Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396925

RESUMO

Lysine methylation is a major post-translational protein modification that occurs in both histones and non-histone proteins. Emerging studies show that the methylated lysine residues in non-histone proteins provide a proteolytic signal for ubiquitin-dependent proteolysis. The SET7 (SETD7) methyltransferase specifically transfers a methyl group from S-Adenosyl methionine to a specific lysine residue located in a methylation degron motif of a protein substrate to mark the methylated protein for ubiquitin-dependent proteolysis. LSD1 (Kdm1a) serves as a demethylase to dynamically remove the methyl group from the modified protein. The methylated lysine residue is specifically recognized by L3MBTL3, a methyl-lysine reader that contains the malignant brain tumor domain, to target the methylated proteins for proteolysis by the CRL4DCAF5 ubiquitin ligase complex. The methylated lysine residues are also recognized by PHF20L1 to protect the methylated proteins from proteolysis. The lysine methylation-mediated proteolysis regulates embryonic development, maintains pluripotency and self-renewal of embryonic stem cells and other stem cells such as neural stem cells and hematopoietic stem cells, and controls other biological processes. Dysregulation of the lysine methylation-dependent proteolysis is associated with various diseases, including cancers. Characterization of lysine methylation should reveal novel insights into how development and related diseases are regulated.


Assuntos
Neoplasias Encefálicas , Lisina , Humanos , Proteólise , Lisina/metabolismo , Metilação , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Ubiquitinas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Proteínas Cromossômicas não Histona/metabolismo
2.
Neurol Sci ; 43(4): 2823-2830, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34373992

RESUMO

PURPOSE: Alcohol-induced osteonecrosis femoral head necrosis (ONFH) is a disease that seriously affects human health. Abnormal expression of L3MBTL3/PTPN9 gene can cause a variety of human diseases. The purpose of this study is to investigate the effect of L3MBTL3/PTPN9 gene polymorphism on the susceptibility of alcohol-induced ONFH in Chinese Han population. METHODS: A total of 308 alcohol-induced ONFH patients and 425 healthy controls were enrolled in this case-control study. Alleles, genotypes, genetic models, haplotypes, and multifactor dimensionality reduction analyses (MDR) based on age-corrected by using odds ratio (OR) and 95% confidence interval (CI) were performed. RESULTS: Our result revealed rs2068957 in the L3MBTL3 gene increased the risk of alcohol ONFH under the recessive model after correction. Besides, we also found that rs75393192 in the PTPN9 gene was a protective site in stratification over 40 years of age and stage. In stratified analysis of necrotic sites, we only found that rs2068957 was associated with increased susceptibility of alcohol-induced ONFH under the co-dominant model and recessive model. Haplotype "GC" in the block (rs76107647|rs10851882 in PTPN9 gene) significantly decreased the susceptibility of alcoholic ONFH. CONCLUSIONS: Our results provide evidence that L3MBTL3/PTPN9 polymorphisms are associated with alcohol-induced ONFH risk in Chinese Han population.


Assuntos
Povo Asiático , Etnicidade , Necrose da Cabeça do Fêmur , Predisposição Genética para Doença , Polimorfismo Genético , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China , Etnicidade/genética , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/epidemiologia , Necrose da Cabeça do Fêmur/genética , Predisposição Genética para Doença/genética , Haplótipos , Humanos , Pessoa de Meia-Idade , Polimorfismo Genético/genética
3.
EMBO J ; 36(21): 3232-3249, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030483

RESUMO

Notch signaling is an evolutionarily conserved signal transduction pathway that is essential for metazoan development. Upon ligand binding, the Notch intracellular domain (NOTCH ICD) translocates into the nucleus and forms a complex with the transcription factor RBPJ (also known as CBF1 or CSL) to activate expression of Notch target genes. In the absence of a Notch signal, RBPJ acts as a transcriptional repressor. Using a proteomic approach, we identified L3MBTL3 (also known as MBT1) as a novel RBPJ interactor. L3MBTL3 competes with NOTCH ICD for binding to RBPJ In the absence of NOTCH ICD, RBPJ recruits L3MBTL3 and the histone demethylase KDM1A (also known as LSD1) to the enhancers of Notch target genes, leading to H3K4me2 demethylation and to transcriptional repression. Importantly, in vivo analyses of the homologs of RBPJ and L3MBTL3 in Drosophila melanogaster and Caenorhabditis elegans demonstrate that the functional link between RBPJ and L3MBTL3 is evolutionarily conserved, thus identifying L3MBTL3 as a universal modulator of Notch signaling in metazoans.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Histona Desmetilases/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Neuroglia/metabolismo , Receptores Notch/genética , Animais , Evolução Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Neuroglia/citologia , Ligação Proteica , Domínios Proteicos , Receptores Notch/metabolismo , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
4.
Adv Exp Med Biol ; 1287: 9-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034023

RESUMO

The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.


Assuntos
Regulação da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/metabolismo , Cromatina/genética , Cromatina/metabolismo , Humanos , Transdução de Sinais
5.
J Biol Chem ; 294(2): 476-489, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30442713

RESUMO

SOX2 is a dose-dependent master stem cell protein that controls the self-renewal and pluripotency or multipotency of embryonic stem (ES) cells and many adult stem cells. We have previously found that SOX2 protein is monomethylated at lysine residues 42 and 117 by SET7 methyltransferase to promote SOX2 proteolysis, whereas LSD1 and PHF20L1 act on both methylated Lys-42 and Lys-117 to prevent SOX2 proteolysis. However, the mechanism by which the methylated SOX2 protein is degraded remains unclear. Here, we report that L3MBTL3, a protein with the malignant-brain-tumor (MBT) methylation-binding domain, is required for SOX2 proteolysis. Our studies showed that L3MBTL3 preferentially binds to the methylated Lys-42 in SOX2, although mutation of Lys-117 also partially reduces the interaction between SOX2 and L3MBTL3. The direct binding of L3MBTL3 to the methylated SOX2 protein leads to the recruitment of the CRL4DCAF5 ubiquitin E3 ligase to target SOX2 protein for ubiquitin-dependent proteolysis. Whereas loss of either LSD1 or PHF20L1 destabilizes SOX2 protein and impairs the self-renewal and pluripotency of mouse ES cells, knockdown of L3MBTL3 or DCAF5 is sufficient to restore the protein levels of SOX2 and rescue the defects of mouse ES cells caused by LSD1 or PHF20L1 deficiency. We also found that retinoic acid-induced differentiation of mouse ES cells is accompanied by the enhanced degradation of the methylated SOX2 protein at both Lys-42 and Lys-117. Our studies provide novel insights into the mechanism by which the methylation-dependent degradation of SOX2 protein is controlled by the L3MBTL3-CRL4DCAF5 ubiquitin ligase complex.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Estabilidade Proteica , Proteólise , Ubiquitinação
6.
Biochem Genet ; 57(3): 355-370, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30456721

RESUMO

Multiple sclerosis (MS) is the most common inflammatory and chronic disease of the central nervous system (CNS). A complex interaction between genetic, environmental, and epigenetic factors is involved in the pathogenesis of MS. With the advancement of GWAS, various variants associated with MS have been identified. This study aimed to evaluate the association of single-nucleotide polymorphisms (SNPs) rs4925166 and rs1979277 in the SHMT1, MAZ rs34286592, ERG rs2836425, and L3MBTL3 rs4364506 with MS. In this case-control study, the association of five SNPs in SHMT1, MAZ, ERG, and L3MBTL3 genes with relapsing-remitting MS (RR-MS) was investigated in 190 patients and 200 healthy individuals. Four SNPs including SHMT1 rs4925166, SHMT1 rs1979277, MAZ rs34286592, and L3MBTL3 rs4364506 were genotyped using PCR-RFLP and genotyping of ERG rs2836425 was performed by tetra-primer ARMS PCR. Our findings showed a significant difference in the allelic frequencies for the four SNPs of SHMT1 rs4925166, SHMT1 rs1979277, MAZ rs34286592, and ERG rs2836425, while there were no differences in the allele and genotype frequencies for L3MBTL3 rs4364506. These significant associations were observed for the following genotypes: TT and GG genotypes of SHMT1 rs4925166 (OR 0.47 and 1.90, respectively) genotype GG of SHMT1 rs1979277 (OR 0.63), genotype GG of MAZ rs34286592 (OR 0.61), TC and CC genotypes of ERG rs2836425 (OR 1.89 and 0.50, respectively). Our study highlighted that people who are carrying genotypes including GG (SHMT1 rs4925166) and TC (ERG rs2836425) have the highest susceptibility chance for MS, respectively. However, genotypes TT (SHMT1 rs4925166), CC (ERG rs2836425), GG (MAZ rs34286592), and GG (SHMT1 rs1979277) had the highest negative association (protective effect) with MS, respectively. L3MBTL3 rs4364506 was found neither as a predisposing nor a protective variant.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Glicina Hidroximetiltransferase/genética , Esclerose Múltipla Recidivante-Remitente/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Adulto , Alelos , Estudos de Casos e Controles , DNA/genética , Feminino , Estudos de Associação Genética , Heterozigoto , Homozigoto , Humanos , Irã (Geográfico) , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Regulador Transcricional ERG/genética , Adulto Jovem
7.
Elife ; 132024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346162

RESUMO

The Polycomb Repressive Complex 2 (PRC2) methylates H3K27 to regulate development and cell fate by transcriptional silencing. Alteration of PRC2 is associated with various cancers. Here, we show that mouse Kdm1a deletion causes a dramatic reduction of PRC2 proteins, whereas mouse null mutation of L3mbtl3 or Dcaf5 results in PRC2 accumulation and increased H3K27 trimethylation. The catalytic subunit of PRC2, EZH2, is methylated at lysine 20 (K20), promoting EZH2 proteolysis by L3MBTL3 and the CLR4DCAF5 ubiquitin ligase. KDM1A (LSD1) demethylates the methylated K20 to stabilize EZH2. K20 methylation is inhibited by AKT-mediated phosphorylation of serine 21 in EZH2. Mouse Ezh2K20R/K20R mutants develop hepatosplenomegaly associated with high GFI1B expression, and Ezh2K20R/K20R mutant bone marrows expand hematopoietic stem cells and downstream hematopoietic populations. Our studies reveal that EZH2 is regulated by methylation-dependent proteolysis, which is negatively controlled by AKT-mediated S21 phosphorylation to establish a methylation-phosphorylation switch to regulate the PRC2 activity and hematopoiesis.


Assuntos
Proteínas de Ligação a DNA , Histonas , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Hematopoese , Histonas/metabolismo , Metilação , Fosforilação , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Cancers (Basel) ; 16(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38201555

RESUMO

Recent research has linked lethal (3) malignant brain tumor-like 3 (L3MBTL3) to cancer aggressiveness and a dismal prognosis, but its function in gastric cancer (GC) is unclear. This research investigated the association between L3MBTL3 expression and clinicopathological characteristics of GC cases, as well as its prognostic value and biological function based on large-scale databases and clinical samples. The results showed that L3MBTL3 expression was upregulated in malignant GC tissues, which was associated with a shortened survival time and poor clinicopathological characteristics, including TNM staging. A functional enrichment analysis including GO/KEGG and GSEA illustrated the enrichment of different L3MBTL3-associated pathways involved in carcinogenesis and immune response. In addition, the correlations between L3MBTL3 and tumor-infiltrating immune cells were determined based on the TIMER database; the results showed that L3MBTL3 was associated with the immune infiltration of macrophages and their polarization from M1 to M2. Furthermore, our findings suggested a possible function for L3MBTL3 in the regulation of the tumor immune microenvironment of GC. In summary, L3MBTL3 has diagnostic potential, and it also offers new insights into the development of aggressiveness and prognosis in GC.

9.
Heliyon ; 9(2): e13222, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36747531

RESUMO

HIF-1α plays a crucial part in hypoxia response by transcriptionally upregulating genes to adapt the hypoxic condition. HIF-1α is under severe cellular control as its exceptional activation is always associated with tumorigenesis and tumor progression. Here, we report L3MBTL3 serves as a novel negative regulator of HIF-1α. It is upregulated during hypoxia and acts as a transcriptional target of HIF-1α. In the nuclei, L3MBTL3 makes an interaction with HIF-1α and promotes its ubiquitination and degradation. These findings indicate L3MBTL3 forms a negative feedback loop with HIF-1α in vitro to dampen the hypoxic response.

10.
Sci Adv ; 2(6): e1501678, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27386562

RESUMO

We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.


Assuntos
Epigênese Genética , Predisposição Genética para Doença , Esclerose Múltipla/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Glicina Hidroximetiltransferase/genética , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Locos de Características Quantitativas , Fatores de Transcrição/genética , Regulador Transcricional ERG/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA