be a promising therapeutic choice for the treatment of diabetes-induced renal fibrosis.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Fatores de Transcrição Kruppel-Like , Animais , Colágeno Tipo IV/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Regulação para Baixo , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Feminino , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fator de Crescimento Transformador beta1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
9.
Medicina (Kaunas) ; 58(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35743973

RESUMO

Background and Objectives: Kruppel-like factor 10 (KLF10) participates in the tumorigenesis of several human cancers by binding to the GC-rich region within the promoter regions of specific genes. KLF10 is downregulated in human cancers. However, the role of KLF10 in gastric cancer formation remains unclear. Materials and Methods: In this study, we performed immunohistochemical staining for KLF10 expression in 121 gastric cancer sections. Results: The loss of KLF10 expression was correlated with advanced stages and T status. Kaplan-Meier analysis revealed that patients with higher KLF10 levels had longer overall survival than those with lower KLF10 levels. Univariate analysis revealed that in patients with gastric cancer, advanced stages and low KLF10 levels were associated with survival. Multivariate analysis indicated that age, gender, advanced stages, and KLF10 expression were independent prognostic factors of the survival of patients with gastric cancer. After adjusting for age, gender, and stage, KLF10 expression was also found to be an independent prognostic factor in the survival of patients with gastric cancer. Conclusion: Our results collectively suggested that KLF10 may play a critical role in gastric cancer formation and is an independent prognosis factor of gastric cancer.


Assuntos
Fatores de Transcrição de Resposta de Crescimento Precoce , Neoplasias Gástricas , Transformação Celular Neoplásica , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Prognóstico , Neoplasias Gástricas/genética
10.
Muscle Nerve ; 64(6): 765-769, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34486132

RESUMO

INTRODUCTION/AIMS: Klf10 is a member of the Krüppel-like family of transcription factors, which is implicated in mediating muscle structure (fiber size, organization of the sarcomere), muscle metabolic activity (respiratory chain), and passive force. The aim of this study was to further characterize the roles of Klf10 in the contractile properties of skeletal muscle fibers. METHODS: Fifty-two single fibers were extracted from female wild-type (WT) and Klf10 knockout (KO) oxidative (soleus) and glycolytic (extensor digitorum longus [EDL]) skinned muscles. Each fiber was immersed successively in relaxing (R), washing (W), and activating (A) solutions. Calcium was included in the activating solution to induce a maximum contraction of the fiber. The maximum force (Fmax ) was measured and normalized to the cross-sectional area to obtain the maximum stress (Stressmax ). After a steady state in contraction was reached, a quick stretch-release was performed; the force at the maximum stretch (Fstretch ) was measured and the stiffness was assessed. RESULTS: Deletion of the Klf10 gene induced changes in the contractile parameters (Fmax , Stressmax , Stiffness), which were lower and higher for soleus and EDL fibers compared with littermates, respectively. These measurements also revealed changes in the proportion and resistance of attached cross-bridges. DISCUSSION: Klf10 plays a major role in the homeostasis of the contractile behavior of skeletal muscle fibers in a muscle fiber type-specific manner. These findings further implicate important roles for Klf10 in skeletal muscle function and shed new light on understanding the molecular processes regulating the contractility of skeletal muscle fibers.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Animais , Fatores de Transcrição de Resposta de Crescimento Precoce/análise , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Feminino , Fatores de Transcrição Kruppel-Like/análise , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético , Fatores de Transcrição/genética
11.
J Cell Physiol ; 235(7-8): 5679-5688, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31975377

RESUMO

Deletion of TGFß inducible early gene-1 (TIEG) in mice results in an osteopenic phenotype that exists only in female animals. Molecular analyses on female TIEG knockout (KO) mouse bones identified increased expression of sclerostin, an effect that was confirmed at the protein level in serum. Sclerostin antibody (Scl-Ab) therapy has been shown to elicit bone beneficial effects in multiple animal model systems and human clinical trials. For these reasons, we hypothesized that Scl-Ab therapy would reverse the low bone mass phenotype of female TIEG KO mice. In this study, wildtype (WT) and TIEG KO female mice were randomized to either vehicle control (Veh, n = 12/group) or Scl-Ab therapy (10 mg/kg, 1×/wk, s.c.; n = 12/group) and treated for 6 weeks. Following treatment, bone imaging analyses revealed that Scl-Ab therapy significantly increased cancellous and cortical bone in the femur of both WT and TIEG KO mice. Similar effects also occurred in the vertebra of both WT and TIEG KO animals. Additionally, histomorphometric analyses revealed that Scl-Ab therapy resulted in increased osteoblast perimeter/bone perimeter in both WT and TIEG KO animals, with a concomitant increase in P1NP, a serum marker of bone formation. In contrast, osteoclast perimeter/bone perimeter and CTX-1 serum levels were unaffected by Scl-Ab therapy, irrespective of mouse genotype. Overall, our findings demonstrate that Scl-Ab therapy elicits potent bone-forming effects in both WT and TIEG KO mice and effectively increases bone mass in female TIEG KO mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doenças Ósseas Metabólicas/genética , Proteínas de Ligação a DNA/genética , Osteogênese/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/sangue , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Anticorpos/farmacologia , Densidade Óssea/genética , Desenvolvimento Ósseo/genética , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/imunologia , Doenças Ósseas Metabólicas/patologia , Feminino , Fêmur/crescimento & desenvolvimento , Fêmur/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fenótipo
12.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396939

RESUMO

Liver fibrosis is a consequence of chronic liver injury associated with chronic viral infection, alcohol abuse, and nonalcoholic fatty liver. The evidence from clinical and animal studies indicates that transforming growth factor-ß (TGF-ß) signaling is associated with the development of liver fibrosis. Krüppel-like factor 10 (KLF10) is a transcription factor that plays a significant role in TGF-ß-mediated cell growth, apoptosis, and differentiation. In recent studies, it has been reported to be associated with glucose homeostasis and insulin resistance. In the present study, we investigated the role of KLF10 in the progression of liver disease upon a high-sucrose diet (HSD) in mice. Wild type (WT) and Klf10 knockout (KO) mice were fed either a control chow diet or HSD (50% sucrose) for eight weeks. Klf10 KO mice exhibited significant hepatic steatosis, inflammation, and liver injury upon HSD feeding, whereas the WT mice exhibited mild hepatic steatosis with no apparent liver injury. The livers of HSD-fed Klf10 KO mice demonstrated significantly increased endoplasmic reticulum stress, oxidative stress, and proinflammatory cytokines. Klf10 deletion led to the development of sucrose-induced hepatocyte cell death both in vivo and in vitro. Moreover, it significantly increased fibrogenic gene expression and collagen accumulation in the liver. Increased liver fibrosis was accompanied by increased phosphorylation and nuclear localization of Smad3. Here, we demonstrate that HSD-fed mice develop a severe liver injury in the absence of KLF10 due to the hyperactivation of the endoplasmic reticulum stress response and CCAAT/enhance-binding protein homologous protein (CHOP)-mediated apoptosis of hepatocytes. The current study suggests that KLF10 plays a protective role against the progression of hepatic steatosis into liver fibrosis in a lipogenic state.


Assuntos
Sacarose Alimentar/toxicidade , Fatores de Transcrição de Resposta de Crescimento Precoce/fisiologia , Estresse do Retículo Endoplasmático , Deleção de Genes , Inflamação/complicações , Fatores de Transcrição Kruppel-Like/fisiologia , Cirrose Hepática/etiologia , Animais , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo
13.
Molecules ; 25(22)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233354

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. Currently, therapeutic options are limited for this fatal disease. Curcumin, with its pleiotropic effects, has been studied for its potential therapeutic utilities in various diseases, including pulmonary fibrosis. However, the detailed mechanisms have not been studied comprehensively. We conducted a next-generation sequencing and bioinformatics study to investigate changes in the profiles of mRNA and microRNA after curcumin treatment in IPF fibroblasts. We identified 23 downregulated and 8 upregulated protein-coding genes in curcumin-treated IPF fibroblasts. Using STRING and IPA, we identified that suppression of cell cycle progression was the main cellular function associated with these differentially expressed genes. We also identified 13 downregulated and 57 upregulated microRNAs in curcumin-treated IPF fibroblasts. Further analysis identified a potential microRNA-mediated gene expression alteration in curcumin-treated IPF fibroblasts, namely, downregulated hsa-miR-6724-5p and upregulated KLF10. Therefore, curcumin might decrease the level of hsa-miR-6724-5p, leading to increased KLF10 expression, resulting in cell cycle arrest in curcumin-treated IPF fibroblasts. In conclusion, our findings might support the potential role of curcumin in the treatment of IPF, but further in-depth study is warranted to confirm our findings.


Assuntos
Biologia Computacional , Curcumina/farmacologia , Fibroblastos/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Fases de Leitura Aberta/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Medicina (Kaunas) ; 57(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379261

RESUMO

BACKGROUND AND OBJECTIVES: Krüppel-like transcription factor 10 (KLF10) plays a vital role in regulating cell proliferation, including the anti-proliferative process, activation of apoptosis, and differentiation control. KLF10 may also act as a protective factor against oral cancer. We studied the impact of KLF10 expression on the clinical outcomes of oral cancer patients to identify its role as a prognostic factor in oral cancer. MATERIALS AND METHODS: KLF10 immunoreactivity was analyzed by immunohistochemical (IHC) stain analysis in 286 cancer specimens from primary oral cancer patients. The prognostic value of KLF10 on overall survival was determined by Kaplan-Meier analysis and the Cox proportional hazard model. RESULTS: High KLF10 expression was significantly associated with male gender and betel quid chewing. The 5-year survival rate was greater for patients with high KLF10 expression than for those with low KLF10 expression (62.5% vs. 51.3%, respectively; p = 0.005), and multivariate analyses showed that high KLF10 expression was the only independent factor correlated with greater overall patient survival. The significant correlation between high KLF10 expression and a higher 5-year survival rate was observed in certain subgroups of clinical parameters, including female gender, non-smokers, cancer stage T1, and cancer stage N0. CONCLUSIONS: KLF10 expression, detected by IHC staining, could be an independent prognostic marker for oral cancer patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Fatores de Transcrição de Resposta de Crescimento Precoce , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/genética , Masculino , Neoplasias Bucais/genética , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço
15.
J Cell Physiol ; 233(4): 3540-3551, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29044507

RESUMO

TIEG knockout (KO) mice exhibit a female-specific osteopenic phenotype and altered expression of TIEG in humans is associated with osteoporosis. Gene expression profiling studies identified sclerostin as one of the most highly up-regulated transcripts in the long bones of TIEG KO mice relative to WT littermates suggesting that TIEG may regulate SOST expression. TIEG was shown to substantially suppress SOST promoter activity and the regulatory elements through which TIEG functions were identified using promoter deletion and chromatin immunoprecipitation assays. Knockdown of TIEG in IDG-SW3 osteocyte cells using shRNA and CRISPR-Cas9 technology resulted in increased SOST expression and delayed mineralization, mimicking the results obtained from TIEG KO mouse bones. Given that TIEG is an estrogen regulated gene, and as changes in the hormonal milieu affect SOST expression, we performed ovariectomy (OVX) and estrogen replacement therapy (ERT) studies in WT and TIEG KO mice followed by miRNA and mRNA sequencing of cortical and trabecular compartments of femurs. SOST expression levels were considerably higher in cortical bone compared to trabecular bone. In cortical bone, SOST expression was increased following OVX only in WT mice and was suppressed following ERT in both genotypes. In contrast, SOST expression in trabecular bone was decreased following OVX and significantly increased following ERT. Interestingly, a number of miRNAs that are predicted to target sclerostin exhibited inverse expression levels in response to OVX and ERT. These data implicate important roles for TIEG and estrogen-regulated miRNAs in modulating SOST expression in bone.


Assuntos
Proteínas de Ligação a DNA/deficiência , Estrogênios/farmacologia , Glicoproteínas/metabolismo , Osteócitos/efeitos dos fármacos , Esqueleto/metabolismo , Fatores de Transcrição/deficiência , Proteínas Adaptadoras de Transdução de Sinal , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/metabolismo , Feminino , Marcadores Genéticos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos Knockout , Osteócitos/metabolismo , Ovariectomia/métodos , Esqueleto/efeitos dos fármacos
16.
J Cell Biochem ; 119(11): 9303-9315, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29953651

RESUMO

Ischemia-reperfusion injury (IRI) is a severe problem patients diagnosed with acute limb ischemia. Recently, microRNAs (miR) have emerged as regulators of IRI as well as ischemic preconditioning and ischemic postconditioning. Therefore, using rat models, this study aims to explore all of the possible mechanisms that miR-19 exhibits with its relation to the transforming growth factor beta (TGF-ß1)/Smad signaling pathway in the lower limb IRI. An immunofluorescence staining method was used to identify the Krueppel-like factor 10 (KLF10) positive expression and the location of KLF10 expression. The targeting relationship that miR-19 has with KLF10 was verified by the dual-luciferase reporter gene assay. Vascular endothelial cells (VECs) were treated with elevated or suppressed miR-19 or KLF10 knockdown. A 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay was used to test cell proliferation, and flow cytometry was employed to detect both cell cycle and apoptosis. The KLF10-positive expression in the VECs (both in cytoplasm and nucleus) was found to be elevated in the IRI rats. We found that miR-19 was downregulated, KLF10 upregulated, and the TGF-ß1/Smad signaling pathway activated in the vascular epithelial tissues of IRI rats. KLF10 is a target gene of miR-19. Overexpression of miR-19 decreased the expression of KLF10, TGF-ß1, and Smad2/3. Decreased miR-19 inhibited VEC proliferation, arrested VECs at the G1 phase, and promoted the apoptosis of VECs following their lower limb I/R injury. These results indicate miR-19 as being an inhibitor in the VEC injury of IRI via the TGF-ß1/Smad signaling pathway by suppression of KLF10.


Assuntos
Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Endoteliais/citologia , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Ratos , Ratos Wistar , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/genética
17.
Biochem Biophys Res Commun ; 495(2): 2092-2097, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29198712

RESUMO

FBW7, a key component of SCFFBW7 E3 ubiquitin ligase, targets various proteins for degradation via the conserved Cdc4 phosphodegron (CPD) in substrates. In this study, we report that KLF10 is degraded by FBW7 via a conserved CPD. Through systematic analysis of the degradation of KLF transcription factors by FBW7, we identified KLF10 as a novel degradation target of FBW7. Ectopic expression of FBW7 markedly promoted the degradation of KLF10 while knockdown of endogenous FBW7 increased the protein levels of KLF10. In addition, simultaneous mutations of both threonine 82 (T82) and serine 86 (S86) significantly reduced the FBW7-mediated KLF10 degradation. Moreover, KLF10 containing a conserved putative CPD (TPPXSP) from amino acids 82 to 87, directly interacted with WD40 domain of FBW7 in a phosphorylation-dependent manner. Importantly, FBW7 could reverse the KLF10-mediated inhibition of Smad7 activity. Thus, our study uncovers a novel regulatory mechanism underlying which KLF10 stability and its biological function are mediated by FBW7.


Assuntos
Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação/fisiologia , Sítios de Ligação , Fatores de Transcrição de Resposta de Crescimento Precoce/química , Ativação Enzimática , Proteína 7 com Repetições F-Box-WD/química , Células HEK293 , Células HeLa , Humanos , Fatores de Transcrição Kruppel-Like/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Especificidade por Substrato , Proteínas Ubiquitinadas/química
18.
RNA Biol ; 15(3): 391-403, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29286255

RESUMO

MicroRNA dysregulation is a common feature of cancer and due to the promiscuity of microRNA binding this can result in a wide array of genes whose expression is altered. miR-106b is an oncomiR overexpressed in cholangiocarcinoma and its upregulation in this and other cancers often leads to repression of anti-tumorigenic targets. The goal of this study was to identify the miR-106b-regulated gene landscape in cholangiocarcinoma cells using a genome-wide, unbiased mRNA analysis. Through RNA-Seq we found 112 mRNAs significantly repressed by miR-106b. The majority of these genes contain the specific miR-106b seed-binding site. We have validated 11 genes from this set at the mRNA level and demonstrated regulation by miR-106b of 7 proteins. Combined analysis of our miR-106b-regulated mRNA data set plus published reports indicate that miR-106b binding is anchored by G:C pairing in and near the seed. Novel targets Kruppel-like factor 2 (KLF2) and KLF6 were verified both at the mRNA and at the protein level. Further investigation showed regulation of four other KLF family members by miR-106b. We have discovered coordinated repression of multiple members of the KLF family by miR-106b that may play a role in cholangiocarcinoma tumor biology.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Regulação para Baixo , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/química , Fatores de Transcrição Kruppel-Like/metabolismo , Ratos , Análise de Sequência de RNA/métodos
19.
Diabetologia ; 60(12): 2443-2452, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28836014

RESUMO

AIM/HYPOTHESIS: Abnormal activation of hepatic gluconeogenesis leads to hyperglycaemia. However, the molecular mechanisms underlying dysregulated hepatic gluconeogenesis remain to be fully defined. Here, we explored the physiological role of Krüppel-like factor 10 (KLF10) in regulating hepatic glucose metabolism in mice. METHODS: Hepatic KLF10 expression in wild-type C57BL/6J mice, the db/db mouse model of diabetes, the ob/ob mouse model of obesity and high-fat-diet-induced obese (DIO) mice was measured. Adenoviruses expressing Klf10 or Klf10-specific short-hairpin RNA were injected into wild-type C57BL/6J mice, db/db or DIO mice. Expression of gluconeogenic genes in the liver and blood glucose levels were measured. GTTs and pyruvate tolerance tests were performed. The molecular mechanism by which KLF10 regulates hepatic glucose metabolism was explored. RESULTS: Hepatic KLF10 expression was regulated by nutritional status in wild-type mice and upregulated in diabetic, obese and DIO mice. Overexpression of KLF10 in primary hepatocytes increased the expression of gluconeogenic genes and cellular glucose output. C57BL/6J mice with KLF10 overexpression in the liver displayed increased blood glucose levels and impaired glucose tolerance. Conversely, hepatic KLF10 knockdown in db/db and DIO mice decreased blood glucose levels and improved glucose tolerance. Furthermore, luciferase reporter gene assay and chromatin immunoprecipitation analysis indicated that KLF10 activates Pgc-1α (also known as Ppargc1a) gene transcription via directly binding to its promoter region. CONCLUSIONS/INTERPRETATION: KLF10 is an important regulator of hepatic glucose metabolism and modulation of KLF10 expression in the liver may be an attractive approach for the treatment of type 2 diabetes.


Assuntos
Glicemia/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/metabolismo , Adenoviridae/genética , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
20.
Biochim Biophys Acta ; 1860(6): 1071-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26922828

RESUMO

BACKGROUND: Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-ß. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. METHODS: We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). RESULTS: TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. CONCLUSION: TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. GENERAL SIGNIFICANCE: This study enlightens the role of TIEG-1 role in skin biology.


Assuntos
Citoesqueleto de Actina/química , Fatores de Transcrição de Resposta de Crescimento Precoce/fisiologia , Fibroblastos/metabolismo , Fatores de Transcrição Kruppel-Like/fisiologia , Estresse Oxidativo , Fatores de Despolimerização de Actina/metabolismo , Movimento Celular , Células Cultivadas , Humanos , Fosforilação , Pele/citologia , Cicatrização , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA