Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 103(1): 68-76, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024137

RESUMO

NEW FINDINGS: What is the central question of this study? It has been assumed that athletes embarking on an 'live high-train low' (LHTL) camp with already high initial haemoglobin mass (Hbmass ) have a limited ability to increase their Hbmass further post-intervention. Therefore, the relationship between initial Hbmass and post-intervention increase was tested with duplicate Hbmass measures and comparable hypoxic doses in male athletes. What is the main finding and its importance? There were trivial to moderate inverse relationships between initial Hbmass and percentage Hbmass increase in endurance and team-sport athletes after the LHTL camp, indicating that even athletes with higher initial Hbmass can reasonably expect Hbmass gains post-LHTL. It has been proposed that athletes with high initial values of haemoglobin mass (Hbmass ) will have a smaller Hbmass increase in response to 'live high-train low' (LHTL) altitude training. To verify this assumption, the relationship between initial absolute and relative Hbmass values and their respective Hbmass increase following LHTL in male endurance and team-sport athletes was investigated. Overall, 58 male athletes (35 well-trained endurance athletes and 23 elite male field hockey players) undertook an LHTL training camp with similar hypoxic doses (200-230 h). The Hbmass was measured in duplicate pre- and post-LHTL by the carbon monoxide rebreathing method. Although there was no relationship (r = 0.02, P = 0.91) between initial absolute Hbmass (in grams) and the percentage increase in absolute Hbmass , a moderate relationship (r = -0.31, P = 0.02) between initial relative Hbmass (in grams per kilogram) and the percentage increase in relative Hbmass was detected. Mean absolute and relative Hbmass increased to a similar extent (P ≥ 0.81) in endurance (from 916 ± 88 to 951 ± 96 g, +3.8%, P < 0.001 and from 13.1 ± 1.2 to 13.6 ± 1.1 g kg-1 , +4.1%, P < 0.001, respectively) and team-sport athletes (from 920 ± 120 to 957 ± 127 g, +4.0%, P < 0.001 and from 11.9 ± 0.9 to 12.3 ± 0.9 g kg-1 , +4.0%, P < 0.001, respectively) after LHTL. The direct comparison study using individual data of male endurance and team-sport athletes and strict methodological control (duplicate Hbmass measures and matched hypoxic dose) indicated that even athletes with higher initial Hbmass can reasonably expect Hbmass gain post-LHTL.


Assuntos
Doença da Altitude/sangue , Altitude , Atletas , Exercício Físico/fisiologia , Hemoglobinas/metabolismo , Consumo de Oxigênio/fisiologia , Adulto , Doença da Altitude/fisiopatologia , Humanos , Masculino , Adulto Jovem
2.
Eur J Appl Physiol ; 117(12): 2401-2407, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28956166

RESUMO

Normobaric hypoxia (NH) is used as a surrogate for hypobaric hypoxia (HH). Recent studies reported physiological differences between NH and HH. Baroreflex sensitivity (BRS) decreases at altitude or following intense training. However, until now no study compared the acute and chronic changes of BRS in NH vs. HH. First, BRS was assessed in 13 healthy male subjects prior and after 20 h of exposure at 3450 m (study 1), and second in 15 well-trained athletes prior and after 18 days of "live-high train-low" (LHTL) at 2250 m (study 2) in NH vs. HH. BRS decreased (p < 0.05) to the same extent in NH and HH after 20 h of hypoxia and after LHTL. These results confirm that altitude decreases BRS but the decrease is similar between HH and NH. The persistence of this decrease after the cessation of a chronic exposure is new and does not differ between HH and NH. The previously reported physiological differences between NH and HH do not appear strong enough to induce different BRS responses.


Assuntos
Pressão Atmosférica , Barorreflexo , Hipóxia/fisiopatologia , Adulto , Humanos , Masculino , Oxigênio/metabolismo , Distribuição Aleatória
3.
J Exerc Nutrition Biochem ; 21(1): 1-6, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28712259

RESUMO

PURPOSE: This study aimed to determine the effect of a 4-week living high training low (LHTL) versus a living low training low (LLTL) program on energy metabolism during submaximal exercise and 3000-m and 5000-m time trial (TT) in athletes. METHODS: Male athletes (n = 20) were randomly assigned to the LLTL (n = 10, living at 1000 m and training at 700-1330 m) and LHTL (n = 10, living at simulated 3000 m and training at 700-1330 m) groups. We compared energy metabolisms during submaximal exercise on a treadmill and aerobic exercise performance (3000 m and 5000 m TT) before and after 4 weeks of training. RESULTS: As expected, the LHTL group demonstrated enhanced energy metabolism during submaximal exercise via significant interaction (time × group) in heart rate, oxygen consumption, and carbon dioxide excretion; these variables were significantly decreased in the LHTL group compared with the LLTL group. Additionally, both training groups revealed significantly decreased blood lactate levels during submaximal exercise, 3000 m TT, and 5000 m TT but significant interactions (time × group) in the 3000 m and 5000 m TT. Thus, the LHTL group demonstrated greater improvements in 3000 m and 5000 m TT than the LLTL group via significant interactions. CONCLUSION: Our results suggest that 4-week LHTL intervention enhances 3000 m and 5000 m TT by improving energy metabolism during submaximal exercise. The proposed LHTL intervention in this study is a novel and effective method for improving aerobic exercise performance in male athletes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA