Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Brain ; 147(5): 1653-1666, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38380699

RESUMO

GRIN-related disorders are rare developmental encephalopathies with variable manifestations and limited therapeutic options. Here, we present the first non-randomized, open-label, single-arm trial (NCT04646447) designed to evaluate the tolerability and efficacy of L-serine in children with GRIN genetic variants leading to loss-of-function. In this phase 2A trial, patients aged 2-18 years with GRIN loss-of-function pathogenic variants received L-serine for 52 weeks. Primary end points included safety and efficacy by measuring changes in the Vineland Adaptive Behavior Scales, Bayley Scales, age-appropriate Wechsler Scales, Gross Motor Function-88, Sleep Disturbance Scale for Children, Pediatric Quality of Life Inventory, Child Behavior Checklist and the Caregiver-Teacher Report Form following 12 months of treatment. Secondary outcomes included seizure frequency and intensity reduction and EEG improvement. Assessments were performed 3 months and 1 day before starting treatment and 1, 3, 6 and 12 months after beginning the supplement. Twenty-four participants were enrolled (13 males/11 females, mean age 9.8 years, SD 4.8), 23 of whom completed the study. Patients had GRIN2B, GRIN1 and GRIN2A variants (12, 6 and 5 cases, respectively). Their clinical phenotypes showed 91% had intellectual disability (61% severe), 83% had behavioural problems, 78% had movement disorders and 58% had epilepsy. Based on the Vineland Adaptive Behavior Composite standard scores, nine children were classified as mildly impaired (cut-off score > 55), whereas 14 were assigned to the clinically severe group. An improvement was detected in the Daily Living Skills domain (P = 0035) from the Vineland Scales within the mild group. Expressive (P = 0.005), Personal (P = 0.003), Community (P = 0.009), Interpersonal (P = 0.005) and Fine Motor (P = 0.031) subdomains improved for the whole cohort, although improvement was mostly found in the mild group. The Growth Scale Values in the Cognitive subdomain of the Bayley-III Scale showed a significant improvement in the severe group (P = 0.016), with a mean increase of 21.6 points. L-serine treatment was associated with significant improvement in the median Gross Motor Function-88 total score (P = 0.002) and the mean Pediatric Quality of Life total score (P = 0.00068), regardless of severity. L-serine normalized the EEG pattern in five children and the frequency of seizures in one clinically affected child. One patient discontinued treatment due to irritability and insomnia. The trial provides evidence that L-serine is a safe treatment for children with GRIN loss-of-function variants, having the potential to improve adaptive behaviour, motor function and quality of life, with a better response to the treatment in mild phenotypes.


Assuntos
Receptores de N-Metil-D-Aspartato , Serina , Humanos , Feminino , Masculino , Criança , Pré-Escolar , Adolescente , Serina/uso terapêutico , Serina/genética , Receptores de N-Metil-D-Aspartato/genética , Encefalopatias/genética , Encefalopatias/tratamento farmacológico , Resultado do Tratamento , Qualidade de Vida
2.
Crit Rev Biotechnol ; 44(3): 448-461, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36944486

RESUMO

L-serine and its derivative L-cysteine have broad industrial applications, and their direct fermentative production from renewable biomass is gaining increasing attention. Corynebacterium glutamicum is an extensively studied and well-established industrial microorganism, which is a predominant microbial host for producing amino acids. In this review, updated information on the genetics and molecular mechanisms underlying L-serine and L-cysteine production using C. glutamicum is presented, including their synthesis and degradation pathways, and other intracellular processes related to their production, as well as the mechanisms underlying substrate import and product export are also analyzed. Furthermore, metabolic strategies for strain improvement are systematically discussed, and conclusions and future perspectives for bio-based L-serine and L-cysteine production using C. glutamicum are presented. This review can provide a thorough understanding of L-serine and L-cysteine metabolic pathways to facilitate metabolic engineering modifications of C. glutamicum and development of more efficient industrial fermentation processes for L-serine and L-cysteine production.


Assuntos
Corynebacterium glutamicum , Cisteína , Cisteína/metabolismo , Serina/metabolismo , Corynebacterium glutamicum/genética , Aminoácidos/metabolismo , Engenharia Metabólica , Fermentação
3.
Ecotoxicol Environ Saf ; 281: 116678, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964067

RESUMO

The non-protein amino acid ß-N-methylamino-L-alanine (BMAA), produced by cyanobacteria, has been recognized as a neurotoxin. L-serine as an antagonist of BMAA can effectively alleviate BMAA-induced neurotoxicity. Although BMAA has long been emphasized as a neurotoxin, with the emergence of BMAA detected in a variety of algae in freshwater around the world and its clear biological enrichment effect, it is particularly important to study the non-neurotoxic adverse effects of BMAA. However, there is only limited evidence to support the ability of BMAA to cause oxidative damage in the liver. The exact molecular mechanism of BMAA-induced liver injury is still unclear. The formation of neutrophil extracellular traps (NETs) is a 'double-edged sword' for the organism, excessive formation of NETs is associated with inflammatory diseases of the liver. Our results innovatively confirmed that BMAA was able to cause the formation of NETs in the liver during the liver injury. The possible mechanism may associated with the regulation of ERK/p38 and cGAS/STING signaling pathways. The massive formation of NETs was able to exacerbate the BMAA-induced oxidative stress and release of inflammatory factors in the mice liver. And the removal of NETs could alleviate this injury. This article will bring a new laboratory evidence for BMAA-induced non-neurotoxicity and immunotoxicity.


Assuntos
Diamino Aminoácidos , Doença Hepática Induzida por Substâncias e Drogas , Toxinas de Cianobactérias , Armadilhas Extracelulares , Estresse Oxidativo , Animais , Diamino Aminoácidos/toxicidade , Armadilhas Extracelulares/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Neutrófilos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Neurotoxinas/toxicidade , Transdução de Sinais/efeitos dos fármacos
4.
Mol Genet Metab ; 138(3): 107523, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758276

RESUMO

RATIONALE: To date, causal therapy is potentially available for GRIN2B-related neurodevelopmental disorder (NDD) due to loss-of-function (LoF) variants in GRIN2B, resulting in dysfunction of the GluN2B subunit-containing N-methyl-d-aspartate receptor (NMDAR). Recently, in vitro experiments showed that high doses of NMDAR co-agonist d-serine has the potential to boost the activity in GluN2B LoF variant-containing NMDARs. Initial reports of GRIN2B-NDD patients LoF variants, treated with l-serine using different regimens, showed varying effects on motor and cognitive performance, communication, behavior and EEG. Here, this novel treatment using a standardized protocol with an innovative developmental outcome measure is explored further in an open-label observational GRIN2B-NDD study. METHODS: Initially, in vitro studies were conducted in order to functionally stratify two de novo GRIN2B variants present in two female patients (18 months and 4 years old). Functional studies showed that both variants are LoF, and thus the patients were treated experimentally according to an approved protocol with oral l-serine (500 mg/kg/day in 4 doses) for a period of 12 months. Both patients showed a heterogeneous clinical phenotype, however overlapping symptoms were present: intellectual developmental disability (IDD), behavioral abnormalities and hypotonia. Outcome measures included laboratory tests, quality of life, sleep, irritability, stool, and performance skills, measured by, among others, the Perceive-Recall-Plan-Perform System of Task Analysis (PRPP-Assessment). RESULTS: Both patients tolerated l-serine without adverse effects. In one patient, improvement in psychomotor development and cognitive functioning was observed after 12 months (PRPP mastery score 10% at baseline, 78% at twelve months). In the most severe clinically affected patient no significant objective improvement in validated outcomes was observed. Caregivers of both patients reported subjective increase of alertness and improved communication skills. CONCLUSION: Our observational study confirms that l-serine supplementation is safe in patients with GRIN2B-NDD associated with LoF variants, and may accelerate psychomotor development and ameliorate cognitive performance in some but not all patients. The PRPP-Assessment, a promising instrument to evaluate everyday activities and enhance personalized and value-based care, was not performed in the severely affected patient, meaning that possible positive results may have been missed. To generate stronger evidence for effect of l-serine in GRIN2B-NDD, we will perform placebo-controlled n-of-1 trials.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Feminino , Humanos , Cognição , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/genética , Qualidade de Vida , Receptores de N-Metil-D-Aspartato/genética , Serina , Lactente , Pré-Escolar
5.
Amino Acids ; 55(6): 799-806, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37156853

RESUMO

Oxidative stress is critical in the occurrence and development of diabetes and its related complications. L-serine has recently been shown to reduce oxidative stress, the incidence of autoimmune diabetes and improve glucose homeostasis. The aim of this study was to investigate the effects of daily L-serine administration on blood glucose, renal function and oxidative stress markers in the kidney of streptozotocin-induced diabetic mice. Eighteen C57BL/6 male mice were randomly divided into three groups (n = 6 per group). Streptozotocin was used to induce diabetes and a group of diabetic mice was treated with 280 mg/day of L-serine dissolved in drinking water for 4 weeks. The level of blood glucose, biochemical markers of renal function (total protein, urea, creatinine and albumin) and oxidative stress markers (protein carbonyls, malondialdehyde, glutathione peroxidase, superoxide dismutase and catalase) were measured using spectrophotometry. The results indicated that L-serine significantly decreased the glucose level in diabetic mice (188.6 ± 22.69 mg/dL, P = 0.02). Moreover, treatment of diabetic mice with L-serine reduced protein carbonyls (3.249 ± 0.9165 nmol/mg protein, P < 0.05) and malondialdehyde levels (1.891 ± 0.7696 µM/mg protein, P = 0.051). However, L-serine showed no significant effects on renal function, and a slight reduction in histopathological changes was observed in mice receiving L-serine. This study revealed that L-serine effectively ameliorates oxidative stress in kidney tissue and reduces the blood glucose concentration in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Masculino , Camundongos , Animais , Estreptozocina , Glicemia/metabolismo , Diabetes Mellitus Experimental/patologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Rim/metabolismo , Antioxidantes/farmacologia , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Nefropatias Diabéticas/patologia
6.
J Therm Biol ; 112: 103445, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796900

RESUMO

The study aimed to evaluate the effects of L-serine on circadian variation of body temperatures in feed-restricted broiler chickens during the hot-dry season. Day-old broiler chicks of both sexes served as subjects; comprising four groups of 30 chicks each: Group A: water ad libitum + 20% feed restriction (FR); Group B: feed and water ad libitum (AL); Group C: water ad libitum + 20% feed restriction + L-serine (200 mg/kg) (FR + L-serine); Group D feed and water ad libitum + L-serine (200 mg/kg) (AL + L-serine). Feed restriction was performed on days 7-14 and L-serine was administered on days 1-14. Cloacal and body surface temperatures, recorded by digital clinical and infra-red thermometers, respectively, and temperature-humidity index were obtained over 26 h on days 21, 28 and 35. Temperature-humidity index (28.07-34.03) indicated broiler chickens were subjected to heat stress. L-serine decreased (P < 0.05) cloacal temperature in FR + L-serine (40.86 ± 0.07 °C), compared to FR (41.26 ± 0.05 °C) and AL (41.42 ± 0.08 °C) broiler chickens. Peak cloacal temperature occurred at 15:00 h in FR (41.74 ± 0.21 °C), FR + L-serine (41.30 ± 0.41 °C) and AL (41.87 ± 0.16 °C) broiler chickens. Fluctuations in thermal environmental parameters influenced circadian rhythmicity of cloacal temperature; especially the body surface temperatures, positively correlated with CT, and wing temperature recorded the closest mesor. In conclusion, L-serine and feed restriction decreased cloacal and body surface temperatures in broiler chickens during the hot-dry season.


Assuntos
Temperatura Corporal , Galinhas , Masculino , Feminino , Animais , Temperatura , Estações do Ano , Ritmo Circadiano
7.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615652

RESUMO

In an effort to establish reliable thermodynamic data for amino acids, heat capacity and phase behavior are reported for L-cysteine (CAS RN: 52-90-4), L-serine (CAS RN: 56-45-1), L-threonine (CAS RN: 72-19-5), L-lysine (CAS RN: 56-87-1), and L-methionine (CAS RN: 63-68-3). Prior to heat capacity measurements, initial crystal structures were identified by X-ray powder diffraction, followed by a thorough investigation of the polymorphic behavior using differential scanning calorimetry in the temperature range from 183 K to the decomposition temperature determined by thermogravimetric analysis. Crystal heat capacities of all five amino acids were measured by Tian-Calvet calorimetry in the temperature interval (262-358) K and by power compensation DSC in the temperature interval from 215 K to over 420 K. Experimental values of this work were compared and combined with the literature data obtained with adiabatic calorimetry. Low-temperature heat capacities of L-threonine and L-lysine, for which no or limited literature data was available, were measured using the relaxation (heat pulse) calorimetry. As a result, reference heat capacities and thermodynamic functions for the crystalline phase from near 0 K to over 420 K were developed.


Assuntos
Temperatura Alta , Lisina , Metionina , Cisteína/química , Treonina , Serina
8.
Neuropathol Appl Neurobiol ; 48(7): e12842, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904184

RESUMO

AIMS: SPTLC1-related disorder is a late onset sensory-autonomic neuropathy associated with perturbed sphingolipid homeostasis which can be improved by supplementation with the serine palmitoyl-CoA transferase (SPT) substrate, l-serine. Recently, a juvenile form of motor neuron disease has been linked to SPTLC1 variants. Variants affecting the p.S331 residue of SPTLC1 cause a distinct phenotype, whose pathogenic basis has not been established. This study aims to define the neuropathological and biochemical consequences of the SPTLC1 p.S331 variant, and test response to l-serine in this specific genotype. METHODS: We report clinical and neurophysiological characterisation of two unrelated children carrying distinct p.S331 SPTLC1 variants. The neuropathology was investigated by analysis of sural nerve and skin innervation. To clarify the biochemical consequences of the p.S331 variant, we performed sphingolipidomic profiling of serum and skin fibroblasts. We also tested the effect of l-serine supplementation in skin fibroblasts of patients with p.S331 mutations. RESULTS: In both patients, we recognised an early onset phenotype with prevalent progressive motor neuron disease. Neuropathology showed severe damage to the sensory and autonomic systems. Sphingolipidomic analysis showed the coexistence of neurotoxic deoxy-sphingolipids with an excess of canonical products of the SPT enzyme. l-serine supplementation in patient fibroblasts reduced production of toxic 1-deoxysphingolipids but further increased the overproduction of sphingolipids. CONCLUSIONS: Our findings suggest that p.S331 SPTLC1 variants lead to an overlap phenotype combining features of sensory and motor neuropathies, thus proposing a continuum in the spectrum of SPTLC1-related disorders. l-serine supplementation in these patients may be detrimental.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Doença dos Neurônios Motores , Doenças do Sistema Nervoso Periférico , Humanos , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/genética , Mutação , Esfingolipídeos , Serina/química , Serina/genética
9.
J Inherit Metab Dis ; 45(4): 734-747, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35357708

RESUMO

Nonketotic hyperglycinemia (NKH) is caused by deficient glycine cleavage enzyme activity and characterized by elevated brain glycine. Metabolism of glycine is connected enzymatically to serine through serine hydroxymethyltransferase and shares transporters with serine and threonine. We aimed to evaluate changes in serine and threonine in NKH patients, and relate this to clinical outcome severity. Age-related reference values were developed for cerebrospinal fluid (CSF) serine and threonine from 274 controls, and in a cross-sectional study compared to 61 genetically proven NKH patients, categorized according to outcome. CSF d-serine and l-serine levels were stereoselectively determined in seven NKH patients and compared to 29 age-matched controls. In addition to elevated CSF glycine, NKH patients had significantly decreased levels of CSF serine and increased levels of CSF threonine, even after age-adjustment. The CSF serine/threonine ratio discriminated between NKH patients and controls. The CSF glycine/serine aided in discrimination between severe and attenuated neonates with NKH. Over all ages, the CSF glycine, serine and threonine had moderate to fair correlation with outcome classes. After age-adjustment, only the CSF glycine level provided good discrimination between outcome classes. In untreated patients, d-serine was more reduced than l-serine, with a decreased d/l-serine ratio, indicating a specific impact on d-serine metabolism. We conclude that in NKH the elevation of glycine is accompanied by changes in l-serine, d-serine and threonine, likely reflecting a perturbation of the serine shuttle and metabolism, and of one-carbon metabolism. This provides additional guidance on diagnosis and prognosis, and opens new therapeutic avenues to be explored.


Assuntos
Hiperglicinemia não Cetótica , Aminoácidos , Estudos Transversais , Glicina/metabolismo , Humanos , Recém-Nascido , Serina , Treonina
10.
Microb Cell Fact ; 21(1): 153, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933377

RESUMO

BACKGROUND: Glutathione is a valuable tri-peptide that is industrially produced by fermentation using the yeast Saccharomyces cerevisiae, and is widely used in the pharmaceutical, food, and cosmetic industries. It has been reported that addition of L-serine (L-Ser) is effective at increasing the intracellular glutathione content because L-Ser is the common precursor of L-cysteine (L-Cys) and glycine (Gly) which are substrates for glutathione biosynthesis. Therefore, we tried to enhance the L-Ser biosynthetic pathway in S. cerevisiae for improved glutathione production. RESULTS: The volumetric glutathione production of recombinant strains individually overexpressing SER2, SER1, SER3, and SER33 involved in L-Ser biosynthesis at 48 h cultivation was increased 1.3, 1.4, 1.9, and 1.9-fold, respectively, compared with that of the host GCI strain, which overexpresses genes involved in glutathione biosynthesis. We further examined simultaneous overexpression of SHM2 and/or CYS4 genes involved in Gly and L-Cys biosynthesis, respectively, using recombinant GCI strain overexpressing SER3 and SER33 as hosts. As a result, GCI overexpressing SER3, SHM2, and CYS4 showed the highest volumetric glutathione production (64.0 ± 4.9 mg/L) at 48 h cultivation, and this value is about 2.5-fold higher than that of the control strain. CONCLUSIONS: This study first revealed that engineering of L-Ser and Gly biosynthetic pathway are useful strategies for fermentative glutathione production by S. cerevisiase.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vias Biossintéticas , Cisteína/metabolismo , Fermentação , Glutationa/metabolismo , Engenharia Metabólica , Fosfoglicerato Desidrogenase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina
11.
Brain ; 144(8): 2427-2442, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33792664

RESUMO

Marinesco-Sjögren syndrome is a rare human disorder caused by biallelic mutations in SIL1 characterized by cataracts in infancy, myopathy and ataxia, symptoms which are also associated with a novel disorder caused by mutations in INPP5K. While these phenotypic similarities may suggest commonalties at a molecular level, an overlapping pathomechanism has not been established yet. In this study, we present six new INPP5K patients and expand the current mutational and phenotypical spectrum of the disease showing the clinical overlap between Marinesco-Sjögren syndrome and the INPP5K phenotype. We applied unbiased proteomic profiling on cells derived from Marinesco-Sjögren syndrome and INPP5K patients and identified alterations in d-3-PHGDH as a common molecular feature. d-3-PHGDH modulates the production of l-serine and mutations in this enzyme were previously associated with a neurological phenotype, which clinically overlaps with Marinesco-Sjögren syndrome and INPP5K disease. As l-serine administration represents a promising therapeutic strategy for d-3-PHGDH patients, we tested the effect of l-serine in generated sil1, phgdh and inpp5k a+b zebrafish models, which showed an improvement in their neuronal phenotype. Thus, our study defines a core phenotypical feature underpinning a key common molecular mechanism in three rare diseases and reveals a common and novel therapeutic target for these patients.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Inositol Polifosfato 5-Fosfatases/genética , Mutação , Fenótipo , Fosfoglicerato Desidrogenase/genética , Degenerações Espinocerebelares/genética , Adolescente , Adulto , Animais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Proteômica , Degenerações Espinocerebelares/patologia , Peixe-Zebra
12.
Clin Exp Pharmacol Physiol ; 49(2): 319-326, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34657305

RESUMO

Intraplantar injection of formalin produces persistent spontaneous nociception and hyperalgesia. The underlying mechanism, however, remains unclear. The present study was, therefore, designed to determine the roles of peripheral group III metabotropic glutamate receptors (mGluRs) in formalin-evoked spontaneous nociception. Pre-treatment with intraplantar injections of L-serine-O-phosphate (L-SOP), a group III mGluRs agonist, significantly inhibited formalin-induced nociceptive behaviours and decreased Fos production in the spinal dorsal horn. The inhibitory effects of L-SOP were abolished completely by pre-treatment with the group III mGluR antagonist (RS)-a-methylserine-O-phosphate (M-SOP). These data suggest that the activation of group III mGluRs in the periphery may play a differential role in formalin-induced nociception. In addition, L-SOP decreased the formalin-induced upregulation of tumour necrosis factor-α (TNF-α) as well as interleukine-1ß (IL-1ß) expression in the spinal cord, suggesting that activation of peripheral group III mGluRs reduces formalin-induced nociception through inhibition of the pro-inflammatory cytokines in the spinal cord. Therefore, the agonists acting peripheral group III mGluRs possess therapeutic effectiveness in chronic pain.


Assuntos
Receptores de Glutamato Metabotrópico , Animais , Formaldeído/toxicidade , Nociceptividade , Dor/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Medula Espinal/metabolismo
13.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142514

RESUMO

L-serine is a non-essential amino acid endogenously produced by astrocytes and is abundant in human diets. Beneficial roles of the metabolic products from L-serine in various conditions in the brain including neuronal development have been reported. Through several preclinical studies, L-serine treatment was also shown to offer beneficial therapeutic effects for brain damage such as ischemic stroke, amyotrophic lateral sclerosis, and Parkinson's disease. Despite evidence for the value of L-serine in the clinic, however, its beneficial effects on the propionic acid (PPA)-induced neuronal toxicity and underlying mechanisms of L-serine-mediated neuroprotection are unknown. In this study, we observed that PPA-induced acidic stress induces abnormal lipid accumulation and functional defects in lysosomes of hippocampal neurons. L-serine treatment was able to rescue the structure and function of lysosomes in PPA-treated hippocampal neuronal cells. We further identified that L-serine suppressed the formation of lipid droplets and abnormal lipid membrane accumulations inside the lysosomes in PPA-treated hippocampal neuronal cells. Taken together, these findings indicate that L-serine can be utilized as a neuroprotective agent for the functionality of lysosomes through restoration of cathepsin D in disease conditions.


Assuntos
Catepsina D , Fármacos Neuroprotetores , Catepsina D/metabolismo , Humanos , Lisossomos/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Propionatos/farmacologia , Serina/metabolismo , Serina/farmacologia
14.
Trop Anim Health Prod ; 54(5): 324, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36169771

RESUMO

The study evaluated effects of L-serine on lipid profile, performance, carcass weight and small intestinal parameters in heat-stressed broiler chickens subjected to feed restriction. Broiler chickens were divided into four groups, comprising 30 each. Group 1, feed restriction (FR); Group 2, feed restriction + L-serine (200 mg/kg) (FR + L-serine); Group 3, ad libitum (AL); Group 4, ad libitum + L-serine (200 mg/kg) (AL + L-serine). L-serine was administered orally from days 1 to 14, and feed restriction was performed on days 7-14. Serum harvested from blood samples on days 21, 28 and 35 was evaluated for lipid profile. Feed and water intake, live weight gain, organ and carcass weight were measured. At 35 days old, broiler chickens (n = 7) per group were sacrificed to evaluate small intestinal morphology. Temperature-humidity index in the pen (30.88 ± 0.81) was above thermoneutral zone, indicating that chickens were subjected to heat stress. Concentrations of low-density lipoprotein, total cholesterol and total triglycerides were lower (p < 0.05), while higher concentration of high-density lipoprotein was recorded in L-serine groups than in the controls. Feed intake and live weight gain on day 35 in L-serine groups were higher (p < 0.05) than in controls. In L-serine groups, liver, spleen, pancreas and heart weight were higher, but abdominal fat was lower than in FR and AL groups. Villus height:crypt height ratio and area of villus surface were highest in L-serine groups than any other group. In conclusion, L-serine decreased low-density lipoprotein, increased feed intake, live weight, organ and carcass weight, villus height:crypt height ratio and villus surface area.


Assuntos
Galinhas , Transtornos de Estresse por Calor , Ração Animal/análise , Animais , Colesterol , Dieta/veterinária , Suplementos Nutricionais , Transtornos de Estresse por Calor/veterinária , Lipoproteínas HDL , Lipoproteínas LDL , Estações do Ano , Serina , Triglicerídeos , Aumento de Peso
15.
Mol Syst Biol ; 16(4): e9495, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32337855

RESUMO

The prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase dramatically, and there is no approved medication for its treatment. Recently, we predicted the underlying molecular mechanisms involved in the progression of NAFLD using network analysis and identified metabolic cofactors that might be beneficial as supplements to decrease human liver fat. Here, we first assessed the tolerability of the combined metabolic cofactors including l-serine, N-acetyl-l-cysteine (NAC), nicotinamide riboside (NR), and l-carnitine by performing a 7-day rat toxicology study. Second, we performed a human calibration study by supplementing combined metabolic cofactors and a control study to study the kinetics of these metabolites in the plasma of healthy subjects with and without supplementation. We measured clinical parameters and observed no immediate side effects. Next, we generated plasma metabolomics and inflammatory protein markers data to reveal the acute changes associated with the supplementation of the metabolic cofactors. We also integrated metabolomics data using personalized genome-scale metabolic modeling and observed that such supplementation significantly affects the global human lipid, amino acid, and antioxidant metabolism. Finally, we predicted blood concentrations of these compounds during daily long-term supplementation by generating an ordinary differential equation model and liver concentrations of serine by generating a pharmacokinetic model and finally adjusted the doses of individual metabolic cofactors for future human clinical trials.


Assuntos
Acetilcisteína/administração & dosagem , Carnitina/administração & dosagem , Metabolômica/métodos , Niacinamida/análogos & derivados , Serina/administração & dosagem , Acetilcisteína/sangue , Adulto , Animais , Carnitina/sangue , Suplementos Nutricionais , Quimioterapia Combinada , Voluntários Saudáveis , Humanos , Masculino , Modelos Animais , Niacinamida/administração & dosagem , Niacinamida/sangue , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Medicina de Precisão , Compostos de Piridínio , Ratos , Serina/sangue
16.
Amino Acids ; 53(9): 1351-1359, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34283312

RESUMO

The cyanobacterial non-protein amino acid α-amino-ß-methylaminopropionic acid, more commonly known as BMAA, was first discovered in the seeds of the ancient gymnosperm Cycad circinalis (now Cycas micronesica Hill). BMAA was linked to the high incidence of neurological disorders on the island of Guam first reported in the 1950s. BMAA still attracts interest as a possible causative factor in amyotrophic lateral sclerosis (ALS) following the identification of ALS disease clusters associated with living in proximity to lakes with regular cyanobacterial blooms. Since its discovery, BMAA toxicity has been the subject of many in vivo and in vitro studies. A number of mechanisms of toxicity have been proposed including an agonist effect at glutamate receptors, competition with cysteine for transport system xc_ and other mechanisms capable of generating cellular oxidative stress. In addition, a wide range of studies have reported effects related to disturbances in proteostasis including endoplasmic reticulum stress and activation of the unfolded protein response. In the present studies we examine the effects of BMAA on the ubiquitin-proteasome system (UPS) and on chaperone-mediated autophagy (CMA) by measuring levels of ubiquitinated proteins and lamp2a protein levels in a differentiated neuronal cell line exposed to BMAA. The BMAA induced increases in oxidised proteins and the increase in CMA activity reported could be prevented by co-administration of L-serine but not by the two antioxidants examined. These data provide further evidence of a protective role for L-serine against the deleterious effects of BMAA.


Assuntos
Diamino Aminoácidos/efeitos adversos , Autofagia Mediada por Chaperonas , Toxinas de Cianobactérias/efeitos adversos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Neuroblastoma/tratamento farmacológico , Agregados Proteicos/efeitos dos fármacos , Serina/farmacologia , Ubiquitina/metabolismo , Antioxidantes/farmacologia , Diferenciação Celular , Agonistas de Aminoácidos Excitatórios/efeitos adversos , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Células Tumorais Cultivadas
17.
Biochem J ; 477(21): 4221-4241, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33079132

RESUMO

Recent investigations have shown that multiple d-amino acids are present in mammals and these compounds have distinctive physiological functions. Free d-glutamate is present in various mammalian tissues and cells and in particular, it is presumably correlated with cardiac function, and much interest is growing in its unique metabolic pathways. Recently, we first identified d-glutamate cyclase as its degradative enzyme in mammals, whereas its biosynthetic pathway in mammals is unclear. Glutamate racemase is a most probable candidate, which catalyzes interconversion between d-glutamate and l-glutamate. Here, we identified the cDNA encoding l-serine dehydratase-like (SDHL) as the first mammalian clone with glutamate racemase activity. This rat SDHL had been deposited in mammalian databases as a protein of unknown function and its amino acid sequence shares ∼60% identity with that of l-serine dehydratase. Rat SDHL was expressed in Escherichia coli, and the enzymatic properties of the recombinant were characterized. The results indicated that rat SDHL is a multifunctional enzyme with glutamate racemase activity in addition to l-serine/l-threonine dehydratase activity. This clone is hence abbreviated as STDHgr. Further experiments using cultured mammalian cells confirmed that d-glutamate was synthesized and l-serine and l-threonine were decomposed. It was also found that SDHL (STDHgr) contributes to the homeostasis of several other amino acids.


Assuntos
Isomerases de Aminoácido/metabolismo , L-Serina Desidratase/metabolismo , Aminoácidos/metabolismo , Animais , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Humanos
18.
Proc Natl Acad Sci U S A ; 115(41): 10511-10516, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249662

RESUMO

Effective delivery of drug carriers selectively to the kidney is challenging because of their uptake by the reticuloendothelial system in the liver and spleen, which limits effective treatment of kidney diseases and results in side effects. To address this issue, we synthesized l-serine (Ser)-modified polyamidoamine dendrimer (PAMAM) as a potent renal targeting drug carrier. Approximately 82% of the dose was accumulated in the kidney at 3 h after i.v. injection of 111In-labeled Ser-PAMAM in mice, while i.v. injection of 111In-labeled unmodified PAMAM, l-threonine modified PAMAM, and l-tyrosine modified PAMAM resulted in kidney accumulations of 28%, 35%, and 31%, respectively. Single-photon emission computed tomography/computed tomography (SPECT/CT) images also indicated that 111In-labeled Ser-PAMAM specifically accumulated in the kidneys. An intrakidney distribution study showed that fluorescein isothiocyanate-labeled Ser-PAMAM accumulated predominantly in renal proximal tubules. Results of a cellular uptake study of Ser-PAMAM in LLC-PK1 cells in the presence of inhibitors [genistein, 5-(N-ethyl-N-isopropyl)amiloride, and lysozyme] revealed that caveolae-mediated endocytosis, micropinocytosis, and megalin were associated with the renal accumulation of Ser-PAMAM. The efficient renal distribution and angiotensin-converting enzyme (ACE) inhibition effect of captopril (CAP), an ACE inhibitor, was observed after i.v. injection of the Ser-PAMAM-CAP conjugate. These findings indicate that Ser-PAMAM is a promising renal targeting drug carrier for the treatment of kidney diseases. Thus, the results of this study demonstrate efficient renal targeting of a drug carrier via Ser modification.


Assuntos
Captopril/farmacologia , Dendrímeros/administração & dosagem , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos , Nefropatias/tratamento farmacológico , Poliaminas/química , Serina/química , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Captopril/administração & dosagem , Captopril/química , Dendrímeros/química , Portadores de Fármacos/química , Camundongos
19.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921788

RESUMO

The human enzyme D-3-phosphoglycerate dehydrogenase (hPHGDH) catalyzes the reversible dehydrogenation of 3-phosphoglycerate (3PG) into 3-phosphohydroxypyruvate (PHP) using the NAD+/NADH redox cofactor, the first step in the phosphorylated pathway producing L-serine. We focused on the full-length enzyme that was produced in fairly large amounts in E. coli cells; the effect of pH, temperature and ligands on hPHGDH activity was studied. The forward reaction was investigated on 3PG and alternative carboxylic acids by employing two coupled assays, both removing the product PHP; 3PG was by far the best substrate in the forward direction. Both PHP and α-ketoglutarate were efficiently reduced by hPHGDH and NADH in the reverse direction, indicating substrate competition under physiological conditions. Notably, neither PHP nor L-serine inhibited hPHGDH, nor did glycine and D-serine, the coagonists of NMDA receptors related to L-serine metabolism. The investigation of NADH and phosphate binding highlights the presence in solution of different conformations and/or oligomeric states of the enzyme. Elucidating the biochemical properties of hPHGDH will enable the identification of novel approaches to modulate L-serine levels and thus to reduce cancer progression and treat neurological disorders.


Assuntos
Fosfoglicerato Desidrogenase/metabolismo , Ácidos Carboxílicos/metabolismo , Escherichia coli/metabolismo , Glicina/metabolismo , Humanos , Cinética , NAD/metabolismo , Fosfoglicerato Desidrogenase/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo
20.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922385

RESUMO

Phosphatidylserines are known to sustain skeletal muscle activity during intense activity or hypoxic conditions, as well as preserve neurocognitive function in older patients. Our previous studies pointed out a potential cardioprotective role of phosphatidylserine in heart ischemia. Therefore, we investigated the effects of phosphatidylserine oral supplementation in a mouse model of acute myocardial infarction (AMI). We found out that phosphatidylserine increases, significantly, the cardiomyocyte survival by 50% in an acute model of myocardial ischemia-reperfusion. Similar, phosphatidylserine reduced significantly the infarcted size by 30% and improved heart function by 25% in a chronic model of AMI. The main responsible mechanism seems to be up-regulation of protein kinase C epsilon (PKC-ε), the main player of cardio-protection during pre-conditioning. Interestingly, if the phosphatidylserine supplementation is started before induction of AMI, but not after, it selectively inhibits neutrophil's activation, such as Interleukin 1 beta (IL-1ß) expression, without affecting the healing and fibrosis. Thus, phosphatidylserine supplementation may represent a simple way to activate a pre-conditioning mechanism and may be a promising novel strategy to reduce infarct size following AMI and to prevent myocardial injury during myocardial infarction or cardiac surgery. Due to the minimal adverse effects, further investigation in large animals or in human are soon possible to establish the exact role of phosphatidylserine in cardiac diseases.


Assuntos
Suplementos Nutricionais , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fosfatidilserinas/farmacologia , Disfunção Ventricular Esquerda/complicações , Remodelação Ventricular/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA