RESUMO
L1 retrotransposon-derived sequences comprise approximately 17% of the human genome. Darwinian selective pressures alter L1 genomic distributions during evolution, confounding the ability to determine initial L1 integration preferences. Here, we generated high-confidence datasets of greater than 88,000 engineered L1 insertions in human cell lines that act as proxies for cells that accommodate retrotransposition in vivo. Comparing these insertions to a null model, in which L1 endonuclease activity is the sole determinant dictating L1 integration preferences, demonstrated that L1 insertions are not significantly enriched in genes, transcribed regions, or open chromatin. By comparison, we provide compelling evidence that the L1 endonuclease disproportionately cleaves predominant lagging strand DNA replication templates, while lagging strand 3'-hydroxyl groups may prime endonuclease-independent L1 retrotransposition in a Fanconi anemia cell line. Thus, acquisition of an endonuclease domain, in conjunction with the ability to integrate into replicating DNA, allowed L1 to become an autonomous, interspersed retrotransposon.
Assuntos
Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Linhagem Celular , Endonucleases/genética , Endonucleases/metabolismo , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Genômica , Células HeLa , Humanos , Mutagênese Insercional/genéticaRESUMO
Transposable elements represent nearly half of mammalian genomes and are generally described as parasites, or "junk DNA." The LINE1 retrotransposon is the most abundant class and is thought to be deleterious for cells, yet it is paradoxically highly expressed during early development. Here, we report that LINE1 plays essential roles in mouse embryonic stem cells (ESCs) and pre-implantation embryos. In ESCs, LINE1 acts as a nuclear RNA scaffold that recruits Nucleolin and Kap1/Trim28 to repress Dux, the master activator of a transcriptional program specific to the 2-cell embryo. In parallel, LINE1 RNA mediates binding of Nucleolin and Kap1 to rDNA, promoting rRNA synthesis and ESC self-renewal. In embryos, LINE1 RNA is required for Dux silencing, synthesis of rRNA, and exit from the 2-cell stage. The results reveal an essential partnership between LINE1 RNA, Nucleolin, Kap1, and peri-nucleolar chromatin in the regulation of transcription, developmental potency, and ESC self-renewal.
Assuntos
Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Autorrenovação Celular , Imunoprecipitação da Cromatina , Retrovirus Endógenos/genética , Feminino , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Oligorribonucleotídeos Antissenso/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Interferência de RNA , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteína 28 com Motivo Tripartido/antagonistas & inibidores , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , Regulação para Cima , NucleolinaRESUMO
LINE-1 retrotransposition is tightly restricted by layers of regulatory control, with epigenetic pathways being the best characterized. Looking at post-transcriptional regulation, we now show that LINE-1 mRNA 3' ends are pervasively uridylated in various human cellular models and in mouse testes. TUT4 and TUT7 uridyltransferases catalyze the modification and function in cooperation with the helicase/RNPase MOV10 to counteract the RNA chaperone activity of the L1-ORF1p retrotransposon protein. Uridylation potently restricts LINE-1 retrotransposition by a multilayer mechanism depending on differential subcellular localization of the uridyltransferases. We propose that uridine residues added by TUT7 in the cytoplasm inhibit initiation of reverse transcription of LINE-1 mRNAs once they are reimported to the nucleus, whereas uridylation by TUT4, which is enriched in cytoplasmic foci, destabilizes mRNAs. These results provide a model for the post-transcriptional restriction of LINE-1, revealing a key physiological role for TUT4/7-mediated uridylation in maintaining genome stability.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , RNA Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Uridina/metabolismo , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Camundongos , Proteínas Nucleares/genética , Ligação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , RNA Helicases/metabolismo , Interferência de RNA , RNA Nucleotidiltransferases/antagonistas & inibidores , RNA Nucleotidiltransferases/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Retroelementos/genéticaRESUMO
The human silencing hub (HUSH) preserves genome integrity through the epigenetic repression of invasive genetic elements. However, despite our understanding of HUSH as an obligate complex of three subunits, only loss of MPP8 or Periphilin, but not TASOR, triggers interferon signaling following derepression of endogenous retroelements. Here, we resolve this paradox by characterizing a second HUSH complex that shares MPP8 and Periphilin but assembles around TASOR2, an uncharacterized paralog of TASOR. Whereas HUSH represses LINE-1 retroelements marked by the repressive histone modification H3K9me3, HUSH2 is recruited by the transcription factor IRF2 to repress interferon-stimulated genes. Mechanistically, HUSH-mediated retroelement silencing sequesters the limited pool of the shared subunits MPP8 and Periphilin, preventing TASOR2 from forming HUSH2 complexes and hence relieving the HUSH2-mediated repression of interferon-stimulated genes. Thus, competition between two HUSH complexes intertwines retroelement silencing with the induction of an immune response, coupling epigenetic and immune aspects of genome defense.
Assuntos
Inativação Gênica , Humanos , Células HEK293 , Histonas/metabolismo , Histonas/genética , Retroelementos/genética , Epigênese Genética , Elementos Nucleotídeos Longos e Dispersos/genética , Transdução de Sinais , Interferons/metabolismo , Interferons/imunologia , Interferons/genética , Células HeLaRESUMO
Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.
Assuntos
Elementos Nucleotídeos Longos e Dispersos , Proteínas de Ligação à Região de Interação com a Matriz , RNA Polimerase II , Receptores de Estrogênio , Transcrição Gênica , Humanos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Regulação da Expressão Gênica , Ligação Proteica , Células HEK293 , Genoma HumanoRESUMO
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, â¼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Assuntos
Elementos Nucleotídeos Longos e Dispersos , Neoplasias , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Neoplasias/genética , Neoplasias/terapia , RNA , Proteínas/genética , Epigênese GenéticaRESUMO
Transposable elements have created the majority of the sequence in many genomes. In mammals, LINE-1 retrotransposons have been expanding for more than 100 million years as distinct, consecutive lineages; however, the drivers of this recurrent lineage emergence and disappearance are unknown. Most human genome assemblies provide a record of this ancient evolution, but fail to resolve ongoing LINE-1 retrotranspositions. Utilizing the human CHM1 long-read-based haploid assembly, we identified and cloned all full-length, intact LINE-1s, and found 29 LINE-1s with measurable in vitro retrotransposition activity. Among individuals, these LINE-1s varied in their presence, their allelic sequences, and their activity. We found that recently retrotransposed LINE-1s tend to be active in vitro and polymorphic in the population relative to more ancient LINE-1s. However, some rare allelic forms of old LINE-1s retain activity, suggesting older lineages can persist longer than expected. Finally, in LINE-1s with in vitro activity and in vivo fitness, we identified mutations that may have increased replication in ancient genomes and may prove promising candidates for mechanistic investigations of the drivers of LINE-1 evolution and which LINE-1 sequences contribute to human disease.
Assuntos
Genoma Humano , Elementos Nucleotídeos Longos e Dispersos , Animais , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos , Mamíferos/genética , Mutação , Evolução MolecularRESUMO
Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.
Assuntos
Metilação de DNA , Elementos de DNA Transponíveis , DNA de Neoplasias , Epigênese Genética , Epigenoma , Regulação Neoplásica da Expressão Gênica , Elementos Nucleotídeos Longos e Dispersos , Sequenciamento por Nanoporos , Neoplasias , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/metabolismo , Especificidade de ÓrgãosRESUMO
p53 is a potent tumor suppressor and commonly mutated in human cancers. Recently, we demonstrated that p53 genes act to restrict retrotransposons in germline tissues of flies and fish but whether this activity is conserved in somatic human cells is not known. Here we show that p53 constitutively restrains human LINE1s by cooperatively engaging sites in the 5'UTR and stimulating local deposition of repressive histone marks at these transposons. Consistent with this, the elimination of p53 or the removal of corresponding binding sites in LINE1s, prompted these retroelements to become hyperactive. Concurrently, p53 loss instigated chromosomal rearrangements linked to LINE sequences and also provoked inflammatory programs that were dependent on reverse transcriptase produced from LINE1s. Taken together, our observations establish that p53 continuously operates at the LINE1 promoter to restrict autonomous copies of these mobile elements in human cells. Our results further suggest that constitutive restriction of these retroelements may help to explain tumor suppression encoded by p53, since erupting LINE1s produced acute oncogenic threats when p53 was absent.
Assuntos
Regulação da Expressão Gênica/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Linhagem Celular , Deleção de Genes , Rearranjo Gênico/genética , Código das Histonas/genética , Humanos , Imunidade/genética , Elementos Nucleotídeos Longos e Dispersos/imunologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteína Supressora de Tumor p53/genéticaRESUMO
L1 retrotransposons are transposable elements and major contributors of genetic variation in humans. Where L1 integrates into the genome can directly impact human evolution and disease. Here, we experimentally induced L1 retrotransposition in cells and mapped integration sites at nucleotide resolution. At local scales, L1 integration is mostly restricted by genome sequence biases and the specificity of the L1 machinery. At regional scales, L1 shows a broad capacity for integration into all chromatin states, in contrast to other known mobile genetic elements. However, integration is influenced by the replication timing of target regions, suggesting a link to host DNA replication. The distribution of new L1 integrations differs from those of preexisting L1 copies, which are significantly reshaped by natural selection. Our findings reveal that the L1 machinery has evolved to efficiently target all genomic regions and underline a predominant role for post-integrative processes on the distribution of endogenous L1 elements.
Assuntos
Elementos de DNA Transponíveis/genética , Genoma Humano/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Mapeamento Cromossômico , Replicação do DNA/genética , Genômica , Células HeLa , HumanosRESUMO
Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.
Assuntos
Repressão Epigenética/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Fator de Transcrição YY1/genética , Sítios de Ligação/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Genoma Humano/genética , Hipocampo/metabolismo , Humanos , Fígado/metabolismo , Neurônios/metabolismo , Análise de Célula ÚnicaRESUMO
Long interspersed element-1 (LINE-1 or L1) retrotransposition poses a threat to genome integrity, and cells have evolved mechanisms to restrict retrotransposition. However, how cellular proteins facilitate L1 retrotransposition requires elucidation. Here, we demonstrate that single-strand DNA breaks induced by the L1 endonuclease trigger the recruitment of poly(ADP-ribose) polymerase 2 (PARP2) to L1 integration sites and that PARP2 activation leads to the subsequent recruitment of the replication protein A (RPA) complex to facilitate retrotransposition. We further demonstrate that RPA directly binds activated PARP2 through poly(ADP-ribosyl)ation and can protect single-strand L1 integration intermediates from APOBEC3-mediated cytidine deamination in vitro. Paradoxically, we provide evidence that RPA can guide APOBEC3A, and perhaps other APOBEC3 proteins, to sites of L1 integration. Thus, the interplay of L1-encoded and evolutionarily conserved cellular proteins is required for efficient retrotransposition; however, these interactions also may be exploited to restrict L1 retrotransposition in the human genome.
Assuntos
Elementos Nucleotídeos Longos e Dispersos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína de Replicação A/metabolismo , Desaminases APOBEC , Animais , Células CHO , Cricetulus , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Células HEK293 , Células HeLa , Humanos , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Proteína de Replicação A/genéticaRESUMO
As a hallmark of senescent cells, the derepression of Long Interspersed Elements 1 (LINE1) transcription results in accumulated LINE1 cDNA, which triggers the secretion of the senescence-associated secretory phenotype (SASP) and paracrine senescence in a cGAS-STING pathway-dependent manner. However, transcription factors that govern senescence-associated LINE1 reactivation remain ill-defined. Here, we predict several transcription factors that bind to human LINE1 elements to regulate their transcription by analyzing the conserved binding motifs in the 5'-untranslated regions (UTR) of the commonly upregulated LINE1 elements in different types of senescent cells. Further analysis reveals that PAX5 directly binds to LINE1 5'-UTR and the binding is enhanced in senescent cells. The enrichment of PAX5 at the 5'-UTR promotes cellular senescence and SASP by activating LINE1. We also demonstrate that the longevity gene SIRT6 suppresses PAX5 transcription by directly binding to the PAX5 promoter, and overexpressing PAX5 abrogates the suppressive effect of SIRT6 on stress-dependent cellular senescence. Our work suggests that PAX5 could serve as a potential target for drug development aiming to suppress LINE1 activation and treat senescence-associated diseases.
Assuntos
Senescência Celular , Elementos Nucleotídeos Longos e Dispersos , Fator de Transcrição PAX5 , Humanos , Regiões 5' não Traduzidas/genética , Regulação da Expressão Gênica , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Retroelementos/genética , Fenótipo Secretor Associado à Senescência/genéticaRESUMO
Infertility affects around 7% of the male population and can be due to severe spermatogenic failure (SPGF), resulting in no or very few sperm in the ejaculate. We initially identified a homozygous frameshift variant in FKBP6 in a man with extreme oligozoospermia. Subsequently, we screened a total of 2,699 men with SPGF and detected rare bi-allelic loss-of-function variants in FKBP6 in five additional persons. All six individuals had no or extremely few sperm in the ejaculate, which were not suitable for medically assisted reproduction. Evaluation of testicular tissue revealed an arrest at the stage of round spermatids. Lack of FKBP6 expression in the testis was confirmed by RT-qPCR and immunofluorescence staining. In mice, Fkbp6 is essential for spermatogenesis and has been described as being involved in piRNA biogenesis and formation of the synaptonemal complex (SC). We did not detect FKBP6 as part of the SC in normal human spermatocytes, but small RNA sequencing revealed that loss of FKBP6 severely impacted piRNA levels, supporting a role for FKBP6 in piRNA biogenesis in humans. In contrast to findings in piRNA-pathway mouse models, we did not detect an increase in LINE-1 expression in men with pathogenic FKBP6 variants. Based on our findings, FKBP6 reaches a "strong" level of evidence for being associated with male infertility according to the ClinGen criteria, making it directly applicable for clinical diagnostics. This will improve patient care by providing a causal diagnosis and will help to predict chances for successful surgical sperm retrieval.
Assuntos
Azoospermia , Infertilidade Masculina , Animais , Azoospermia/genética , Humanos , Infertilidade Masculina/genética , Elementos Nucleotídeos Longos e Dispersos , Masculino , Camundongos , RNA Interferente Pequeno/metabolismo , Sêmen , Espermatogênese/genética , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Testículo/patologiaRESUMO
Long interspersed nuclear elements (LINEs) play essential roles in shaping chromatin states, while the factors that cooperate with LINEs and their roles in higher-order chromatin organization remain poorly understood. Here, we show that MATR3, a nuclear matrix protein, interplays with antisense LINE1 (AS L1) RNAs to form a meshwork via phase separation, providing a dynamic platform for chromatin spatial organization. MATR3 and AS L1 RNAs affect the nuclear localization of each other. After MATR3 depletion, the chromatin, particularly H3K27me3-modified chromatin, redistributes in the cell nuclei. Topologically associating domains (TADs) that highly transcribe MATR3-associated AS L1 RNAs show decreased intra-TAD interactions in both AML12 and ES cells. MATR3 depletion increases the accessibility of H3K27me3 domains adjacent to MATR3-associated AS L1, without affecting H3K27me3 modifications. Furthermore, amyotrophic lateral sclerosis (ALS)-associated MATR3 mutants alter biophysical features of the MATR3-AS L1 RNA meshwork and cause an abnormal H3K27me3 staining. Collectively, we reveal a role of the meshwork formed by MATR3 and AS L1 RNAs in gathering chromatin in the nucleus.
Assuntos
Esclerose Lateral Amiotrófica , RNA Antissenso , Humanos , Histonas/genética , Esclerose Lateral Amiotrófica/genética , Cromatina/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismoRESUMO
Long interspersed element 1 (LINE-1) is the only active autonomous mobile element in the human genome. Its transposition can exert deleterious effects on the structure and function of the host genome and cause sporadic genetic diseases. Tight control of LINE-1 mobilization by the host is crucial for genetic stability. In this study, we report that MOV10 recruits the main decapping enzyme DCP2 to LINE-1 RNA and forms a complex of MOV10, DCP2, and LINE-1 RNP, exhibiting liquid-liquid phase separation (LLPS) properties. DCP2 cooperates with MOV10 to decap LINE-1 RNA, which causes degradation of LINE-1 RNA and thus reduces LINE-1 retrotransposition. We here identify DCP2 as one of the key effector proteins determining LINE-1 replication, and elucidate an LLPS mechanism that facilitates the anti-LINE-1 action of MOV10 and DCP2.
Assuntos
Grânulos Citoplasmáticos , RNA Helicases , Humanos , Grânulos Citoplasmáticos/metabolismo , Endorribonucleases/genética , Elementos Nucleotídeos Longos e Dispersos , RNA/metabolismo , RNA Helicases/metabolismoRESUMO
Bat borne disease have attracted many researchers for years. The ability of the bat to host several exogenous viruses has been a focal point in research lately. The latest pandemic shifted the focus of scholars towards understanding the difference in response to viral infection between humans and bats. In a way to understand the basis of the interaction and behaviour between SARS-CoV-2 and the environment, a conflict between different researchers across the globe arose. This conflict asked many questions about the truth of virus-host integration, whether an interaction between RNA viruses and human genomes has ever been reported, the possible route and mechanism that could lead to genomic integration of viral sequences and the methods used to detect integration. This article highlights those questions and will discuss the diverse opinions of the controversy and provide examples on reported integration mechanisms and possible detection techniques.
Assuntos
COVID-19 , Quirópteros , Viroses , Animais , Humanos , SARS-CoV-2/genética , Genoma Humano , COVID-19/genética , Viroses/genética , Genoma Viral , FilogeniaRESUMO
Bacterial group II intron reverse transcriptases (RTs) function in both intron mobility and RNA splicing and are evolutionary predecessors of retrotransposon, telomerase, and retroviral RTs as well as the spliceosomal protein Prp8 in eukaryotes. Here we determined a crystal structure of a full-length thermostable group II intron RT in complex with an RNA template-DNA primer duplex and incoming deoxynucleotide triphosphate (dNTP) at 3.0-Å resolution. We find that the binding of template-primer and key aspects of the RT active site are surprisingly different from retroviral RTs but remarkably similar to viral RNA-dependent RNA polymerases. The structure reveals a host of features not seen previously in RTs that may contribute to distinctive biochemical properties of group II intron RTs, and it provides a prototype for many related bacterial and eukaryotic non-LTR retroelement RTs. It also reveals how protein structural features used for reverse transcription evolved to promote the splicing of both group II and spliceosomal introns.
Assuntos
Proteínas de Bactérias/química , Evolução Molecular , Splicing de RNA , DNA Polimerase Dirigida por RNA/química , Temperatura , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Estabilidade Enzimática , Íntrons , Modelos Moleculares , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Ligação Proteica , Desnaturação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA/química , RNA/genética , RNA/metabolismo , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos , Spliceossomos/química , Spliceossomos/enzimologia , Spliceossomos/genética , Relação Estrutura-AtividadeRESUMO
The maintenance of genome integrity in the germline is crucial for mammalian development. Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element that makes up about 17% of the human genome and poses a threat to genome integrity. N6-methyl-adenosine (m6A) plays an essential role in regulating various biological processes. However, the function of m6A modification in L1 retrotransposons and human germline development remains largely unknown. Here we knocked out the m6A methyltransferase METTL3 or the m6A reader YTHDF2 in human embryonic stem cells (hESCs) and discovered that METTL3 and YTHDF2 are crucial for inducing human spermatogonial stem cells (hSSCs) from hESCs in vitro. The removal of METTL3 or YTHDF2 resulted in increased L1 retrotransposition and reduced the efficiency of SSC differentiation in vitro. Further analysis showed that YTHDF2 recognizes the METTL3-catalyzed m6A modification of L1 retrotransposons and degrades L1 mRNA through autophagy, thereby blocking L1 retrotransposition. Moreover, the study confirmed that m6A modification in human fetal germ cells promotes the degradation of L1 retrotransposon RNA, preventing the insertion of new L1 retrotransposons into the genome. Interestingly, L1 retrotransposon RNA was highly expressed while METTL3 was significantly downregulated in the seminal plasma of azoospermic patients with meiotic arrest compared to males with normal fertility. Additionally, we identified some potentially pathogenic variants in m6A-related genes in azoospermic men with meiotic arrest. In summary, our study suggests that m6A modification serves as a guardian of genome stability during human germline development and provides novel insights into the function and regulatory mechanisms of m6A modification in restricting L1 retrotransposition.
Assuntos
Azoospermia , Retroelementos , Masculino , Animais , Humanos , Retroelementos/genética , RNA , Azoospermia/genética , Diferenciação Celular/genética , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , Mamíferos/metabolismoRESUMO
Over half of human genomic DNA is composed of repetitive sequences generated throughout evolution by prolific mobile genetic parasites called transposable elements (TEs). Long disregarded as "junk" or "selfish" DNA, TEs are increasingly recognized as formative elements in genome evolution, wired intimately into the structure and function of the human genome. Advances in sequencing technologies and computational methods have ushered in an era of unprecedented insight into how TE activity impacts human biology in health and disease. Here we discuss the current views on how TEs have shaped the regulatory landscape of the human genome, how TE activity is implicated in human cancers, and how recent findings motivate novel strategies to leverage TE activity for improved cancer therapy. Given the crucial role of methodological advances in TE biology, we pair our conceptual discussions with an in-depth review of the inherent technical challenges in studying repeats, specifically related to structural variation, expression analyses, and chromatin regulation. Lastly, we provide a catalog of existing and emerging assays and bioinformatic software that altogether are enabling the most sophisticated and comprehensive investigations yet into the regulation and function of interspersed repeats in cancer genomes.