Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Plant Foods Hum Nutr ; 76(1): 76-82, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33492585

RESUMO

Kohlrabi sprouts are just gaining popularity as the new example of functional food. The study was focused on the influence of germination time and light conditions on glucosinolates, phenolic acids, flavonoids, and fatty acids content in kohlrabi sprouts, in comparison to the bulbs. The effect of kohlrabi products on SW480, HepG2 and BJ cells was also determined. The length of sprouting time and light availability significantly influenced the concentrations of the phenolic compounds. Significant differences in progoitrin concentrations were observed between the sprouts harvested in light and in the darkness, with significantly lower content for darkness conditions. Erucic acid was the dominant fatty acid found in sprouts (14.5-34.5%). Sprouts and bulbs were less toxic to normal than to cancer cells. The sprouts stimulated necrosis (56.4%) more than apoptosis (34.1%) in SW480 cells, while the latter effect was predominant for the bulbs. Both sprouts and bulbs caused rather necrosis (45.5 and 63.9%) than apoptosis (32 and 32.5%) in HepG2 cells.


Assuntos
Alimento Funcional , Germinação , Flavonoides , Fenóis/análise , Raízes de Plantas/química
2.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977439

RESUMO

The glucosinolates which are specialized plant metabolites of Brassica vegetables are prone to hydrolysis catalyzed by an endogenous enzyme myrosinase (thioglycoside hydrolase, thioglucosidase) that exists in Brassica plant tissue causing volatile isothiocyanates release. Currently existing literature data on the inactivation of myrosinase is insufficient in particular for use in the analysis of volatile and odor compounds in vegetables rich in glucosinolates. In this study, the impact of different metal salts in effective inactivation of enzyme activity was investigated by solid-phase microextraction (SPME) and GC/MS system in aqueous samples and kohlrabi matrix. A saturated solution of calcium chloride which is commonly used to stop enzyme activity in plant tissue inactivates the myrosinase-glucosinolate system. However, even without the participation of myrosinase, it changes the reaction pathway towards nitrile formation. The model experiment shows that optimum efficiency in inhibition of the enzyme system shows iron(III) ions, silver ions, and anhydride sodium sulfate resulting in no volatile products derived from glucosinolates. However, in the kohlrabi matrix, the strongest enzyme inhibition effect was observed for silver salt resulting in no volatile products, also both anhydrous Na2SO4 and saturated CaCl2 solution seem to be useful inhibitors in flavor studies.


Assuntos
Glicosídeo Hidrolases/metabolismo , Metais/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sais/química , Sementes/química , Sinapis/química , Ativação Enzimática/efeitos dos fármacos , Volatilização
3.
Plant Physiol Biochem ; 206: 108283, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142664

RESUMO

Kale (Brassica oleracea L. var. sabellica L.), kohlrabi (Brassica oleracea L. var. gongylodes L.) and wheat (Triticum aestivum L. cv. Bancal) microgreens were cultivated in presence of selenium 20 µmol L-1 as sodium selenite and sodium selenate mixture. The influence of this biofortification process was evaluated in terms of biomass production, total Se, macro- and micronutrients concentration, polyphenols, antioxidant activity, chlorophylls and carotenoids levels and total soluble proteins content. The results obtained have shown a significant concentration of total Se in the biofortified microgreens of kale (133 µg Se·g-1 DW) and kohlrabi (127 µg Se·g-1 DW) higher than that obtained for wheat (28 µg Se·g-1 DW). The Se uptake in all the species did not produce oxidative damage to the plants reflected in the bioactive compounds, antioxidant capacity or pigments concentration. These Se-enriched microgreens may contribute to the recommended intake of this nutrient in human diet as to overcome Se-deficiency.


Assuntos
Brassica , Selênio , Humanos , Selênio/farmacologia , Selênio/metabolismo , Biofortificação/métodos , Antioxidantes/metabolismo , Brassica/metabolismo , Compostos Fitoquímicos/metabolismo , Nutrientes
4.
Plants (Basel) ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475442

RESUMO

The use of nitrogen as a fertilizer can be highly risky when used excessively, and it is therefore necessary to find novel techniques to reduce its use. Aquaponics reduces the use of synthetic fertilizers and water, and the leaching of nitrate into the environment. One way to avoid problems due to a reduction in nitrogen availability could be the use of plant growth promoting rhizobacteria (PGPR). This study examines the effect of PGPR on kohlrabi plants grown with a traditional nutrient solution (100S), in combination with "fish water" (50F/50D), or with a supplement of synthetic fertilizers (50F/50D + S). Two formulations were used: T1 (Azospirillum brasilense and Pantoea dispersa) and T2 (Azotobacter salinestris). Irrigation with 50F/50D caused a reduction in several of the measured parameters. The combined application of 50F/50D with T1 attenuated the negative effects. T2 did not present significant effects on the parameters measured. The results obtained with 50F/50D + S hardly showed differences with the 100S. Thus, by irrigating with 50F/50D + S, we were able to maintain the yields while reducing fertilizer use and water. The combined use of T1 and 50F/50D was also positive; however, it would be necessary to continue adjusting the amount of nitrate supplied to maintain production.

5.
Genes (Basel) ; 15(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790180

RESUMO

Kohlrabi is an important swollen-stem cabbage variety belonging to the Brassicaceae family. However, few complete chloroplast genome sequences of this genus have been reported. Here, a complete chloroplast genome with a quadripartite cycle of 153,364 bp was obtained. A total of 132 genes were identified, including 87 protein-coding genes, 37 transfer RNA genes and eight ribosomal RNA genes. The base composition analysis showed that the overall GC content was 36.36% of the complete chloroplast genome sequence. Relative synonymous codon usage frequency (RSCU) analysis showed that most codons with values greater than 1 ended with A or U, while most codons with values less than 1 ended with C or G. Thirty-five scattered repeats were identified and most of them were distributed in the large single-copy (LSC) region. A total of 290 simple sequence repeats (SSRs) were found and 188 of them were distributed in the LSC region. Phylogenetic relationship analysis showed that five Brassica oleracea subspecies were clustered into one group and the kohlrabi chloroplast genome was closely related to that of B. oleracea var. botrytis. Our results provide a basis for understanding chloroplast-dependent metabolic studies and provide new insight for understanding the polyploidization of Brassicaceae species.


Assuntos
Brassica , Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Brassica/genética , Repetições de Microssatélites/genética , Composição de Bases/genética , Uso do Códon , Cloroplastos/genética , Sequenciamento Completo do Genoma/métodos
6.
Plants (Basel) ; 13(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674577

RESUMO

Osmotic stress is a condition in which plants do not get enough water due to changes in environmental factors. Plant response to osmotic stress is a complex process involving the interaction of different stress-sensitive mechanisms. Differentially expressed genes and response mechanisms of kohlrabi have not been reported under osmotic stress. A total of 196,642 unigenes and 33,040 differentially expressed unigenes were identified in kohlrabi seedlings under polyethylene glycol osmotic stress. AP2/ERF, NAC and eight other transcription factor family members with a high degree of interaction with CAT and SOD antioxidant enzyme activity were identified. Subsequently, 151 AP2/ERF genes were identified and analyzed. Twelve conserved motifs were searched and all AP2/ERF genes were clustered into four groups. A total of 149 AP2/ERF genes were randomly distributed on the chromosome, and relative expression level analysis showed that BocAP2/ERF genes of kohlrabi have obvious specificity in different tissues. This study lays a foundation for explaining the osmotic stress resistance mechanism of kohlrabi and provides a theoretical basis for the functional analysis of BocAP2/ERF transcription factor family members.

7.
Food Res Int ; 173(Pt 1): 113308, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803613

RESUMO

Pickled kohlrabi is a traditional and favored vegetable product in China. During pickling, the hardness, springiness, and chewiness of kohlrabi all experienced a typical change with twice "increase-decrease" trend. However, little is known about its mechanism. In this study, in situ analysis including immunofluorescence, low field nuclear magnetic, and transmission electron microscopy were used to explore the effects of cell wall pectin, water state, and cellular structure on kohlrabi texture changes during pickling. Results revealed that at the early stage, due to the rapid loss of water after three times salting, the cells shrank and the interstitial space reduced, resulting in the first increase on kohlrabi texture. Subsequently, the dehydration-rehydration caused by the first brine processing resulted in the first decrease on kohlrabi texture. Then under the action of PME enzyme, more low-esterified pectin was produced, and chelate-soluble pectin with more branched structure was further formed, leading to another elevation of the sample texture. As the pickling continued, under the combined action of PG and PME, the molecular weight of pectin was decreased and the rigidity of the cell tissue was destroyed, caused kohlrabi texture continued to decline. These researches could provide important information and guidance for better maintaining the texture of pickled vegetables during processing.


Assuntos
Pectinas , Água , Pectinas/química , Água/análise , Polissacarídeos/análise , Parede Celular/química , Frutas/química
8.
Plants (Basel) ; 12(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36986982

RESUMO

Light-emitting diode (LED) technology is one of the most important light sources in the plant industry for enhancing growth and specific metabolites in plants. In this study, we analyzed the growth, primary and secondary metabolites of 10 days old kohlrabi (Brassica oleracea var. gongylodes) sprouts exposed to different LED light conditions. The results showed that the highest fresh weight was achieved under red LED light, whereas the highest shoot and root lengths were recorded below the blue LED light. Furthermore, high-performance liquid chromatography (HPLC) analysis revealed the presence of 13 phenylpropanoid compounds, 8 glucosinolates (GSLs), and 5 different carotenoids. The phenylpropanoid and GSL contents were highest under blue LED light. In contrast, the carotenoid content was found to be maximum beneath white LED light. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) of the 71 identified metabolites using HPLC and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) showed a clear separation, indicating that different LEDs exhibited variation in the accumulation of primary and secondary metabolites. A heat map and hierarchical clustering analysis revealed that blue LED light accumulated the highest amount of primary and secondary metabolites. Overall, our results demonstrate that exposure of kohlrabi sprouts to blue LED light is the most suitable condition for the highest growth and is effective in increasing the phenylpropanoid and GSL content, whereas white light might be used to enhance carotenoid compounds in kohlrabi sprouts.

9.
Antioxidants (Basel) ; 11(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892645

RESUMO

Various metabolites act as plant defense molecules due to their antioxidant abilities. This study aimed to investigate the influence of UVB irradiation on the accumulation of metabolites, including primary metabolites (sugar, sugar alcohols, amino acids, organic acids, and an amine) and secondary metabolites (anthocyanins, fatty acids, and phenolic acids), and its synergistic antioxidant ability, in purple kohlrabi sprouts. Metabolite analyses revealed a total of 92 metabolites in the sprouts. Specifically, the levels of most amino acids increased after 24 h of UVB treatment, and then slightly decreased in the kohlrabi sprouts. The levels of most sugars and sugar alcohols increased after 24 h of UVB treatment and then decreased. The levels of TCA cycle intermediates and phenolic acids gradually increased during the UVB treatment. Furthermore, the levels of some fatty acids gradually increased during the UVB treatment, and the levels of the other fatty acids increased after 6 h of UVB treatment and then decreased. In particular, the levels of most anthocyanins, known to be strong antioxidants, gradually increased after 24 h of UVB treatment. In the in vitro ABTS scavenging assay, UVB-treated purple kohlrabi sprouts showed increased scavenging ability. This may be attributed to the increased accumulation of metabolites acting as antioxidants, in response to UVB treatment. This study confirmed that UVB irradiation induced the alteration of primary and secondary metabolism in the kohlrabi sprouts.

10.
Metabolites ; 12(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36295893

RESUMO

Fermented kohlrabi is a very popular side dish in China. Chinese kohlrabies industrially fermented for 0 years (0Y), 5 years (5Y), and 10 years (10Y) were employed and analyzed by non-targeted metabolomics based on GC-TOF-MS, and the differential metabolites were screened using multivariate statistical analysis techniques, including principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA). The results showed that 47, 38, and 33 differential metabolites were identified in the three treatment groups of 0Y and 5Y (A1), 0Y and 10Y (A2), and 5Y and 10Y (A3), respectively (VIP > 1, p < 0.05). The metabolites were mainly carbohydrates, amino acids, and organic acids. Furthermore, 13 differential metabolites were screened from the three groups, including L-glutamic acid, L-aspartic acid, γ-aminobutyric acid, and other compounds. Four metabolic pathways termed alanine, aspartate, and glutamate metabolism, arginine biosynthesis, arginine and proline metabolism, and glycolysis/gluconeogenesis were the most significant pathways correlated with the differential metabolites, as analyzed according to the Kyoto Encyclopedia of Genes and Genomes (KEGG). The odors for the three ultra-long-term industrially fermented kohlrabies were significantly different, as detected by E-nose. The present work describes the changes in metabolites between different ultra-long-term industrially fermented kohlrabies and the associated metabolic pathways, providing a theoretical basis for the targeted regulation of characteristic metabolite biosynthesis in Chinese fermented kohlrabi.

11.
Life (Basel) ; 12(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36295020

RESUMO

The establishment of an efficient protocol for in vitro growth and regeneration of kohlrabi (Brassica oleracea var. gongylodes) allowed us to closely examine the phytohormone profiles of kohlrabi seedlings at four growth stages (T1-T4), additionally including the effects of cytokinins (CKs)-trans-zeatin (transZ) and thidiazuron (TDZ)-and high sucrose concentrations (6% and 9%). Resulting phytohormone profiles showed complex time-course patterns. At the T2 stage of control kohlrabi plantlets (with two emerged true leaves), levels of endogenous CK free bases and gibberellin GA20 increased, while increases in jasmonic acid (JA), JA-isoleucine (JA-Ile), indole-3-acetic acid (IAA) and indole-3-acetamide (IAM) peaked later, at T3. At the same time, the content of most of the analyzed IAA metabolites decreased. Supplementing growth media with CK induced de novo formation of shoots, while both CK and sucrose treatments caused important changes in most of the phytohormone groups at each developmental stage, compared to control. Principal component analysis (PCA) showed that sucrose treatment, especially at 9%, had a stronger effect on the content of endogenous hormones than CK treatments. Correlation analysis showed that the dynamic balance between the levels of certain bioactive phytohormone forms and some of their metabolites could be lost or reversed at particular growth stages and under certain CK or sucrose treatments, with correlation values changing between strongly positive and strongly negative. Our results indicate that the kohlrabi phytohormonome is a highly dynamic system that changes greatly along the developmental time scale and also during de novo shoot formation, depending on exogenous factors such as the presence of growth regulators and different sucrose concentrations in the growth media, and that it interacts intensively with these factors to facilitate certain responses.

12.
Nutrients ; 14(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889759

RESUMO

Brassica sprouts, as the rich source of dietary glucosinolates, may have a negative effect on thyroid function. In this study, kohlrabi sprouts diet, combined with two models of rat hypothyroidism, was tested. TSH, thyroid hormones and histopathology analysis were completed with the evaluation of immunological, biochemical, haematological parameters, cytosolic glutathione peroxidase, thioredoxin reductase in the thyroid, and plasma glutathione peroxidase. A thermographic analysis was also adapted to confirm thyroid dysfunction. The levels of TSH, fT3 and fT4, antioxidant enzyme (GPX) as well as histopathology parameters remained unchanged following kohlrabi sprouts ingestion, only TR activity significantly increased in response to the sprouts. In hypothyroid animals, sprouts diet did not prevent thyroid damage. In comparison with the rats with iodine deficiency, kohlrabi sprouts diet decreased TNF-α level. Neither addition of the sprouts to the diet, nor sulfadimethoxine and iodine deficiency, caused negative changes in red blood cell parameters, glucose and uric acid concentrations, or kidney function. However, such a dietary intervention resulted in reduced WBC levels, and adversely interfered with liver function in rats, most likely due to a higher dietary intake of glucosinolates. Moreover, the possible impact of the breed of the rats on the evaluated parameters was indicated.


Assuntos
Brassica , Hipotireoidismo , Iodo , Desnutrição , Glândula Tireoide , Animais , Glucosinolatos , Iodo/deficiência , Desnutrição/complicações , Ratos , Sulfadimetoxina , Glândula Tireoide/fisiopatologia , Tireotropina , Tiroxina
13.
Heliyon ; 7(10): e08242, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34761134

RESUMO

Triacontanol (TRIA), an endogenous plant growth regulator, promotes various metabolic activities in plants, resulting in improved growth and development in kohlrabi. The objective of this study was to assess the effect of different doses of triacontanol on the growth and yield of kohlrabi. This study was carried out in a randomized complete block design (RCBD) with five replications at Purkot Daha, Gulmi, Nepal, from October 2020 to January 2021. The treatments consisted of four doses of triacontanol (Niraculan 0.05% EC) diluted in water viz 0 mL L-1 (control), 1 mL L-1, 1.5 mL L-1 and 2 mL L-1. The results showed that triacontanol application significantly increased plant height, number of leaves, leaf length, and width of the large leaf at 40 days after transplanting (DAT). Plants treated with triacontanol at the dose of 1 mL L-1 produced the highest plant height (14.61 cm), which was statistically at par with 0 mL L-1 (12.76 cm) and 2 mL L-1 (14.26 cm). Similarly, at 40 DAT, plants treated with triacontanol at the dose of 2 mL L-1 produced the highest number of leaves (5.56), which was statistically at par with 1 mL L-1 (5.4) and 1.5 mL L-1 (4.96). Likewise, at 40 DAT, the highest length of large leaf (13.95 cm) and width of the large leaf (5.09 cm) were found in plants treated with triacontanol at the dose of 1 mL L-1, which was statistically similar with 2 mL L-1. The yield was found to be higher (6.75% to 40.4%) in plants treated with triacontanol as compared to plants treated with triacontanol at the dose of 0 mL L-1. A significant difference was found in the harvest index. The highest harvest index (0.39) was found in plants treated with triacontanol at the dose of 2 mL L-1, which was statistically similar with 1 mL L-1 (0.35) and 1.5 mL L-1 (0.39). The lowest harvest index (0.31) was found in plants treated with 0 mL-1. This study suggests that farmers can apply triacontanol at the dose of 1 mL L-1 to enhance the growth and yield of kohlrabi.

14.
Mitochondrial DNA B Resour ; 6(9): 2714-2716, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34435131

RESUMO

Kohlrabi (Brassica oleracea var. gongylodes L.) is an important dietary rhizome vegetable in the Brassicaceae family. However, to date, few mitochondrial genomic resources have been reported for kohlrabi. In this study, we obtained the complete mitochondrial DNA sequence of 219,964 bp from an individual green kohlrabi. A total of 61 genes were annotated, including 33 protein-coding genes, 23 transfer RNA genes, three ribosomal RNA genes, and two pseudo genes. In addition, 1,001 open reading frames and five RNA editing sites were annotated. Relative synonymous codon usage analysis revealed significant difference in usage frequency of synonymous codon. Phylogenetic inference showed that kohlrabi is closely related to B. oleracea var. botrytis. This study provides a good foundation for further understanding the relationship and evolutionary origins among Brassicaceae crops.

15.
J Agric Food Chem ; 69(41): 12270-12277, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609877

RESUMO

Volatile compounds of raw and cooked green kohlrabi were investigated using a sensomics approach. A total of 55 odor-active compounds were detected and identified in raw and cooked green kohlrabi using GC-O. Twenty-eight odor-active compounds with high flavor dilution (FD) factors ranging from 64 to 1024 were quantitated, and odor activity values (OAVs) were determined. Eight compounds showed high OAVs in raw and cooked kohlrabi: five sulfur compounds (dimethyl trisulfide, methyl 2-methyl-3-furyl disulfide, and three isothiocyanates (1-isothiocyanato-3-(methylsulfanyl)propane, benzyl isothiocyanate, and 1-isothiocyanato-4-(methylsulfanyl)butane)), two lipid oxidation products (1-octen-3-one and trans-4,5-epoxy-(2E)-dec-2-enal), and 2-isopropyl-3-methoxypyrazine. Among these, the sulfur compounds contributed most to the overall smell of the raw and cooked vegetables. The quantitation analysis indicates that the eight odorants are the backbone compounds for raw and cooked kohlrabi. The OAVs for the backbone compounds and also for minor odorants are clearly higher in raw kohlrabi than in the cooked one. Differences can be explained by the influence of the cooking process.


Assuntos
Brassica , Compostos Orgânicos Voláteis , Culinária , Aromatizantes , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Olfato , Compostos Orgânicos Voláteis/análise
16.
Front Plant Sci ; 11: 611247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584754

RESUMO

Ultraviolet-B (UV-B; 280-315 nm) radiation induces the biosynthesis of secondary plant metabolites such as flavonoids. Flavonoids could also be enhanced by blue (420-490 nm) or green (490-585 nm) light. Flavonoids act as antioxidants and shielding components in the plant's response to UV-B exposure. They are shown to quench singlet oxygen and to be reactive to hydroxyl radical. The aim was to determine whether treatment with blue or green light can alter flavonoid profiles after pre-exposure to UV-B and whether they cause corresponding biological effects in Brassicaceae sprouts. Based on their different flavonoid profiles, three vegetables from the Brassicaceae were selected. Sprouts were treated with five subsequent doses (equals 5 days) of moderate UV-B (0.23 kJ m-2 day-1 UV-BBE), which was followed with two subsequent (equals 2 days) doses of either blue (99 µmol m-2 s-1) or green (119 µmol m-2 s-1) light. In sprouts of kale, kohlrabi, and rocket salad, flavonoid glycosides were identified by HPLC-DAD-ESI-MSn. Both Brassica oleracea species, kale and kohlrabi, showed mainly acylated quercetin and kaempferol glycosides. In contrast, in rocket salad, the main flavonol glycosides were quercetin glycosides. Blue light treatment after the UV-B treatment showed that quercetin and kaempferol glycosides were increased in the B. oleracea species kale and kohlrabi while-contrary to this-in rocket salad, there were only quercetin glycosides increased. Blue light treatment in general stabilized the enhanced concentrations of flavonoid glycosides while green treatment did not have this effect. Blue light treatment following the UV-B exposure resulted in a trend of increased singlet oxygen scavenging for kale and rocket. The hydroxyl radical scavenging capacity was independent from the light quality except for kale where an exposure with UV-B followed by a blue light treatment led to a higher hydroxyl radical scavenging capacity. These results underline the importance of different light qualities for the biosynthesis of reactive oxygen species that intercept secondary plant metabolites, but also show a pronounced species-dependent reaction, which is of special interest for growers.

17.
Plant Physiol Biochem ; 150: 234-243, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32169793

RESUMO

Kohlrabi (Brassica oleracea L. var. gongylodes L.) was biofortified with selenium (Se), as selenite and selenate, and iodine (I), as iodide and iodate, and their combinations through foliar spraying, to study absorption of these elements by the plants, separately and in combination. The effects on selected physiological and morphological traits and optical characteristics were monitored. Treatments with Se positively affected total chlorophylls and carotenoids, and leaf stomata dimensions. Addition of I decreased total chlorophylls and increased anthocyanins. In reflectance spectra of the leaves, specific colour regions differed significantly due to the different treatments. Reflectance in the UV correlated positively with Se and I contents of the leaves, which indicated lower demand for production of phenolic compounds. Differences in reflectance in UV part of the spectra could be a consequence of changes in the cuticle. The Se and I levels increased markedly in leaves and tubers, without loss of biomass or yield. Se had antagonistic effects on accumulation of I in leaves. The similar levels of Se and I in the leaves and tubers suggest that the transport of both elements in these plants occurs from the leaves to the tubers through the phloem. According to the Se and I contents in the kohlrabi tubers, biofortification with both elements simultaneously is feasible for human nutrition.


Assuntos
Brassica , Iodetos , Compostos de Selênio , Biofortificação , Brassica/efeitos dos fármacos , Iodetos/farmacologia , Compostos de Selênio/farmacologia
18.
Antioxidants (Basel) ; 9(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244953

RESUMO

The present study examined the modulatory effects of natural fiber substrates (agave fiber, coconut fiber and peat moss) and synthetic alternatives (capillary mat and cellulose sponge) on the nutritive and phytochemical composition of select microgreens species (coriander, kohlrabi and pak choi) grown in a controlled environment. Polyphenols were analyzed by UHPLC-Q-Orbitrap-HRMS, major carotenoids by HPLC-DAD, and macro-minerals by ion chromatography. Microgreens grown on peat moss had outstanding fresh and dry yield but low dry matter content. Natural fiber substrates increased nitrate and overall macro-mineral concentrations in microgreens compared to synthetic substrates. The concentrations of chlorophylls, carotenoids and ascorbate were influenced primarily by species. On the contrary, variability in polyphenols content was wider between substrates than species. Out of twenty phenolic compounds identified, chlorogenic acid and quercetin-3-O-rutinoside were most abundant. Hydroxycinnamic acids and their derivatives accounted for 49.8% of mean phenolic content across species, flavonol glycosides for 48.4% and flavone glycosides for 1.8%. Peat moss provided optimal physicochemical conditions that enhanced microgreens growth rate and biomass production at the expense of phenolic content. In this respect, the application of controlled stress (eustress) on microgreens growing on peat moss warrants investigation as a means of enhancing phytochemical composition without substantial compromise in crop performance and production turnover. Finally, nitrate deprivation practices should be considered for microgreens grown on natural fiber substrates in order to minimize consumer exposure to nitrate.

19.
J Plant Physiol ; 232: 257-269, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30537612

RESUMO

Kohlrabi (Brassica oleracea var. gongylodes) is an important vegetable crop that is able to undergo shoot regeneration in culture from intact seedlings in a single-step regeneration process, using cytokinin as the only plant growth regulator. In this work, we present the expression profiles of seven organogenesis-related genes over the time course of shoot regeneration from intact seedlings of kohlrabi cv. Vienna Purple on shoot regeneration media containing trans-zeatin, cis-zeatin, benzyl adenine or thidiazuron. Two auxin transporter genes - PIN3 and PIN4, a cytokinin response regulator - ARR5, two shoot apical meristem-related transcription factors - CUC1 and RGD3, and two cell cycle-related genes - CDKB2;1 and CYCB2;4 - displayed bimodal expression patterns on most cytokinin-containing media when their expression levels were normalized against control plants grown on hormone-free media. The first expression peak corresponded to direct upregulation by cytokinin from the growth media, and the second one reflected transcriptional events related to callus formation and/or acquisition of organogenic competence, corresponding to the shoot regeneration phases that have already been characterized in Arabidopsis thaliana. We demonstrate that the genes involved in the two-step shoot regeneration of Arabidopsis display their expected expression profiles during the single-step shoot regeneration of its close phylogenetic relative kohlrabi confirming the universality of their roles in the distinct phases of the regeneration process in Brassicaceae. The results presented here represent a first step towards genetic characterization of the morphogenetic processes in this important crop species.


Assuntos
Brassica/metabolismo , Genes de Plantas , Brotos de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Brassica/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase , Plântula/metabolismo , Análise de Sequência de DNA , Transcriptoma
20.
Plant Physiol Biochem ; 132: 229-237, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30219740

RESUMO

Adjuvants such as surfactants are commonly incorporated into agrochemical formulations to enhance the biological efficiency of foliar sprays by improving the wetting behavior of the spray and/or the penetration of the active ingredients into the leaf tissues. Penetration accelerating adjuvants are known to increase the cuticular permeability and may alter the cuticular barrier to water loss. However, none or very little emphasis has been given to the impacts of adjuvants on crop water balance or drought tolerance, a very important factor affecting crop performance under water scarcity. Two model crops with strongly varying leaf traits, kohlrabi (Brassica oleracea) and apple (Malus domestica) seedlings were grown in controlled environments. Three adjuvants with varying solubility in the cuticle, i.e. octanol-water partition coefficients (logKow) were selected: rapeseed methyl ester (RME) and the surfactants alkyl polyglycoside (APG) and polyoxyethylated tallow amine (POEA). The higher the logKow of the adjuvant, the stronger was the increase of minimum epidermal conductance (gmin, an essential parameter describing plant drought tolerance). However, such effects depended on the physio-chemical properties of the leaf surface. In comparison to kohlrabi, the adjuvant effects on gmin of apple leaves were relatively weak. The increase of gmin was associated with a decrease in contact angle and with an alteration of the wax microstructure. Furthermore, POEA affected photochemical efficiency of kohlrabi leaves. Some adjuvants could have a temporal influence on transpirational water loss and gmin. At repeated applications, they might alter the effective water use and possibly reduce drought tolerance of some horticultural crops.


Assuntos
Agricultura , Brassica/fisiologia , Malus/fisiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Tensoativos/farmacologia , Brassica/efeitos dos fármacos , Fluorescência , Malus/efeitos dos fármacos , Epiderme Vegetal/ultraestrutura , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Fatores de Tempo , Água , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA