Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054825

RESUMO

Induction of broadly neutralizing antibodies targeting ectodomain of the transmembrane (TM) glycoprotein gp41 HIV-1 provides a basis for the development of a universal anti-viral vaccine. The HeLa cell-derived TZM-bl reporter cell line is widely used for the estimation of lentiviruses neutralization by immune sera. The cell line is highly permissive to infection by most strains of HIV, SIV, and SHIV. Here we demonstrated that TZM-bl cells express a 48 kDa non-glycosylated protein (p48) recognized by broadly neutralizing monoclonal antibody (mAb) 2F5 targeting the ELDKWA (aa 669-674) epitope of gp41TM of HIV-1. A significant amount of p48 was found in the cell supernatant. The protein was identified as human kynureninase (KYNU), which has the ELDKWA epitope. The protein is further called "p48 KYNU". The HIV-1 neutralization by mAb 2F5 and 4E10 in the presence of p48KYNU was tested on Jurkat and TZM-bl cells. It was demonstrated that p48KYNU reduces neutralization by 2F5-like antibodies, but it has almost no effect on mAb 4E10. Therefore, p48KYNU can attenuate HIV-1 neutralization by 2F5-like antibodies and hence create false-negative results. Thus, previously tested immune sera that recognized the ELDKWA-epitope and demonstrated a "weak neutralization" of HIV-1 in TZM-bl assay should be reevaluated.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Hidrolases/metabolismo , Animais , Chlorocebus aethiops , Epitopos/imunologia , Células HEK293 , Proteína gp41 do Envelope de HIV/química , Células HeLa , Células Hep G2 , Humanos , Hidrolases/química , Hidrolases/genética , Células Jurkat , Testes de Neutralização , Domínios Proteicos , Células Vero
2.
J Biol Chem ; 294(28): 11047-11053, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31177094

RESUMO

A key metabolic adaptation of some species that face hypoxia as part of their life cycle involves an alternative electron transport chain in which rhodoquinone (RQ) is required for fumarate reduction and ATP production. RQ biosynthesis in bacteria and protists requires ubiquinone (Q) as a precursor. In contrast, Q is not a precursor for RQ biosynthesis in animals such as parasitic helminths, and most details of this pathway have remained elusive. Here, we used Caenorhabditis elegans as a model animal to elucidate key steps in RQ biosynthesis. Using RNAi and a series of C. elegans mutants, we found that arylamine metabolites from the kynurenine pathway are essential precursors for RQ biosynthesis de novo Deletion of kynu-1, encoding a kynureninase that converts l-kynurenine (KYN) to anthranilic acid (AA) and 3-hydroxykynurenine (3HKYN) to 3-hydroxyanthranilic acid (3HAA), completely abolished RQ biosynthesis but did not affect Q levels. Deletion of kmo-1, which encodes a kynurenine 3-monooxygenase that converts KYN to 3HKYN, drastically reduced RQ but not Q levels. Knockdown of the Q biosynthetic genes coq-5 and coq-6 affected both Q and RQ levels, indicating that both biosynthetic pathways share common enzymes. Our study reveals that two pathways for RQ biosynthesis have independently evolved. Unlike in bacteria, where amination is the last step in RQ biosynthesis, in worms the pathway begins with the arylamine precursor AA or 3HAA. Because RQ is absent in mammalian hosts of helminths, inhibition of RQ biosynthesis may have potential utility for targeting parasitic infections that cause important neglected tropical diseases.


Assuntos
Caenorhabditis elegans/metabolismo , Cinurenina/metabolismo , Ubiquinona/análogos & derivados , Animais , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatografia Líquida de Alta Pressão , Hidrolases/antagonistas & inibidores , Hidrolases/genética , Hidrolases/metabolismo , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/genética , Quinurenina 3-Mono-Oxigenase/metabolismo , Espectrometria de Massas , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Tela Subcutânea/metabolismo , Ubiquinona/análise , Ubiquinona/biossíntese , Ubiquinona/metabolismo
3.
J Allergy Clin Immunol ; 137(6): 1830-1840, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26725996

RESUMO

BACKGROUND: Many human diseases arise from or have pathogenic contributions from a dysregulated immune response. One pathway with immunomodulatory ability is the tryptophan metabolism pathway, which promotes immune suppression through the enzyme indoleamine 2,3-dioxygenase (IDO) and subsequent production of kynurenine. However, in patients with chronic inflammatory skin disease, such as psoriasis and atopic dermatitis (AD), another tryptophan metabolism enzyme downstream of IDO, L-kynureninase (KYNU), is heavily upregulated. The role of KYNU has not been explored in patients with these skin diseases or in general human immunology. OBJECTIVE: We sought to explore the expression and potential immunologic function of the tryptophan metabolism enzyme KYNU in inflammatory skin disease and its potential contribution to general human immunology. METHODS: Psoriatic skin biopsy specimens, as well as normal human skin, blood, and primary cells, were used to investigate the immunologic role of KYNU and tryptophan metabolites. RESULTS: Here we show that KYNU(+) cells, predominantly of myeloid origin, infiltrate psoriatic lesional skin. KYNU expression positively correlates with disease severity and inflammation and is reduced on successful treatment of psoriasis or AD. Tryptophan metabolites downstream of KYNU upregulate several cytokines, chemokines, and cell adhesions. By mining data on several human diseases, we found that in patients with cancer, IDO is preferentially upregulated compared with KYNU, whereas in patients with inflammatory diseases, such as AD, KYNU is preferentially upregulated compared with IDO. CONCLUSION: Our results suggest that tryptophan metabolism might dichotomously modulate immune responses, with KYNU as a switch between immunosuppressive versus inflammatory outcomes. Although tryptophan metabolism is increased in many human diseases, how tryptophan metabolism is proceeding might qualitatively affect the immune response in patients with that disease.


Assuntos
Hidrolases/metabolismo , Mediadores da Inflamação/metabolismo , Psoríase/etiologia , Psoríase/metabolismo , Biópsia , Células Cultivadas , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Hidrolases/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/metabolismo , Masculino , Redes e Vias Metabólicas , Células Mieloides/imunologia , Células Mieloides/metabolismo , Psoríase/diagnóstico , Psoríase/tratamento farmacológico , Pele/imunologia , Pele/metabolismo , Pele/patologia , Triptofano/metabolismo
4.
Ecotoxicol Environ Saf ; 108: 95-105, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25046851

RESUMO

Hepatic concentrations of persistent organochlorines (OCs) were determined in the common minke whale (Balaenoptera acutorostrata) from the North Pacific. To investigate the effects of OCs on the transcriptome in the minke whale, the present study constructed a hepatic oligo array of this species where 985 unique oligonucleotides were spotted and further analyzed the relationship between the OC levels and gene expression profiles of liver tissues. The stepwise multiple linear regression analysis identified 32 genes that correlated with hepatic OC levels. The mRNA expression levels of seven cytochrome P450 (CYP) genes, CYP1A1, 1A2, 2C78, 2E1, 3A72, 4A35, and 4V6 showed no clear correlations with the concentration of each OC, suggesting that the accumulated OCs in the liver did not reach levels that could alter CYP expression. Among the genes screened by the custom oligo array analysis, hepatic mRNA expression levels of 16 genes were further measured using quantitative real-time reverse transcription polymerase chain reaction. The mRNA levels of vitamin D-binding protein (DBP) were negatively correlated with non-ortho coplanar polychlorinated biphenyl (PCB) levels. Androgen receptor-associated coregulator 70 (ARA70) expression levels showed a significant positive correlation with concentrations of non-ortho coplanar PCB169. These correlations suggest that coplanar PCB-reduced DBP expression could suppress vitamin D receptor-mediated signaling cascades in peripheral tissues. Alternatively, the suppression of vitamin D receptor signaling cascade could be enhanced through competition with the androgen receptor signaling pathway for ARA70. In addition, a negative correlation between kynureninase and PCB169 levels was also observed, which suggest an enhanced accumulation of an endogenous aryl hydrocarbon receptor agonist, kynurenine in the minke whale population. Further studies are necessary to translate the changes in the transcriptome to toxicological outcomes including the disruption of the nervous and immune systems.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hidrocarbonetos Clorados/toxicidade , Fígado/efeitos dos fármacos , Baleia Anã/metabolismo , Animais , Citocromo P-450 CYP1A1/metabolismo , Perfilação da Expressão Gênica , Hidrocarbonetos Clorados/metabolismo , Japão , Fígado/metabolismo , Masculino , Oceano Pacífico , Bifenilos Policlorados/toxicidade , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transcriptoma
5.
ACS Appl Mater Interfaces ; 16(15): 18490-18502, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573937

RESUMO

Evading recognition of immune cells is a well-known strategy of tumors used for their survival. One of the immune evasion mechanisms is the synthesis of kynurenine (KYN), a metabolite of tryptophan, which suppresses the effector T cells. Therefore, lowering the KYN concentration can be an efficient antitumor therapy by restoring the activity of immune cells. Recently, kynureninase (KYNase), which is an enzyme transforming KYN into anthranilate, was demonstrated to show the potential to decrease KYN concentration and inhibit tumor growth. However, due to the limited bioavailability and instability of proteins in vivo, it has been challenging to maintain the KYNase concentration sufficiently high in the tumor microenvironment (TME). Here, we developed a nanoparticle system loaded with KYNase, which formed a Biodegradable and Implantable Nanoparticle Depot named 'BIND' following subcutaneous injection. The BIND sustainably supplied KYNase around the TME while located around the tumor, until it eventually degraded and disappeared. As a result, the BIND system enhanced the proliferation and cytokine production of effector T cells in the TME, followed by tumor growth inhibition and increased mean survival. Finally, we showed that the BIND carrying KYNase significantly synergized with PD-1 blockade in three mouse models of colon cancer, breast cancer, and melanoma.


Assuntos
Hidrolases , Cinurenina , Melanoma , Camundongos , Animais , Cinurenina/metabolismo , Evasão Tumoral , Imunoterapia , Microambiente Tumoral
6.
J Cancer ; 15(9): 2475-2485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577600

RESUMO

Background: Chemotherapy resistance is a barrier to effective cancer prognoses. Cisplatin (CDDP) resistance is a major challenge for esophageal cancer (EC) therapy. A deeper understanding of the fundamental mechanisms of cisplatin resistance and improved targeting strategies are required in clinical settings. This study was performed to identify and characterize a marker of cisplatin resistance in EC cells. Method: KYSE140 and Eca-109 cells were subjected to escalating concentrations of cisplatin, resulting in the development of cisplatin-resistant KYSE140/CDDP and Eca-109/CDDP cell lines, respectively. RNA Sequencing (RNA-seq) was utilized to screen for the genes exhibiting differential expression between cisplatin-resistant and parental cells. Reverse transcription quantitative PCR was conducted to assess gene expression, and western blotting was employed to analyze protein levels. A sphere-formation assay was performed to validate tumor cell stemness. Cell counting kit-8 (CCK-8) experiments were conducted to confirm the sensitivity of cells to cisplatin. We examined the relationship between target genes and the clinicopathological features of patients with EC. Furthermore, the expression of target genes in EC tissues was evaluated via western blotting and fluorescence probe in situ hybridization (FISH). Results: KYNU was upregulated in cisplatin-resistant EC cells (KYSE140/CDDP and Eca-109/CDDP cells) and in EC tissues compared to that in the respective parental cell lines (KYSE140 and Eca-109 cells) and non-carcinoma tissues. Downregulation of KYNU increased cell sensitivity to cisplatin and suppressed tumor stemness, whereas abnormal KYNU expression had the opposite effect. KYNU expression was correlated with the expression of tumor stemness-associated factors (SOX2, Nanog, and OCT4) and the tumor size. Conclusions: KYNU may promote drug resistance in EC by regulating cancer stemness, and could serve as a biomarker and therapeutic target for EC.

7.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166929, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918679

RESUMO

The kynurenine pathway (KP) is the principal metabolic route for the essential amino acid tryptophan (TRP). Recent advances have highlighted a pivotal role for several KP metabolites in inflammatory diseases, including ulcerative colitis (UC). However, the alterations of KP enzymes and their functional impact in UC remain poorly defined. Here, we focused on kynurenine 3-monooxygenase (KMO) and kynureninase (KYNU), which serve as critical branching enzymes in the KP. We observed that dextran sodium sulfate (DSS)-induced colitis mice exhibited disturbed TRP metabolism along with KMO and KYNU upregulated. In patients with active UC, both the expression of KMO and KYNU were positively correlated with inflammatory factors TNF-α and IL-1ß. Pharmacological blockade of KMO or genetic silencing of KYNU suppressed IL-1ß-triggered proinflammatory cytokines expression in intestinal epithelial cells. Furthermore, blockage of KMO by selective inhibitor Ro 61-8048 alleviated the symptoms of DSS-induced colitis in mice, accompanied by an expanded NAD+ pool and redox balance restoration. The protective role of Ro 61-8048 may be partly due to its effect on KP regulation, particularly in enhancing kynurenic acid production. In summary, our study provides new evidence for the proinflammatory property of KMO and KYNU in intestinal inflammation, hinting at a promising therapeutic approach in UC through targeting these enzymes.


Assuntos
Colite Ulcerativa , Colite , Humanos , Animais , Camundongos , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/genética , Quinurenina 3-Mono-Oxigenase/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Regulação para Cima , Colite/induzido quimicamente , Colite/genética , Inflamação/genética
8.
Int J Tryptophan Res ; 17: 11786469241239125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532858

RESUMO

Introduction: Limited clinical efficiency of current medications warrants search for new antipsychotic agents. Deorphanized G-protein coupled receptor (GPR)109A has not attracted much of attention of schizophrenia researchers. We analyzed literature and our data on endogenous agonists of GPR109A, beta-hydroxybutyrate (BHB), anthranilic (AA), butyric (BA), and nicotinic (NA) acids, in individuals with schizophrenia. Data: Sex specific differences: plasma AA levels were 27% higher in female than in male patients and correlated with PANSS before 6 weeks of antipsychotics treatment (r = .625, P < .019, Spearman's test). There was no sex specific differences of plasma AA levels after treatment. AA plasma levels inversely correlated (-.58, P < .005) with PANSS scores in responders to treatment (at least, 50% improvement) but not in nonresponders. Preclinical studies suggested antipsychotic effect of BHB and BA. Clinical studies observed antipsychotic effect of NA; benzoate sodium, an AA precursor; and interventions associated with BHB upregulation (eg, fasting and ketogenic diets). Discussion: Upregulation of GPR109A, an anti-inflammatory and neuroprotective receptor, inhibits cytosolic phospholipase A2 (cPLA2), an enzyme that breakdown myelin, lipid-based insulating axonal sheath that protects and promotes nerve conduction. Brain cPLA2 is upregulated in individuals with schizophrenia and subjects at high-risk for development of psychosis. Lower myelin content is associated with cognitive decline in individuals with schizophrenia. Therefore, GPR109A might exert antipsychotic effect via suppression of cPLA2, and, consequently, preservation of myelin integrity. Future research might explore antipsychotic effects of (1) human pegylated kynureninase, an enzyme that catalyzes formation of AA from kynurenine (Kyn); (2) inhibitors of Kyn conversion into kynurenic acid, for example, KYN5356, to patients with already impaired Kyn conversion into 3-hydroxykynurenine; (3) synthetic GPR 109A agonists, for example, MK-1903 and SCH900271 and GSK256073, that underwent clinical trials as anti-dyslipidemia agents. GPR109A expression, that might be a new endophenotype of schizophrenia, especially associated with cognitive impairment, needs thorough assessment.

9.
Cell Div ; 18(1): 15, 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37742026

RESUMO

BACKGROUND: Chemotherapy resistance is a leading cause of treatment failure in cases of cervical adenocarcinoma (ADC), and no effective treatment approach has yet been found. We previously identified the differentially expressed kynureninase (KYNU) mRNA in cervical adenocarcinoma cells (HeLa) and cervical adenocarcinoma cisplatin resistance cells (HeLa/DDP) using gene chips. However, the role and potential mechanism of KYNU in the cisplatin resistance of cervical adenocarcinoma remain unclear. METHODS: We verified the expression of KYNU in the cells and tissues of ADC patients and analyzed its correlation with patient prognosis. A stable HeLa/DDP cell line with KYNU mRNA knockdown was constructed. We then used a CCK8 assay to detect cell survival, a transwell assay to evaluate cell migration and proliferation and flow cytometry to measure apoptosis. The effect of KYNU silence on cisplatin sensitivity was evaluated in an orthotopic model of metastatic ADC. Immunohistochemistry was performed to determine the changes in relevant drug resistance-associated protein expression, aiming to explore the underlying mechanism of KYNU-mediated drug resistance. RESULTS: KYNU is overexpressed in HeLa/DDP cells and tissues and is associated with the poor prognoses of patients with ADC. After KYNU mRNA knockdown, the invasion, migration, and proliferation of HeLa/DDP cells in the cisplatin environment significantly reduced, while the apoptosis rate of HeLa/DDP cells significantly increased. Meanwhile, KYNU knockdown improved the DDP sensitivity of ADC in vivo. Furthermore, silencing KYNU decreased the expressions of CD34 and the drug-resistance related proteins P-gp, MRP1, and GST-π and increased the level of the proapoptotic regulatory protein Bax. CONCLUSION: KYNU deficiency enhanced DDP sensitivity by suppressing cell proliferation, migration, and invasion and promoting apoptosis in DDP-resistant ADC cells in vitro. Furthermore, KYNU knockdown improved the drug sensitivity of ADC in vivo. The results showed that KYNU is involved in the chemotherapy resistance of cervical adenocarcinoma.

10.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36986469

RESUMO

Kynureninase (KYNU) is a kynurenine pathway (KP) enzyme that produces metabolites with immunomodulatory properties. In recent years, overactivation of KP has been associated with poor prognosis of several types of cancer, in particular by promoting the invasion, metastasis, and chemoresistance of cancer cells. However, the role of KYNU in gliomas remains to be explored. In this study, we used the available data from TCGA, CGGA and GTEx projects to analyze KYNU expression in gliomas and healthy tissue, as well as the potential contribution of KYNU in the tumor immune infiltrate. In addition, immune-related genes were screened with KYNU expression. KYNU expression correlated with the increased malignancy of astrocytic tumors. Survival analysis in primary astrocytomas showed that KYNU expression correlated with poor prognosis. Additionally, KYNU expression correlated positively with several genes related to an immunosuppressive microenvironment and with the characteristic immune tumor infiltrate. These findings indicate that KYNU could be a potential therapeutic target for modulating the tumor microenvironment and enhancing an effective antitumor immune response.

11.
Am J Alzheimers Dis Other Demen ; 38: 15333175231214861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37944012

RESUMO

Alzheimer's disease (AD) is an inflammatory associated disease, in which dysregulated kynurenine pathway (KP) plays a key role. Through KP, L-tryptophan is catabolized into neurotoxic and neuroprotective metabolites. The overactivation of indolamine 2,3-dioxygenase1 (IDO1), the first rate-limiting enzyme of KP, and the abnormal accumulation of KP metabolites have been noted in AD, and blocking IDO1 has been suggested as a therapeutic strategy. However, the expression patterns of KP enzymes in AD, and whether these enzymes are related to AD pathogenesis, have not been fully studied. Herein, we examined the expression patterns of inflammatory cytokines, neurotrophic factors and KP enzymes, and the activity of IDO1 and IDO1 effector pathway AhR (aryl hydrocarbon receptor) in AD mice. We studied the effects of IDO1 inhibitors on Aß-related neuroinflammation in rat primary neurons, mouse hippocampal neuronal cells, and APP/PS1 mice. The results further demonstrated the importance of IDO1-catalyzed KP in neuroinflammation in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Camundongos , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Doenças Neuroinflamatórias , Triptofano/metabolismo , Cinurenina/metabolismo , Neurônios/metabolismo
12.
Adv Sci (Weinh) ; 10(6): e2204006, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36627132

RESUMO

Emerging evidence reveals that amino acid metabolism plays an important role in ferroptotic cell death. The conversion of methionine to cysteine is well known to protect tumour cells from ferroptosis upon cysteine starvation through transamination. However, whether amino acids-produced metabolites participate in ferroptosis independent of the cysteine pathway is largely unknown. Here, the authors show that the tryptophan metabolites serotonin (5-HT) and 3-hydroxyanthranilic acid (3-HA) remarkably facilitate tumour cells to escape from ferroptosis distinct from cysteine-mediated ferroptosis inhibition. Mechanistically, both 5-HT and 3-HA act as potent radical trapping antioxidants (RTA) to eliminate lipid peroxidation, thereby inhibiting ferroptotic cell death. Monoamine oxidase A (MAOA) markedly abrogates the protective effect of 5-HT via degrading 5-HT. Deficiency of MAOA renders cancer cells resistant to ferroptosis upon 5-HT treatment. Kynureninase (KYNU), which is essential for 3-HA production, confers cells resistant to ferroptotic cell death, whereas 3-hydroxyanthranilate 3,4-dioxygenase (HAAO) significantly blocks 3-HA mediated ferroptosis inhibition by consuming 3-HA. In addition, the expression level of HAAO is positively correlated with lipid peroxidation and clinical outcome. Together, the findings demonstrate that tryptophan metabolism works as a new anti-ferroptotic pathway to promote tumour growth, and targeting this pathway will be a promising therapeutic approach for cancer treatment.


Assuntos
Neoplasias , Triptofano , Humanos , Triptofano/metabolismo , Cisteína/metabolismo , Serotonina/metabolismo , Neoplasias/tratamento farmacológico , Peroxidação de Lipídeos
13.
Cancers (Basel) ; 14(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35626147

RESUMO

Activation of the NRF2 pathway through gain-of-function mutations or loss-of-function of its suppressor KEAP1 is a frequent finding in lung cancer. NRF2 activation has been reported to alter the tumor microenvironment. Here, we demonstrated that NRF2 alters tryptophan metabolism through the kynurenine pathway that is associated with a tumor-promoting, immune suppressed microenvironment. Specifically, proteomic profiles of 47 lung adenocarcinoma (LUAD) cell lines (11 KEAP1 mutant and 36 KEAP1 wild-type) revealed the tryptophan-kynurenine enzyme kynureninase (KYNU) as a top overexpressed protein associated with activated NRF2. The siRNA-mediated knockdown of NFE2L2, the gene encoding for NRF2, or activation of the NRF2 pathway through siRNA-mediated knockdown of KEAP1 or via chemical induction with the NRF2-activator CDDO-Me confirmed that NRF2 is a regulator of KYNU expression in LUAD. Metabolomic analyses confirmed KYNU to be enzymatically functional. Analysis of multiple independent gene expression datasets of LUAD, as well as a LUAD tumor microarray demonstrated that elevated KYNU was associated with immunosuppression, including potent induction of T-regulatory cells, increased levels of PD1 and PD-L1, and resulted in poorer survival. Our findings indicate a novel mechanism of NRF2 tumoral immunosuppression through upregulation of KYNU.

14.
Int J Tryptophan Res ; 15: 11786469221078191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250276

RESUMO

Indoleamine-2,3-dioxygenase (IDO) degrades the essential amino acid tryptophan resulting in tryptophan depletion and the accumulation of catabolites such as kynurenine. The expression/activity of IDO in various cells, including macrophages and dendritic cells, results in an inhibition of T-cell responses in a number of situations, such as toward allogeneic fetuses and tissue grafts. Psoriasis is an immune-mediated skin disease involving T cells; kynureninase and its generation of catabolites downstream of IDO are reported to play an important role in this disease. We hypothesized that mice lacking the IDO1 gene would exhibit a hyperactive immune response and an exacerbation of skin lesions in the imiquimod-induced mouse model of psoriasis. Littermate wild-type and IDO1-knockout mice were treated with imiquimod for 5 days, and the severity of psoriasiform skin lesions assessed using the psoriasis area and severity index (PASI), ear edema measured using a digital caliper, and thickness of the epidermis determined by histology. Expression of pro-inflammatory mediators and tryptophan-metabolizing enzymes was monitored using quantitative RT-PCR. Imiquimod increased ear edema, PASI scores, and epidermal thickness in both WT and IDO1 knockout mice; however, there were no differences observed between the 2 genotypes. There were also no differences in imiquimod's induction of skin inflammatory mediators, indicating no effect of IDO1 gene loss in this psoriasis model. Although these data suggest a lack of involvement of IDO1 in psoriatic skin inflammation, other possible mechanisms, such as compensatory changes in other pathways and the involvement of the IDO2 isoform, must also be considered.

15.
J Atheroscler Thromb ; 28(11): 1214-1240, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298635

RESUMO

AIMS: Inflammation and hypertension contribute to the progression of atherosclerotic aneurysm in the aorta. Vascular cell metabolism is regarded to modulate atherogenesis, but the metabolic alterations that occur in atherosclerotic aneurysm remain unknown. The present study aimed to identify metabolic pathways and metabolites in aneurysmal walls and examine their roles in atherogenesis. METHODS: Gene expression using microarray and metabolite levels in the early atherosclerotic lesions and aneurysmal walls obtained from 42 patients undergoing aortic surgery were investigated (early lesion n=11, aneurysm n=35) and capillary electrophoresis-time-of-flight mass spectrometry (early lesion n=14, aneurysm n=38). Using immunohistochemistry, the protein expression and localization of the identified factors were examined (early lesion n=11, non-aneurysmal advanced lesion n=8, aneurysm n=11). The roles of the factors in atherogenesis were analyzed in macrophages derived from human peripheral blood mononuclear cells. RESULTS: Enrichment analysis using 35 significantly upregulated genes (log2 ratio, >3) revealed the alteration of the kynurenine pathway. Metabolite levels of tryptophan, kynurenine, and quinolinic acid and the kynurenine-to-tryptophan ratio were increased in the aneurysmal walls. Gene and protein expression of kynureninase and kynurenine 3-monooxygenase were upregulated and localized in macrophages in the aneurysmal walls. The silencing of kynureninase in the cultured macrophages enhanced the expression of interleukin-6 and indoleamine 2,3-dioxygenase 1. CONCLUSION: Our study suggests the upregulation of the kynurenine pathway in macrophages in aortic atherosclerotic aneurysm. Kynureninase may negatively regulate inflammation via the kynurenine pathway itself in macrophages.


Assuntos
Aneurisma Aórtico/patologia , Aterosclerose/patologia , Biomarcadores/análise , Hidrolases/metabolismo , Macrófagos/enzimologia , Metaboloma , Transcriptoma , Idoso , Aneurisma Aórtico/enzimologia , Aterosclerose/enzimologia , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Inflamação/prevenção & controle , Masculino , Prognóstico , Regulação para Cima
16.
J Clin Med ; 9(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384670

RESUMO

The widely varying therapeutic response of patients with inflammatory bowel disease (IBD) continues to raise questions regarding the unclarified heterogeneity of pathological mechanisms promoting disease progression. While biomarkers for the differentiation of Crohn's disease (CD) versus ulcerative colitis (UC) have been suggested, specific markers for a CD subclassification in ileal CD versus colonic CD are still rare. Since an altered signature of the tryptophan metabolism is associated with chronic inflammatory disease, we sought to characterize potential biomarkers by focusing on the downstream enzymes and metabolites of kynurenine metabolism. Using immunohistochemical stainings, we analyzed and compared the mucosal tryptophan immune metabolism in bioptic samples from patients with active inflammation due to UC or CD versus healthy controls. Localization-specific quantification of immune cell infiltration, tryptophan-metabolizing enzyme expression and mucosal tryptophan downstream metabolite levels was performed. We found generally increased immune cell infiltrates in the tissue of all patients with IBD. However, in patients with CD, significant differences were found between regulatory T cell and neutrophil granulocyte infiltration in the ileum compared with the colon. Furthermore, we observed decreased kynurenine levels as well as strong kynureninase (KYNU) expression specifically in patients with ileal CD. Correspondingly, significantly elevated levels of the kynurenine metabolite 3-hydroxyanthranilic acid were detected in the ileal CD samples. Highlighting the heterogeneity of the different phenotypes of CD, we identified KYNU as a potential mucosal biomarker allowing the localization-specific differentiation of ileal CD versus colonic CD.

17.
Bone ; 133: 115219, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31923704

RESUMO

Catel-Manzke syndrome is characterized by the combination of Pierre Robin sequence and radial deviation, shortening as well as clinodactyly of the index fingers, due to an accessory ossification center. Mutations in TGDS have been identified as one cause of Catel-Manzke syndrome, but cannot be found as causative in every patient with the clinical diagnosis. We performed a chromosome microarray and/or exome sequencing in three patients with hand hyperphalangism, heart defect, short stature, and mild to severe developmental delay, all of whom were initially given a clinical diagnosis of Catel-Manzke syndrome. In one patient, we detected a large deletion of exons 1-8 and the missense variant c.1282C > T (p.Arg428Trp) in KYNU (NM_003937.2), whereas homozygous missense variants in KYNU were found in the other two patients (c.989G > A (p.Arg330Gln) and c.326G > C (p.Trp109Ser)). Plasma and urine metabolomic analysis of two patients indicated a block along the tryptophan catabolic pathway and urine organic acid analysis showed excretion of xanthurenic acid. Biallelic loss-of-function mutations in KYNU were recently described as a cause of NAD deficiency with vertebral, cardiac, renal and limb defects; however, no hand hyperphalangism was described in those patients, and Catel-Manzke syndrome was not discussed as a differential diagnosis. In conclusion, we present unrelated patients identified with biallelic variants in KYNU leading to kynureninase deficiency and xanthurenic aciduria as a very likely cause of their hyperphalangism, heart defect, short stature, and developmental delay. We suggest performance of urine organic acid analysis in patients with suspected Catel-Manzke syndrome, particularly in those with cardiac or vertebral defects or without mutations in TGDS.


Assuntos
Deformidades Congênitas da Mão , Síndrome de Pierre Robin , Dedos , Deformidades Congênitas da Mão/genética , Homozigoto , Humanos , Mutação/genética
18.
Med Hypotheses ; 118: 129-138, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30037600

RESUMO

I hypothesize that the intermediates of the kynurenine (Kyn) pathway (KP) of tryptophan (Trp) degradation kynurenic acid (KA) and quinolinic acid (QA) play opposite roles in inflammatory diseases, with KA being antiinflammatory and QA being immunosuppressant. Darlington et al. have demonstrated a decrease in the ratio of plasma 3-hydroxyanthranilic acid to anthranilic acid ([3-HAA]/[AA]) in many inflammatory conditions and proposed that this decrease either reflects inflammatory disease or is an antiinflammatory response. I argue in favour of the latter possibility and provide evidence that KA is responsible for the decrease in this ratio by increasing AA formation from Kyn through activation of the kynureninase reaction. Immunosuppression has been attributed to some Kyn metabolites tested at concentrations far greater than could occur in microenvironments. So far, only QA has been shown using immunohistochemistry to reach immunosuppressive levels. Future immune studies of the KP should focus on QA as the potentially main microenvironmentally measurable immunosuppressant and should include KA as an antiinflammatory metabolite.


Assuntos
Inflamação/metabolismo , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Ácido Quinolínico/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Humanos , Imunossupressores/uso terapêutico , Masculino , Modelos Teóricos , Ácidos Quinolínicos/metabolismo , Ratos , Ratos Wistar , Triptofano/metabolismo , ortoaminobenzoatos/metabolismo
19.
Int J Tryptophan Res ; 10: 1178646917691938, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469468

RESUMO

Regulatory and functional aspects of the kynurenine (K) pathway (KP) of tryptophan (Trp) degradation are reviewed. The KP accounts for ~95% of dietary Trp degradation, of which 90% is attributed to the hepatic KP. During immune activation, the minor extrahepatic KP plays a more active role. The KP is rate-limited by its first enzyme, Trp 2,3-dioxygenase (TDO), in liver and indoleamine 2,3-dioxygenase (IDO) elsewhere. TDO is regulated by glucocorticoid induction, substrate activation and stabilization by Trp, cofactor activation by heme, and end-product inhibition by reduced nicotinamide adenine dinucleotide (phosphate). IDO is regulated by IFN-γ and other cytokines and by nitric oxide. The KP disposes of excess Trp, controls hepatic heme synthesis and Trp availability for cerebral serotonin synthesis, and produces immunoregulatory and neuroactive metabolites, the B3 "vitamin" nicotinic acid, and oxidized nicotinamide adenine dinucleotide. Various KP enzymes are undermined in disease and are targeted for therapy of conditions ranging from immunological, neurological, and neurodegenerative conditions to cancer.

20.
Int J Tryptophan Res ; 9: 51-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547037

RESUMO

Rat liver tryptophan (Trp), kynurenine pathway metabolites, and enzymes deduced from product/substrate ratios were assessed following acute and/or chronic administration of kynurenic acid (KA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), Trp, and the kynureni-nase inhibitors benserazide (BSZ) and carbidopa (CBD). KA activated Trp 2,3-dioxygenase (TDO), possibly by increasing liver 3-HAA, but inhibited kynurenine aminotransferase (KAT) and kynureninase activities with 3-HK as substrate. 3-HK inhibited kynureninase activity from 3-HK. 3-HAA stimulated TDO, but inhibited kynureninase activity from K and 3-HK. Trp (50 mg/kg) increased kynurenine metabolite concentrations and KAT from K, and exerted a temporary stimulation of TDO. The kynureninase inhibitors BSZ and CBD also inhibited KAT, but stimulated TDO. BSZ abolished or strongly inhibited the Trp-induced increases in liver Trp and kynurenine metabolites. The potential effects of these changes in conditions of immune activation, schizophrenia, and other disease states are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA