Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298138

RESUMO

The treatment of acne and other seborrheic diseases has arisen as a significant clinical challenge due to the increasing appearance of multi-drug resistant pathogens and a high frequency of recurrent lesions. Taking into consideration the fact that some Knautia species are valuable curatives in skin diseases in traditional medicine, we assumed that the thus far unstudied species K. drymeia and K. macedonica may be a source of active substances used in skin diseases. The purpose of this study was to evaluate the antioxidant, anti-inflammatory, antibacterial, and cytotoxic activities of their extracts and fractions. An LC-MS analysis revealed the presence of 47 compounds belonging to flavonoids and phenolic acids in both species while the GC-MS procedure allowed for the identification mainly sugar derivatives, phytosterols, and fatty acids and their esters. The ethanol as well as methanol-acetone-water (3:1:1) extracts of K. drymeia (KDE and KDM) exhibited great ability to scavenge free radicals and good capacity to inhibit cyclooxygenase-1, cyclooxygenase-2, and lipoxygenase. Moreover, they had the most favorable low minimal inhibitory concentration values against acne strains, and importantly, they were non-toxic toward normal skin fibroblasts. In conclusion, K. drymeia extracts seem to be promising and safe agents for further biomedical applications.


Assuntos
Dipsacaceae , Dermatopatias , Humanos , Extratos Vegetais/química , Antibacterianos/farmacologia , Medicina Tradicional , Antioxidantes/farmacologia , Antioxidantes/química
2.
J Sci Food Agric ; 98(3): 945-954, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28707708

RESUMO

BACKGROUND: A recent interest in edible wild leafy vegetables has been documented. Consumers often associate these species with health promotion. In this study, several wild species of the Asteraceae family and Knautia integrifolia (Dipsacaceae) were locally documented for their use in traditional cuisine and sampled from the wild. RESULTS: Phenolic compounds were identified and quantified by ultra-high-performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry. Hydroxycinnamic acids ranging from 1388 to 53 076 mg kg-1 dry weight (DW) were the most abundant compounds in all species (69-98% of the total phenolic content) except Tragopogon pratensis. Thirty compounds were identified as flavonoids, mostly as glycosidic forms of luteolin, apigenin, kaempferol and quercetin. The sum of flavonoids ranged between 212 and 12 598 mg kg-1 DW; they represented 65% of the total phenolic content for T. pratensis. Three anthocyanins were detected, representing in most cases less than 1% of the total phenolic content (3-627 mg kg-1 DW). Higher anthocyanin contents were observed for Cichorium types. CONCLUSION: Different phenolic profiles were observed between species, especially considering the class of flavonoids. Individual species may be of some interest for their content of specific minor flavonoids. © 2017 Society of Chemical Industry.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Fenóis/química , Extratos Vegetais/química , Verduras/química , Folhas de Planta/química
3.
BMC Evol Biol ; 16(1): 204, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27724874

RESUMO

BACKGROUND: Polyploidy is one of the most important evolutionary pathways in flowering plants and has significantly contributed to their diversification and radiation. Due to the prevalence of reticulate evolution spanning three ploidy levels, Knautia is considered one of the taxonomically most intricate groups in the European flora. On the basis of ITS and plastid DNA sequences as well as AFLP fingerprints obtained from 381 populations of almost all species of the genus we asked the following questions. (1) Where and when did the initial diversification in Knautia take place, and how did it proceed further? (2) Did Knautia undergo a similarly recent (Pliocene/Pleistocene) rapid radiation as other genera with similar ecology and overlapping distribution? (3) Did polyploids evolve within the previously recognised diploid groups or rather from hybridisation between groups? RESULTS: The diversification of Knautia was centred in the Eastern Mediterranean. According to our genetic data, the genus originated in the Early Miocene and started to diversify in the Middle Miocene, whereas the onset of radiation of sect. Trichera was in central parts of the Balkan Peninsula, roughly 4 Ma. Extensive spread out of the Balkans started in the Pleistocene about 1.5 Ma. Diversification of sect. Trichera was strongly fostered by polyploidisation, which occurred independently many times. Tetraploids are observed in almost all evolutionary lineages whereas hexaploids are rarer and restricted to a few phylogenetic groups. Whether polyploids originated via autopolyploidy or allopolyploidy is unclear due to the weak genetic separation among species. In spite of the complexity of sect. Trichera, we present nine AFLP-characterised informal species groups, which coincide only partly with former traditional groups. CONCLUSIONS: Knautia sect. Trichera is a prime example for rapid diversification, mostly taking place during Pliocene and Pleistocene. Numerous cycles of habitat fragmentation and subsequent reconnections likely promoted hybridisation and polyploidisation. Extensive haplotype sharing and unresolved phylogenetic relationships suggest that these processes occurred rapidly and extensively. Thus, the dynamic polyploid evolution, the lack of crossing barriers within ploidy levels supported by conserved floral morphology, the highly variable leaf morphology and unstable indumentum composition prevent establishing a well-founded taxonomic framework.


Assuntos
Evolução Biológica , Dipsacaceae/classificação , Dipsacaceae/genética , Especiação Genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Península Balcânica , Dipsacaceae/citologia , Ecossistema , Hibridização Genética , Filogenia , Filogeografia , Plastídeos/genética , Poliploidia
4.
Flora ; 223: 11-18, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28148998

RESUMO

Grazing is an important management action to conserve biodiversity in semi-natural grasslands but it is important to understand how grazing influences the life-history components and population dynamics of plant species. In this study, we analysed effects of grazing intensity and abandonment on population dynamics of the semi-natural grassland species Knautia arvensis which is an important nectar source for pollinating species and an indicator of biodiversity in agricultural landscapes. We recorded life-history stage, survival, establishment of seedlings and ramets, number of inflorescences and grazing marks on permanently marked individuals in eight populations in mid-Norway for three consecutive years. Matrix modelling was used to estimate population growth rates and elasticities, and life Table response experiments (LTREs) were used to assess the contribution of different life-history components to the observed variation in population growth rates between different management treatments. Generalized linear mixed effects models (GLMMs) were used to investigate the effect of management on vital rates and number of inflorescences as well as damage to K. arvensis individuals. Populations in abandoned grasslands had more inflorescences, a lower proportion of seedlings and a higher proportion of flowering ramets compared to populations in grasslands under high grazing intensity. There were no differences in population growth rates between different grazing intensities. Fecundity however, contributed more to the growth rate in grazed grasslands compared to abandoned grasslands where clonal regeneration contributed the most. Survival of non-flowering rosettes made the largest impact to overall growth rates. Our results indicate that a long life-span and clonal growth buffer the effect of environmental change in abandoned grasslands and that there is a trade-off between fertility and clonal regeneration in K. arvensis populations.

5.
Mol Phylogenet Evol ; 74: 97-110, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24508604

RESUMO

The genus Knautia (Caprifoliaceae, Dipsacoideae) encompasses 40-60 species mainly distributed in western Eurasia, with highest species diversity in the Alps and the Balkan Peninsula. It is traditionally regarded as one of the taxonomically most challenging European genera due to the widespread occurrence of polyploidy, the high incidence of hybridisation and the maintenance of morphologically intermediate forms. A prerequisite for assessing the complex spatiotemporal diversification of a polyploid group is a comprehensive hypothesis of the phylogenetic relationships among its diploid members. To this end, DNA sequence data (nrDNA ITS and plastid petN(ycf6)-psbM) combined with AFLP fingerprinting were performed on 148 diploid populations belonging to 35 taxa. Phylogenies obtained by maximum parsimony and Bayesian analyses were used to test the monophyly of the genus and its three sections Trichera, Tricheroides and Knautia, to provide insights into its evolutionary history and to test previous hypotheses of inter- and intrasectional classification. Both nuclear and chloroplast datasets support the monophyly of Knautia and its three sections, with ambiguous placement of K. cf. degenii. The majority of species belong to the nearly exclusively perennial section Trichera (x=10). Within section Trichera all markers revealed largely unresolved phylogenetic relationships suggesting rapid radiation and recent range expansion. In addition, extensive sharing of plastid haplotypes across taxa and wide geographic ranges of plastid haplotypes and ribotype groups were observed. The molecular data are partly at odds with the traditional informal grouping of taxa within section Trichera. Whereas the traditional groups of K. dinarica, K. drymeia and K. montana can be maintained, the new, smaller and well supported Midzorensis and Pancicii Groups as well as the SW European Group are separated from the heterogeneous traditional K. longifolia group. The former groups of K. arvensis, K. dalmatica, K. fleischmannii and K. velutina are clearly polyphyletic. Their diploid members have to be rearranged into the Xerophytic Group, the Carinthiaca Group, and the Northern and Southern Arvensis Groups. The annual sections Tricheroides (x=10) and Knautia (x=8) with only a few taxa are resolved in the ITS and plastid trees on long branches as early diverging lineages within the genus.


Assuntos
Caprifoliaceae/genética , Diploide , Dipsacaceae/genética , Filogenia , Evolução Molecular , Plastídeos/genética , Análise de Sequência de DNA
6.
Evodevo ; 7: 8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042288

RESUMO

BACKGROUND: Shifts in floral form across angiosperms, particularly from radially symmetrical to bilaterally symmetrical flowers, are often associated with shifts in speciation rates and changes in pollination syndrome. Growing evidence across both rosids and asterids indicates that CYCLOIDEA (CYC)-like transcription factors from the TCP gene family play a role in establishing the dorsoventral pattern of flower symmetry, which affects the development of both the corolla and androecium. Previous studies of CYC-like genes, especially of the CYC2 clade, indicate that these genes are dorsally restricted in bilaterally symmetrical flowers. Also, gene duplication of CYC-like genes often correlates with shifts in floral form in both individual flowers and head-like inflorescences (capitula). RESULTS: Here, we compared the expression patterns of six CYC-like genes from dorsal, lateral, and ventral petals of internal and external florets across capitula of Knautia macedonica (Dipsacaceae). We demonstrate that multiple copies of CYC-like genes are differentially expressed among petal types and between internal and external florets. Across paralogs, there was a general trend toward a reduction in dorsal expression and an increase in ventral expression in internal florets compared to external florets. However, it was in the ventral petals where a statistically significant increase in expression correlates with a less zygomorphic flower. We also show for the first time lateral-specific expression of a CYC-like gene. Additionally, dorsoventral asymmetric expression of a CYC3 paralog indicates that this understudied gene clade is likely also involved in floral symmetry. CONCLUSIONS: These data indicate that the elaboration of bilateral symmetry may be regulated by the dorsoventral gradient of expression, with statistically significant changes in ventral expression correlating with changes in dorsoventral morphological specialization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA