RESUMO
Multiwalled carbon nanotubes (MWNTs) exist as aggregates of highly entangled tubes due to large aspect ratios and strong Van der Waals interactions among them in their native states. In order to render them suitable for any application, MWNTs need to be separated and dispersed uniformly in a solvent preferably as individual tubes. In the present work, it is demonstrated that a double tail lipid such as 1, 2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) is capable of dispersing MWNTs in ethanol. Ultra-stable suspensions were obtained by optimizing two key parameters: DPPE to MWNT weight ratio (ε) and MWNT concentration (c). Stability of the suspensions increased with the increasingεvalue up to an optimum point (ε= 1.8) and then decreased drastically beyond that. CNT dispersions withε= 1.8 were extremely stable (with a Zeta potential of 108.26 ± 2.15 mV) and could be retained in suspended form up to 3 months. Effect of MWNT concentration on disaggregation was very significant and stable suspensions could be formed for MWNT concentrations only below 0.14 mg ml-1. Above this concentration, no stable dispersions could be obtained even withε= 1.8. Compression isotherms of Langmuir monolayers of the DPPE functionalized MWNTs spread at the air water interface were highly repeatable, suggesting that the MWNTs in dispersion were present as separate tubes coated with phospholipids. SEM micrographs of the Langmuir-Blodgett (LB) films, deposited at high surface pressures on silicon wafers, show that MWNTs remain as single nanotubes with no signs of reaggregation. TEM micrographs of MWNT suspensions indicated random adsorption of DPPE on MWNTs. Our work makes it possible to explore potential applications of LB films of MWNTs (stabilized by DPPE) in the development of conducting thin films for sensor applications or as supports to immobilize catalysts for heterogenous reactions.
RESUMO
Introduction of hydrogen-bonding interaction into π-conjugated systems is a promising strategy, since the highly selective and directional hydrogen-bonding can increase the binding strength, provide enhanced stability to the assemblies, and position the π-conjugated molecules in a desired arrangement. The helical packing of the rigid melamine cores seems to play a dominating role in the subsequent formation of the peripheral helical PDA backbone. The polymerized Langmuir-Blodgett (LB) films exhibited reversible colorimetric and chiroptical changes during repeated heating-cooling cycles, which should be ascribed to the strong hydrogen-bonding interaction between the carboxylic acid and the melamine core. Further, the closely helical packing of the melamine cores could be destroyed upon exposure to HCl or NH(3) gas, whereas the peripheral helical polyaniline and polydiacetylene (PDA) backbone exhibited excellent stability. Although similar absorption changes could be observed for the films upon exposure to HCl or NH(3) gas, their distinct circular dichroism (CD) responses enabled us to distinguish the above two stimuli.
RESUMO
The growth and structural evolution of stearic acid (SA) blended poly(3-hexylthiophene) [P3HT] Langmuir and Langmuir-Blodgett (LB) films were studied using complimentary surface and interface sensitive techniques to understand the possibility of ordering and layering of promising charge carrier mobility polymers, at the air-water interface and on the transferred solid substrate. SA-induced and subsequent compression-induced transitions in P3HT structure, from aggregated-3D to soft-2D and from in-plane mixed to unmixed layer, are evident at low and high pressures, respectively. The blending of SA molecules enhances the amphiphilic character of P3HT, which reduces the extent of the out-of-plane aggregation to form edge-on oriented (EO) bottom side-chain folded-bilayer (f-BL) islands (of size ~60 nm) within SA monolayer (ML), of commensurate thickness (~2.6 nm). Further compression, gradually rejects the less hydrophilic f-BL islands from the mixed layer to form EO P3HT BL islands (of coverage in-tune with starting composition) on top of SA ML. The formation of nearly covered P3HT(BL)/SA(ML) structured film on solid substrate is evident for the first time, which (even of limited P3HT thickness) has immense importance in the device properties, as the current in the bottom-gated organic thin-film transistors is known to travel only within few ML region near gate-dielectric.
Assuntos
Ácidos Esteáricos , Tiofenos , Interações Hidrofóbicas e HidrofílicasRESUMO
HYPOTHESIS: The catalytic activity of enzymes immobilized in self-assembly systems as Langmuir-Blodgett (LB) films is influenced by molecular interactions dictated by the composition and viscoelasticity of the previous floating monolayers. We believe that the insertion of carbon nanotubes (CNT) in mixed polygalacturonase/lipid monolayers may influence intermolecular interactions and viscoelastic properties, being then possible to tune system stability and rheological properties, driving catalytic properties of the films for biosensing. EXPERIMENTS: The physicochemical properties of the monolayers were investigated by tensiometry, surface potential, Brewster angle microscopy, infrared spectroscopy, and dilatational rheology. The monolayers were transferred to solid supports LB films and characterized by atomic force microscopy, quartz crystal microbalance, and fluorescence spectroscopy. The catalytic activity of the LB films was verified by colorimetric assay. FINDINGS: The enzyme-CNT-lipid film had a catalytic activity at least twice as high as the pure enzyme owing to the synergy between the components, with the lipid acting as a protector matrix for the enzyme and the CNTs acting as an energy transfer facilitator. These results point to a proof-of-concept system, through which we can propose an alternative to achieve enhanced bio-inspired films with high control of the molecular architecture by using the LB approach.
Assuntos
Enzimas Imobilizadas , Nanotubos de Carbono , Catálise , Espectrometria de Fluorescência , Propriedades de SuperfícieRESUMO
The Langmuir-Blodgett (LB) method is a well-known deposition technique for the fabrication of ordered monolayer and multilayer thin films of nanomaterials onto different substrates that plays a critical role in the development of functional devices for various applications. This paper describes detailed studies about the best coating configuration for nanoparticles of a porous metal-organic framework (MOF) onto both insulating or conductive threads and nylon fiber. We design and fabricate customized polymethylmethacrylate sheets (PMMA) holders to deposit MOF layers onto the threads or fiber using the LB technique. Two different orientations, namely, horizontal and vertical, are used to deposit MIL-96(Al) monolayer films onto five different types of threads and nylon fiber. These studies show that LB film formation strongly depends on deposition orientation and the type of threads or fiber. Among all the samples tested, cotton thread and nylon fiber with vertical deposition show more homogenous monolayer coverage. In the case of conductive threads, the MOF particles tend to aggregate between the conductive thread's fibers instead of forming a continuous monolayer coating. Our results show a significant contribution in terms of MOF monolayer deposition onto single fiber and threads that will contribute to the fabrication of single fiber or thread-based devices in the future.
RESUMO
Metal-organic framework (MOF) activation is crucial for the use of MOFs in several applications and solvent-exchange process is a necessary step in many activation methods. In this contribution, we have explored in situ MOF monolayer film formation at the air-water interface. Nanoparticles (NPs) of the Al trimesate MIL-96(Al) retain chloroform into their micropores, which considerably diminishes the CO2 adsorption capacity of MOF films. However, a solvent-exchange process between chloroform and water increases CO2 film adsorption capacity by 30%. Total Reflection X-Ray Fluorescence (TRXF) allows studying the kinetics of this process at the air-water interface, that strongly depends on the NP size. The conclusions derived from in situ studies allow optimizing the ex situ activation procedure of MIL-96(Al) films deposited onto quartz crystal microbalance (QCM) substrates in order to maximize CO2 and methanol adsorption.
RESUMO
A highly efficient enzyme-based sensor was made from a heteroleptic tris(phthalocyaninato) europium triple-decker complex Eu2(Pc)[Pc(OPh)8]2, for the first time. The ITO working electrode was modified by a mixture of hybrid multi-layers consisting of Eu2(Pc)[Pc(OPh)8]2, stearic acid (SA) and tyrosinase (Tyr) (Eu2(Pc)[Pc(OPh)8]2/SA/Tyr-ITO) using the Langmuir-Blodgett (LB) technique. The microstructure and morphology of the resulting LB films can be characterized by their π-A isotherms, UV-vis absorption spectra, X-ray diffraction and atomic force microscopy (AFM) analysis. The experimental results revealed that the triple-decker molecules of Eu2(Pc)[Pc(OPh)8]2 take a H-type molecular stacking mode in both pure and mixed LB film, and the microstructures of films were effectively improved by mixing SA within the triple-decker Eu2(Pc)[Pc(OPh)8]2 molecules. The excellent electrocatalytic effect of the Eu2(Pc)[Pc(OPh)8]2/SA/Tyr LB films, leads to a good linear increase from 5.26 × 10-7 to 2.1 × 10-4 M for catechol. It also leads to an excellent sensitivity of 2.19 µA/µM, and a detection limits of 6.29 × 10-8 M (S/N = 3) of catehol at the oxidation peak, achieving best catechol sensing performance among the phthalocyanine-based biosensing mediators. The reduction peak also showed a good linear increase from 5.26 × 10-7 to 1.60 × 10-4 M for catechol with a sensitivity of 0.615 µA/µM, and a detection limit of 1.69 × 10-7 M (S/N = 3). Moreover, the Eu2(Pc)[Pc(OPh)8]2/SA/Tyr-ITO electrode are easy to reproduce, stable and resistant to interference when it comes to detection for catehol, and this indicates great potential of industrial application of tris(phthalocyaninato) rare earth complexes in ultrasensitive and specific biosensors.
Assuntos
Técnicas Biossensoriais/métodos , Catecóis/análise , Técnicas Eletroquímicas , Európio/química , Monofenol Mono-Oxigenase/metabolismo , Eletrodos , Indóis/metabolismo , Isoindóis , OxirreduçãoRESUMO
The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous metal-organic framework (MOF) onto capacitive sensors based on interdigitated electrode (IDE) chips is presented. We report the deposition of MIL-96(Al) MOF thin films via the Langmuir-Blodgett (LB) method on the IDE chips, which allowed the study of their gas/vapor sensing properties. First, sorption studies of several organic vapors like methanol, toluene, chloroform, etc. were conducted on bulk MOF. The sorption data revealed that MIL-96(Al) presents high affinity toward water and methanol. Later on, ordered LB monolayer films of MIL-96(Al) particles of â¼200 nm were successfully deposited onto IDE chips with homogeneous coverage of the surface in comparison to conventional thin film fabrication techniques such as drop-casting. The sensing tests showed that MOF LB films were selective for water and methanol, and short response/recovery times were achieved. Finally, chemical vapor deposition (CVD) of a porous thin film of Parylene C (thickness â¼250-300 nm) was performed on top of the MOF LB films to fabricate a thin selective layer. The sensing results showed an increase in the water selectivity and sensitivity, while those of methanol showed a huge decrease. These results prove the feasibility of the LB technique for the fabrication of ordered MOF thin films onto IDE chips using very small MOF quantities.
RESUMO
The increase in demand and popularity of smart textiles brings new and innovative ideas to develop a diverse range of textile-based devices for our daily life applications. Smart textile-based sensors (TEX sensors) become attractive due to the potential to replace current solid-state sensor devices with flexible and wearable devices. We have developed a smart textile sensor for humidity detection using a metal-organic framework (MOF) as an active thin-film layer. We show for the first time the use of the Langmuir-Blodgett (LB) technique for the deposition of a MIL-96(Al) MOF thin film directly onto the fabrics containing interdigitated textile electrodes for the fabrication of a highly selective humidity sensor. The humidity sensors were made from two different types of textiles, namely, linen and cotton, with the linen-based sensor giving the best response due to better coverage of MOF. The TEX sensor showed a reproducible response after multiple cycles of measurements. After 3 weeks of storage, the sensor showed a moderate decrease in response. Moreover, TEX sensors showed a high level of selectivity for the detection of water vapors in the presence of several volatile organic compounds (VOCs). Interestingly, the selectivity is superior to some of the previously reported MOF-coated solid-state interdigitated electrode devices and textile sensors. The method herein described is generic and can be extended to other textiles and coating materials for the detection of toxic gases and vapors.
RESUMO
One of the key challenges in dry eye syndrome therapy is to find a suitable carrier for immunosuppressant drug - cyclosporine A (CsA) - delivery to the eye. To investigate this issue, herein we present a methodology based on the combined analysis in macro- (Langmuir monolayers), micro- (Brewster angle microscopy) and nanoscale (atomic force microscopy and infrared nano-spectroscopy). The applied approach proves that CsA affects the phospholipid part of the tear film lipid layer by loosening molecular packing. This effect can be reversed by the addition of perfluorohexyloctane (F6H8). We have highlighted that F6H8 increases the availability of CsA and therefore is appropriate carrier for CsA topical delivery to the eye in the dry eye syndrome. In addition, the applied herein procedure provides a simple, low-cost laboratory tool for preliminary studies involving membrane active pharmaceuticals, preceding in vivo tests.
Assuntos
Ciclosporina/uso terapêutico , Sistemas de Liberação de Medicamentos , Síndromes do Olho Seco/tratamento farmacológico , Fluorocarbonos/química , Imunossupressores/uso terapêutico , Ciclosporina/química , Portadores de Fármacos/química , Imunossupressores/química , Microscopia de Força Atômica , Tamanho da Partícula , Espectrofotometria Infravermelho , Propriedades de SuperfícieRESUMO
This work reports on the fabrication, optimization and characterization of ultrathin films containing submicrometer particles (sMPs) of the hydrophilic and water stable UiO-66-COOH(Zr) metal organic framework (MOF). MOF particles of ≈200 nm have been synthesized and assembled at the air-water interface by the Langmuir-Blodgett technique. The use of different solvents, mixtures of solvents and surfactants has been investigated in order to improve the stability of MOF dispersions and reduce particle aggregation. The compact MOF/surfactant films containing 10 wt % octadecylphoshonic acid (ODP) have been deposited on substrates of different nature by Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) methods, showing that the presence of even only one MOF/ODP monolayer can increase the water contact angle of highly hydrophilic substrates such as mica or glass up to 120°. These films were characterized by scanning electron microscopy, grazing incidence X-ray diffraction, Fourier transform infrared spectroscopy and atomic force microscopy, revealing the formation of a continuous film where ODP molecules adopt an almost vertical position and cover MOF particles. Moreover, the presence of MOF particles significantly enhances the surface roughness and allows ultrathin, hydrophobic coverage to be obtained. Finally, it has been shown that the crystallinity and the porosity of the MOF remains almost unaltered in MOF/ODP films.
RESUMO
This contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer films of good quality, without nanoparticle agglomeration, at the air-water interface that can be deposited onto solid substrates of different nature without any previous substrate functionalization. The MOF studied shows great interest for CO2 capture because it presents Al3+ Lewis centers and hydroxyl groups that strongly interact with CO2 molecules. A comparative CO2 adsorption study on drop-cast, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films using a Quartz Crystal Microbalance-based setup (QCM) has revealed that the CO2 uptake depends strongly on the film fabrication procedure and the storage conditions. Noteworthy the CO2 adsorption capacity of LB films is increased by 30% using a simple and green treatment (immersion of the film into water during 12â¯h just after film preparation). Finally, the stability of LB MOF monolayers upon several CO2 adsorption/desorption cycles has been demonstrated, showing that CO2 can be easily desorbed from the films at 303â¯K by flowing an inert gas (He). These results show that MOF LB monolayers can be of great interest for the development of MOF-based devices that require the use of very small MOF quantities, especially gas sensors.
RESUMO
The synthesis of four amphiphilic organometallic complexes with the general formula RC = M(CO)5NH(CH2)15CH3, where R is a ferrocenyl 2(a-b) or a phenyl 4(a-b) group as a donor moiety and a Fischer carbene of chromium (0) or tungsten (0) as an acceptor group, are reported. These four push-pull systems formed Langmuir (L) monolayers at the air-water interface, which were characterized by isotherms of surface pressure versus molecular area and compression/expansion cycles (hysteresis curves); Brewster angle microscopic images were also obtained. By using the Langmuir-Blodgett (LB) method, molecular monolayers were transferred onto glass substrates forming Z-type multilayers. LB films were characterized through ultraviolet-visible spectroscopy, atomic force microscopy and X-ray diffraction techniques. Results indicated that films obtained from 2b complex [(Ferrocenyl)(hexadecylamine)methylidene] pentacarbonyl tungsten (0) are the most stable and homogeneous; due to their properties, these materials may be incorporated into organic electronic devices.
RESUMO
This work reports the fabrication and characterization of Langmuir-Blodgett films of nanoparticles (size 51 ± 10 nm) of the metal organic framework MIL-101(Cr). LB film characterization by SEM, UV-vis, GIXRD, and QCM has shown that the addition of 1 wt % of behenic acid to MOF dispersion allows obtaining dense monolayers at the air-water interface that can be deposited onto solid substrates of different nature with transfer ratios close to 1. Moreover, a QCM-based setup has been built and used for the first time to measure CO2 adsorption isotherms at 303 K on MOF LB films, proving that LB films with MOF masses between 1.2 (1 layer) and 2.3 (2 layers) µg can be used to obtain accurate adsorption values at 100 kPa, similar to those obtained by conventional adsorption methods that require much larger MOF quantities (tens of milligrams).
RESUMO
Previous studies have measured the distance between cells and the substratum at sites of adhesion via the emission of a fluorescent dye and waveguide methods. Here, we demonstrate a novel approach to measure the position of fluorescent dyes above a waveguide surface in the 10-200 nm distance range throughout an entire area, yielding a 2D dye distance map or a 3D contour plot. The dye is located in a multilayered Langmuir Blodgett (LB) film or in the plasma membrane of a cell. Waveguide evanescent field fluorescence (WEFF) images obtained using two different waveguide modes are employed allowing, with a simple mathematical approach, the calculation of dye distance maps. Ultra-thin steps made using LB technology, adhesion distances and the bending of the plasma membrane between focal adhesions of osteoblastic cells are shown as examples. The errors are discussed. False color representation of a dye distance map with four osteoblasts. The inset represents an overexposed WEFF image of the same field of view.
Assuntos
Corantes Fluorescentes/metabolismo , Microscopia de Fluorescência/métodos , Células 3T3 , Animais , Transporte Biológico , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismoRESUMO
In this paper, we demonstrated the utilization of reduced graphene oxide (RGO) Langmuir-Blodgett (LB) films as high performance hole injection layer in organic light-emitting diode (OLED). By using LB technique, the well-ordered and thickness-controlled RGO sheets are incorporated between the organic active layer and the transparent conducting indium tin oxide (ITO), leading to an increase of recombination between electrons and holes. Due to the dramatic increase of hole carrier injection efficiency in RGO LB layer, the device luminance performance is greatly enhanced comparable to devices fabricated with spin-coating RGO and a commercial conducting polymer PEDOT:PSS as the hole transport layer. Furthermore, our results indicate that RGO LB films could be an excellent alternative to commercial PEDOT:PSS as the effective hole transport and electron blocking layer in light-emitting diode devices.
RESUMO
Vibrational properties of two fullerene derivatives: C60TZ-OT-5 (1) and C60TH-3HX (2) have been studied using infrared absorption and Raman scattering spectroscopies. Additionally, quantum chemical calculations of the equilibrium geometry and normal mode vibrations of these functionalized fullerenes were performed. It was stated that despite of distinct structural differences between the investigated molecules, their experimental spectra are quite similar and correspond well with the calculated ones. The orientation of the molecules in the Langmuir-Blodgett films was evaluated.
Assuntos
Fulerenos/química , Conformação Molecular , Análise Espectral Raman , Espectroscopia de Infravermelho com Transformada de Fourier , VibraçãoRESUMO
This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out.
RESUMO
In this study, azocopolymers containing different main-chain segments have been synthesized with diglycidyl ether of bisphenol A (DGEBA, DER 332, n=0.03) and the azochromophore Disperse Orange 3 (DO3) cured with two monoamines, viz. benzylamine (BA) and m-toluidine (MT). The photoinduced birefringence was investigated in films produced with these azopolymers using the spin coating (SC) and Langmuir Blodgett (LB) techniques. In the LB films, birefringence increased with the content of azochromophore and the film thickness, as expected. The nanostructured nature of the LB films led to an enhanced birefringence and faster dynamics in the writing process, compared to the SC films. In summary, the combination of azocopolymers and the LB method may allow materials with tuned properties for various optical applications, including in biological systems were photoisomerization may be used to trigger actions such as drug delivery.