Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.638
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39368465

RESUMO

MicroRNA (miRNA) biogenesis is initiated upon cleavage of a primary miRNA (pri-miRNA) hairpin by the Microprocessor (MP), composed of the Drosha RNase III enzyme and its partner DGCR8. Multiple pri-miRNA sequence motifs affect MP recognition, fidelity, and efficiency. Here, we performed cryoelectron microscopy (cryo-EM) and biochemical studies of several let-7 family pri-miRNAs in complex with human MP. We show that MP has the structural plasticity to accommodate a range of pri-miRNAs. These structures revealed key features of the 5' UG sequence motif, more comprehensively represented as the "flipped U with paired N" (fUN) motif. Our analysis explains how cleavage of class-II pri-let-7 members harboring a bulged nucleotide generates a non-canonical precursor with a 1-nt 3' overhang. Finally, the MP-SRSF3-pri-let-7f1 structure reveals how SRSF3 contributes to MP fidelity by interacting with the CNNC motif and Drosha's Piwi/Argonaute/Zwille (PAZ)-like domain. Overall, this study sheds light on the mechanisms for flexible recognition, accurate cleavage, and regulated processing of different pri-miRNAs by MP.

2.
EMBO J ; 43(6): 956-992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360995

RESUMO

While most glial cell types in the central nervous system (CNS) arise from neuroectodermal progenitors, some, like microglia, are mesodermally derived. To understand mesodermal glia development and function, we investigated C. elegans GLR glia, which envelop the brain neuropil and separate it from the circulatory system cavity. Transcriptome analysis shows that GLR glia combine astrocytic and endothelial characteristics, which are relegated to separate cell types in vertebrates. Combined fate acquisition is orchestrated by LET-381/FoxF, a fate-specification/maintenance transcription factor also expressed in glia and endothelia of other animals. Among LET-381/FoxF targets, the UNC-30/Pitx2 transcription factor controls GLR glia morphology and represses alternative mesodermal fates. LET-381 and UNC-30 co-expression in naive cells is sufficient for GLR glia gene expression. GLR glia inactivation by ablation or let-381 mutation disrupts locomotory behavior and promotes salt-induced paralysis, suggesting brain-neuropil activity dysregulation. Our studies uncover mechanisms of mesodermal glia development and show that like neuronal differentiation, glia differentiation requires autoregulatory terminal selector genes that define and maintain the glial fate.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Fatores de Transcrição Forkhead , Proteínas de Homeodomínio , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Neuroglia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/metabolismo
3.
Mol Cell ; 73(2): 304-313.e3, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30527666

RESUMO

LIN28 RNA binding proteins are dynamically expressed throughout mammalian development and during disease. However, it remains unclear how changes in LIN28 expression define patterns of post-transcriptional gene regulation. Here we show that LIN28 expression level is a key variable that sets the magnitude of protein translation. By systematically varying LIN28B protein levels in human cells, we discovered a dose-dependent divergence in transcriptome-wide ribosome occupancy that enabled the formation of two discrete translational subpopulations composed of nearly all expressed genes. This bifurcation in gene expression was mediated by a redistribution in Argonaute association, from let-7 to non-let-7 microRNA families, resulting in a global shift in cellular miRNA activity. Post-transcriptional effects were scaled across the physiological LIN28 expression range. Together, these data highlight the central importance of RBP expression level and its ability to encode regulation.


Assuntos
Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Transcriptoma , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sítios de Ligação , Ligação Competitiva , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células NIH 3T3 , Ligação Proteica , Proteínas de Ligação a RNA/genética , Ribossomos/genética
4.
Mol Cell ; 74(6): 1278-1290.e9, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31031083

RESUMO

7-methylguanosine (m7G) is present at mRNA caps and at defined internal positions within tRNAs and rRNAs. However, its detection within low-abundance mRNAs and microRNAs (miRNAs) has been hampered by a lack of sensitive detection strategies. Here, we adapt a chemical reactivity assay to detect internal m7G in miRNAs. Using this technique (Borohydride Reduction sequencing [BoRed-seq]) alongside RNA immunoprecipitation, we identify m7G within a subset of miRNAs that inhibit cell migration. We show that the METTL1 methyltransferase mediates m7G methylation within miRNAs and that this enzyme regulates cell migration via its catalytic activity. Using refined mass spectrometry methods, we map m7G to a single guanosine within the let-7e-5p miRNA. We show that METTL1-mediated methylation augments let-7 miRNA processing by disrupting an inhibitory secondary structure within the primary miRNA transcript (pri-miRNA). These results identify METTL1-dependent N7-methylation of guanosine as a new RNA modification pathway that regulates miRNA structure, biogenesis, and cell migration.


Assuntos
Guanosina/análogos & derivados , Metiltransferases/genética , MicroRNAs/genética , Processamento Pós-Transcricional do RNA , Células A549 , Sequência de Bases , Bioensaio , Células CACO-2 , Movimento Celular , Proliferação de Células , Guanosina/metabolismo , Células HEK293 , Humanos , Metilação , Metiltransferases/metabolismo , MicroRNAs/metabolismo , Conformação de Ácido Nucleico
5.
J Cell Sci ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308343

RESUMO

Argonaute (AGO), a component of RNA-induced silencing complexes (RISCs), is a representative RNA-binding protein (RBP) known to bind with mature microRNA (miRNA) and is directly involved in post-transcriptional gene silencing. However, despite the biological significance of miRNA, the roles of other micro RNA-binding proteins (miRBPs) remain unclear in regulation of miRNA loading, dissociation from RISC, and extracellular release. In this study, we perform protein arrays to profile miRBPs and identify 118 RNA-binding proteins directly binding with miRNAs. Among those proteins, RBP quaking (QKI) inhibits extracellular release of mature microRNA let-7b by controlling the loading of let-7b into extracellular vesicles via additional miRBPs such as hnRNPD/AUF1 and hnRNPK. The enhanced extracellular release of let-7b after QKI depletion activates the Toll-like Receptor 7 (TLR7) and promotes the production of proinflammatory cytokines in recipient cells, leading to brain inflammation in mouse cortex. Thus, this study reveals contribution of QKI to the inhibition of brain inflammation via regulation of extracellular let-7b release.

6.
Mol Cell ; 71(2): 271-283.e5, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029005

RESUMO

LIN28 is a bipartite RNA-binding protein that post-transcriptionally inhibits the biogenesis of let-7 microRNAs to regulate development and influence disease states. However, the mechanisms of let-7 suppression remain poorly understood because LIN28 recognition depends on coordinated targeting by both the zinc knuckle domain (ZKD), which binds a GGAG-like element in the precursor, and the cold shock domain (CSD), whose binding sites have not been systematically characterized. By leveraging single-nucleotide-resolution mapping of LIN28 binding sites in vivo, we determined that the CSD recognizes a (U)GAU motif. This motif partitions the let-7 microRNAs into two subclasses, precursors with both CSD and ZKD binding sites (CSD+) and precursors with ZKD but no CSD binding sites (CSD-). LIN28 in vivo recognition-and subsequent 3' uridylation and degradation-of CSD+ precursors is more efficient, leading to their stronger suppression in LIN28-activated cells and cancers. Thus, CSD binding sites amplify the regulatory effects of LIN28.


Assuntos
MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Células-Tronco Embrionárias , Células Hep G2 , Humanos , Células K562 , Camundongos , MicroRNAs/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Domínios Proteicos , Estrutura Terciária de Proteína , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética
7.
Genes Dev ; 32(13-14): 903-908, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950491

RESUMO

Loss of function of the DIS3L2 exoribonuclease is associated with Wilms tumor and the Perlman congenital overgrowth syndrome. LIN28, a Wilms tumor oncoprotein, triggers the DIS3L2-mediated degradation of the precursor of let-7, a microRNA that inhibits Wilms tumor development. These observations have led to speculation that DIS3L2-mediated tumor suppression is attributable to let-7 regulation. Here we examine new DIS3L2-deficient cell lines and mouse models, demonstrating that DIS3L2 loss has no effect on mature let-7 levels. Rather, analysis of Dis3l2-null nephron progenitor cells, a potential cell of origin of Wilms tumors, reveals up-regulation of Igf2, a growth-promoting gene strongly associated with Wilms tumorigenesis. These findings nominate a new potential mechanism underlying the pathology associated with DIS3L2 deficiency.


Assuntos
Exorribonucleases/genética , Macrossomia Fetal/genética , Fator de Crescimento Insulin-Like II/genética , Regulação para Cima , Tumor de Wilms/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mutação , Néfrons/citologia , Néfrons/fisiopatologia , Células-Tronco
8.
FASEB J ; 38(10): e23708, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38805151

RESUMO

Metacestodiasis is an infectious disease caused by the larval stage of cestode parasites. This disease poses a serious health hazard to wildlife, livestock, and humans, and it incurs substantial economic losses by impacting the safety of the livestock industry, the quality of meat production, and public health security. Unfortunately, there is currently no available molecular diagnostic method capable of distinguishing cysticercus- and Echinococcus-derived microRNAs (miRNAs) from other helminthes and hosts in the plasma of metacestode-infected animals. This study aims to develop a specific, sensitive, and cost-efficient molecular diagnostic method for cysticercosis and echinococcosis, particularly for early detection. The study developed a rolling circular amplification (RCA)-assisted CRISPR/Cas9 detection method based on parasite-derived miRNA let-7-5p. Using a series of dilutions of the let-7 standard, the limit of detection (LOD) of the qPCR, RCA, and RCA-assisted CRISPR/Cas9 methods was compared. The specificity of qPCR and CRISPR/Cas9 was evaluated using four artificially synthesized let-7 standards from different species. A total of 151 plasma samples were used to evaluate the diagnostic performance. Additionally, the study also assessed the correlation between plasma levels of let-7-5p, the number of Taenia pisiformis cysticerci, and the weight of Echinococcus multilocularis cysts. The results demonstrated that the RCA-assisted CRISPR/Cas9 assay could significantly distinguish let-7 from cestodes and other species, achieving a LOD of 10 aM; the diagnostic sensitivity and specificity for rabbit cysticercosis and mouse E. multilocularis were 100% and 97.67%, and 100% and 100%, respectively. Notably, let-7-5p gradually increased in the plasma of T. pisiformis-infected rabbits from 15 days post infection (dpi), peaked at 60 dpi, and persisted until 120 dpi. In E. multilocularis-infected mice, let-7-5p gradually increased from 15 dpi and persisted until 90 dpi. Furthermore, the expression of let-7-5p positively correlated with the number of cysticerci and cyst weight. These results indicated that the let-7-5p-based RCA-assisted CRISPR/Cas9 assay is a sensitive and specific detection method that can be used as a universal diagnostic method for metacestodiasis, particularly for early diagnosis (15 dpi).


Assuntos
Sistemas CRISPR-Cas , Cisticercose , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/sangue , Camundongos , Cisticercose/diagnóstico , Cisticercose/veterinária , Cisticercose/parasitologia , Equinococose/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Humanos
9.
Mol Ther ; 32(8): 2624-2640, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38956871

RESUMO

Chronic pancreatitis (CP) is marked by progressive fibrosis and the activation of pancreatic stellate cells (PSCs), accompanied by the destruction of pancreatic parenchyma, leading to the loss of acinar cells (ACs). Few research studies have explored the mechanism by which damaged ACs (DACs) contribute to PSCs activation and pancreatic fibrosis. Currently, there are no effective drugs for curing CP or limiting the progression of pancreatic fibrosis. In this research, co-culture with intact acinar cells (IACs) suppressed PSC activation, while co-culture with DACs did the opposite. Krüppel-like factor 4 (KLF4) was significantly upregulated in DACs and was established as the key molecule that switches ACs from PSCs-suppressor to PSCs-activator. We revealed the exosomes of IACs contributed to the anti-activated function of IACs-CS on PSCs. MiRNome profiling showed that let-7 family is significantly enriched in IAC-derived exosomes (>30% miRNome), which partially mediates IACs' suppressive impacts on PSCs. Furthermore, it has been observed that the enrichment of let-7 in exosomes was influenced by the expression level of KLF4. Mechanistic studies demonstrated that KLF4 in ACs upregulated Lin28A, thereby decreasing let-7 levels in AC-derived exosomes, and thus promoting PSCs activation. We utilized an adeno-associated virus specifically targeting KLF4 in ACs (shKLF4-pAAV) to suppress PSCs activation in CP, resulting in reduced pancreatic fibrosis. IAC-derived exosomes hold potential as potent weapons against PSCs activation via let-7s, while activated KLF4/Lin28A signaling in DACs diminished such functions. ShKLF4-pAAV holds promise as a novel therapeutic approach for CP.


Assuntos
Células Acinares , Exossomos , Fibrose , Fator 4 Semelhante a Kruppel , MicroRNAs , Células Estreladas do Pâncreas , Pancreatite Crônica , Fator 4 Semelhante a Kruppel/metabolismo , Animais , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Exossomos/metabolismo , Pancreatite Crônica/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , MicroRNAs/genética , Células Acinares/metabolismo , Células Acinares/patologia , Dependovirus/genética , Camundongos , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Masculino , Técnicas de Cocultura , Pâncreas/metabolismo , Pâncreas/patologia , Terapia Genética/métodos
10.
Mol Cell ; 65(3): 490-503.e7, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132840

RESUMO

Environmental cues provoke rapid transitions in gene expression to support growth and cellular plasticity through incompletely understood mechanisms. Lin28 RNA-binding proteins have evolutionarily conserved roles in post-transcriptional coordination of pro-growth gene expression, but signaling pathways allowing trophic stimuli to induce Lin28 have remained uncharacterized. We find that Lin28a protein exhibits rapid basal turnover in neurons and that mitogen-activated protein kinase (MAPK)-dependent phosphorylation of the RNA-silencing factor HIV TAR-RNA-binding protein (TRBP) promotes binding and stabilization of Lin28a, but not Lin28b, with an accompanying reduction in Lin28-regulated miRNAs, downstream of brain-derived neurotrophic factor (BDNF). Binding of Lin28a to TRBP in vitro is also enhanced by phospho-mimic TRBP. Further, phospho-TRBP recapitulates BDNF-induced neuronal dendritic spine growth in a Lin28a-dependent manner. Finally, we demonstrate MAPK-dependent TRBP and Lin28a induction, with physiological function in growth and survival, downstream of diverse growth factors in multiple primary cell types, supporting a broad role for this pathway in trophic responses.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células HEK293 , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Humanos , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , Camundongos , Neurônios/metabolismo , Fosforilação
11.
Cell Mol Life Sci ; 81(1): 54, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261036

RESUMO

In embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), the expression of an RNA-binding pluripotency-relevant protein, LIN28, and the absence of its antagonist, the tumor-suppressor microRNA (miRNA) let-7, play a key role in maintaining pluripotency. Muse cells are non-tumorigenic pluripotent-like stem cells residing in the bone marrow, peripheral blood, and organ connective tissues as pluripotent surface marker SSEA-3(+). They express pluripotency genes, differentiate into triploblastic-lineage cells, and self-renew at the single cell level. Muse cells do not express LIN28 but do express let-7 at higher levels than in iPSCs. In Muse cells, we demonstrated that let-7 inhibited the PI3K-AKT pathway, leading to sustainable expression of the key pluripotency regulator KLF4 as well as its downstream genes, POU5F1, SOX2, and NANOG. Let-7 also suppressed proliferation and glycolysis by inhibiting the PI3K-AKT pathway, suggesting its involvement in non-tumorigenicity. Furthermore, the MEK/ERK pathway is not controlled by let-7 and may have a pivotal role in maintaining self-renewal and suppression of senescence. The system found in Muse cells, in which the tumor suppressor let-7, but not LIN28, tunes the expression of pluripotency genes, might be a rational cell system conferring both pluripotency-like properties and a low risk for tumorigenicity.


Assuntos
Alprostadil , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Células-Tronco Embrionárias , Expressão Gênica
12.
Cell Mol Life Sci ; 81(1): 53, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261114

RESUMO

The human let-7 miRNA family consists of thirteen members that play critical roles in many biological processes, including development timing and tumor suppression, and their levels are disrupted in several diseases. Dicer is the endoribonuclease responsible for processing the precursor miRNA (pre-miRNA) to yield the mature miRNA, and thereby plays a crucial role in controlling the cellular levels of let-7 miRNAs. It is well established that the sequence and structural features of pre-miRNA hairpins such as the 5'-phosphate, the apical loop, and the 2-nt 3'-overhang are important for the processing activity of Dicer. Exceptionally, nine precursors of the let-7 family (pre-let-7) contain a 1-nt 3'-overhang and get mono-uridylated in vivo, presumably to allow efficient processing by Dicer. Pre-let-7 are also oligo-uridylated in vivo to promote their degradation and likely prevent their efficient processing by Dicer. In this study, we systematically investigated the impact of sequence and structural features of all human let-7 pre-miRNAs, including their 3'-end modifications, on Dicer binding and processing. Through the combination of SHAPE structural probing, in vitro binding and kinetic studies using purified human Dicer, we show that despite structural discrepancies among pre-let-7 RNAs, Dicer exhibits remarkable promiscuity in binding and cleaving these substrates. Moreover, the 1- or 2-nt 3'-overhang, 3'-mono-uridylation, and 3'-oligo-uridylation of pre-let-7 substrates appear to have little effect on Dicer binding and cleavage rates. Thus, this study extends current knowledge regarding the broad substrate specificity of Dicer and provides novel insight regarding the effect of 3'-modifications on binding and cleavage by Dicer.


Assuntos
RNA Helicases DEAD-box , MicroRNAs , Ribonuclease III , Humanos , Cinética , MicroRNAs/genética , Fosfatos , Especificidade por Substrato , RNA Helicases DEAD-box/genética , Ribonuclease III/genética
13.
Proc Natl Acad Sci U S A ; 119(14): e2122217119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344434

RESUMO

SignificanceA clear mechanistic understanding of metformin's antidiabetic effects is lacking. This is because suprapharmacological concentrations of metformin have been used in most studies. Using mouse models and human primary hepatocytes, we show that metformin, at clinically relevant doses, suppresses hepatic glucose production by activating a conserved regulatory pathway encompassing let-7, TET3, and a fetal isoform of hepatocyte nuclear factor 4 alpha (HNF4α). We demonstrate that metformin no longer has potent antidiabetic actions in a liver-specific let-7 loss-of-function mouse model and that hepatic delivery of let-7 ameliorates hyperglycemia and improves glucose homeostasis. Our results thus reveal an important role of the hepatic let-7/TET3/HNF4α axis in mediating the therapeutic effects of metformin and suggest that targeting this axis may be a potential therapeutic for diabetes.


Assuntos
Hiperglicemia , Metformina , Animais , Modelos Animais de Doenças , Glucose/metabolismo , Hepatócitos/metabolismo , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fígado/metabolismo , Metformina/uso terapêutico , Camundongos
14.
Proc Natl Acad Sci U S A ; 119(45): e2210053119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322763

RESUMO

Choreographic dendritic arborization takes place within a defined time frame, but the timing mechanism is currently not known. Here, we report that the precisely timed lin-4-lin-14 regulatory circuit triggers an initial dendritic growth activity, whereas the precisely timed lin-28-let-7-lin-41 regulatory circuit signals a subsequent developmental decline in dendritic growth ability, hence restricting dendritic arborization within a set time frame. Loss-of-function mutations in the lin-4 microRNA gene cause limited dendritic outgrowth, whereas loss-of-function mutations in its direct target, the lin-14 transcription factor gene, cause precocious and excessive outgrowth. In contrast, loss-of-function mutations in the let-7 microRNA gene prevent a developmental decline in dendritic growth ability, whereas loss-of-function mutations in its direct target, the lin-41 tripartite motif protein gene, cause further decline. lin-4 and let-7 regulatory circuits are expressed in the right place at the right time to set start and end times for dendritic arborization. Replacing the lin-4 upstream cis-regulatory sequence at the lin-4 locus with a late-onset let-7 upstream cis-regulatory sequence delays dendrite arborization, whereas replacing the let-7 upstream cis-regulatory sequence at the let-7 locus with an early-onset lin-4 upstream cis-regulatory sequence causes a precocious decline in dendritic growth ability. Our results indicate that the lin-4-lin-14 and the lin-28-let-7-lin-41 regulatory circuits control the timing of dendrite arborization through antagonistic regulation of the DMA-1 receptor level on dendrites. The LIN-14 transcription factor likely directly represses dma-1 gene expression through a transcriptional means, whereas the LIN-41 tripartite motif protein likely indirectly promotes dma-1 gene expression through a posttranscriptional means.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Nociceptores/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/genética , Plasticidade Neuronal , Proteínas Repressoras/metabolismo , Proteínas de Membrana/metabolismo
15.
Genes Dev ; 31(7): 674-687, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28446596

RESUMO

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression critical for organismal viability. Changes in miRNA activity are common in cancer, but how these changes relate to subsequent alterations in transcription and the process of tumorigenesis is not well understood. Here, we report a deep transcriptional, oncogenic network regulated by miRNAs. We present analysis of the gene expression and phenotypic changes associated with global miRNA restoration in miRNA-deficient fibroblasts. This analysis uncovers a miRNA-repressed network containing oncofetal genes Imp1, Imp2, and Imp3 (Imp1-3) that is up-regulated primarily transcriptionally >100-fold upon Dicer loss and is resistant to resilencing by complete restoration of miRNA activity. This Dicer-resistant epigenetic switch confers tumorigenicity to these cells. Let-7 targets Imp1-3 are required for this tumorigenicity and feed back to reinforce and sustain expression of the oncogenic network. Together, these Dicer-resistant genes constitute an mRNA expression signature that is present in numerous human cancers and is associated with poor survival.


Assuntos
Antígenos de Neoplasias/genética , Transformação Celular Neoplásica/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/fisiologia , MicroRNAs/genética , Ribonuclease III/genética , Ribonuclease III/fisiologia , Animais , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Oncogenes , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ativação Transcricional
16.
Genes Chromosomes Cancer ; 63(9): e23272, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39324493

RESUMO

RUNX1 fuses with over 70 different partner genes in hematological neoplasms. While common RUNX1 chimeras have been extensively studied and their prognosis is well established, our current understanding of less common RUNX1 chimeras is limited. Here, we present a case of acute myeloid leukemia (AML) with a rare RUNX1 chimera. Bone marrow cells obtained at diagnosis from a 71-year-old patient diagnosed with AML-M5 were studied using G-banding, fluorescence in situ hybridization, array comparative genomic hybridization, RNA sequencing, PCR, and Sanger sequencing. Combined findings from the abovementioned assays suggested three cytogenetic clones: one with a normal karyotype, one with inv(21)(q21q22), and one with two inv(21)(q21q22). The molecular analysis revealed the fusion of RUNX1 with MIR99AHG (at 21q21.1), further supporting the presence of an inv(21)(q21q22). The present case is the third reported AML harboring a RUNX1::MIR99AHG chimera. Similar to the two previously described AML patients, our case also had an FLT3 aberration.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Idoso , Humanos , Masculino , Cromossomos Humanos Par 21/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , MicroRNAs/genética , Proteínas de Fusão Oncogênica/genética
17.
Genes Chromosomes Cancer ; 63(8): e23262, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39120141

RESUMO

BACKGROUND: Cellular angiofibroma, a rare benign mesenchymal neoplasm, is classified within the 13q/RB1 family of tumors due to morphological, immunohistochemical, and genetic similarities with spindle cell lipoma. Here, genetic data reveal pathogenetic heterogeneity in cellular angiofibroma. METHODS: Three cellular angiofibromas were studied using G-banding/Karyotyping, array comparative genomic hybridization, RNA sequencing, and direct cycling sequencing. RESULTS: The first tumor carried a del(13)(q12) together with heterozygous loss and minimal expression of the RB1 gene. Tumors two and three displayed chromosome 8 abnormalities associated with chimeras of the pleomorphic adenoma gene 1 (PLAG1). In tumor 2, the cathepsin B (CTSB) fused to PLAG1 (CTSB::PLAG1) while in tumor 3, the mir-99a-let-7c cluster host gene (MIR99AHG) fused to PLAG1 (MIR99AHG::PLAG1), both leading to elevated expression of PLAG1 and insulin growth factor 2. CONCLUSION: This study uncovers two genetic pathways contributing to the pathogenetic heterogeneity within cellular angiofibromas. The first aligns with the 13q/RB1 family of tumors and the second involves PLAG1-chimeras. These findings highlight the diverse genetic landscape of cellular angiofibromas, providing insights into potential diagnostic strategies.


Assuntos
Angiofibroma , Cromossomos Humanos Par 13 , Heterogeneidade Genética , Humanos , Angiofibroma/genética , Angiofibroma/patologia , Masculino , Cromossomos Humanos Par 13/genética , Proteínas de Ligação a DNA/genética , Adulto , Feminino , Proteínas de Ligação a Retinoblastoma/genética , MicroRNAs/genética , Ubiquitina-Proteína Ligases/genética , Pessoa de Meia-Idade , Hibridização Genômica Comparativa , Cromossomos Humanos Par 8/genética , Catepsina B
18.
J Cell Biochem ; 125(9): e30629, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004898

RESUMO

The current treatment of skin fibrosis is limited in its effectiveness due to a lack of understanding of the underlying mechanisms. Previous research has shown a connection between microRNAs (miRNAs) and the development of skin fibrosis. Therefore, investigating miRNA for the treatment of skin fibrotic diseases is highly important and merits further exploration. In this study, we have discovered that let-7f-5p could suppress the proliferation, migration, and expression of collagen type I alpha 1 (COL1A1) in human dermal fibroblasts (HDFs). It was further determined that let-7f-5p could target thrombospondin-1 (THBS1), thereby inhibiting the TGF-ß2/Smad3 signaling pathway and exerting its biological effects. Additionally, let-7f-5p is regulated by Hsa_circ_0000437, which acts as a sponge molecule for let-7f-5p and consequently regulates the biological function of HDFs. Furthermore, our findings indicate that in vivo overexpression of let-7f-5p leads to a reduction in dermal thickness and COL1A1 expression, effectively inhibiting the progression of bleomycin (BLM)-induced skin fibrosis in mice. Hence, our research enhances the comprehension of the Hsa_circ_0000437/let-7f-5p/THBS1/TGF-ß2/Smad3 regulatory network, highlighting the potential of let-7f-5p as a therapeutic approach for the treatment of skin fibrosis.


Assuntos
Bleomicina , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo I , Fibroblastos , Fibrose , MicroRNAs , Proteína Smad3 , MicroRNAs/genética , MicroRNAs/metabolismo , Bleomicina/efeitos adversos , Humanos , Animais , Camundongos , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Proliferação de Células , RNA Circular/genética , RNA Circular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/genética , Trombospondina 1/metabolismo , Trombospondina 1/genética , Pele/metabolismo , Pele/patologia , Movimento Celular/efeitos dos fármacos , Dermatopatias/induzido quimicamente , Dermatopatias/genética , Dermatopatias/metabolismo , Dermatopatias/patologia , Dermatopatias/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos
19.
EMBO J ; 39(20): e104708, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32926445

RESUMO

Let-7 is an evolutionary conserved microRNA that mediates post-transcriptional gene silencing to regulate a wide range of biological processes, including development, differentiation, and tumor suppression. Let-7 biogenesis is tightly regulated by several RNA-binding proteins, including Lin28A/B, which represses let-7 maturation. To identify new regulators of let-7, we devised a cell-based functional screen of RNA-binding proteins using a let-7 sensor luciferase reporter and identified the tRNA pseudouridine synthase, TruB1. TruB1 enhanced maturation specifically of let-7 family members. Rather than inducing pseudouridylation of the miRNAs, high-throughput sequencing crosslinking immunoprecipitation (HITS-CLIP) and biochemical analyses revealed direct binding between endogenous TruB1 and the stem-loop structure of pri-let-7, which also binds Lin28A/B. TruB1 selectively enhanced the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation. Finally, TruB1 suppressed cell proliferation, which was mediated in part by let-7. Altogether, we reveal an unexpected function for TruB1 in promoting let-7 maturation.


Assuntos
Proliferação de Células/genética , Transferases Intramoleculares/metabolismo , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/metabolismo , Motivos de Aminoácidos , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Transferases Intramoleculares/genética , MicroRNAs/genética , Ligação Proteica , Proteínas Recombinantes
20.
Biochem Biophys Res Commun ; 721: 150122, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-38776834

RESUMO

Let-7 was one of the first microRNAs (miRNAs) to be discovered and its expression promotes differentiation during development and function as tumor suppressors in various cancers. The maturation process of let-7 miRNA is tightly regulated by multiple RNA-binding proteins. For example, LIN28 binds to the terminal loops of the precursors of let-7 family and block their processing into mature miRNAs. Trim25 promotes the uridylation-mediated degradation of pre-let-7 modified by LIN28/TUT4. Recently, human pseudouridine synthase TruB1 has been reported to facilitate let-7 maturation by directly binding to pri-let-7 and recruiting Drosha-DGCR8 microprocessor. Through biochemical assay and structural investigation, we show that human TruB1 binds specifically the terminal loop of pri-let-7a1 at nucleotides 31-41, which folds as a small stem-loop architecture. Although TruB1 recognizes the terminal loop of pri-let-7a1 in a way similar to how E. coli TruB interacts with tRNA, a conserved KRKK motif in human and other higher eukaryotes adds an extra binding interface and strengthens the recognition of TruB1 for pri-let-7a1 through electrostatic interactions. These findings reveal the structural basis of TruB1-pri-let-7 interaction which may assists the elucidation of precise role of TruB1 in biogenesis of let-7.


Assuntos
MicroRNAs , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Ligação Proteica , Modelos Moleculares , Transferases Intramoleculares/metabolismo , Transferases Intramoleculares/química , Transferases Intramoleculares/genética , Conformação de Ácido Nucleico , Sítios de Ligação , Sequência de Aminoácidos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA