Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38996527

RESUMO

Latent membrane protein 1 (LMP1) is the primary oncoprotein of Epstein-Barr virus (EBV) and plays versatile roles in the EBV life cycle and pathogenesis. Despite decades of extensive research, the molecular basis for LMP1 folding, assembly, and activation remains unclear. Here, we report cryo-electron microscopy structures of LMP1 in two unexpected assemblies: a symmetric homodimer and a higher-order filamentous oligomer. LMP1 adopts a non-canonical and unpredicted fold that supports the formation of a stable homodimer through tight and antiparallel intermolecular packing. LMP1 dimers further assemble side-by-side into higher-order filamentous oligomers, thereby allowing the accumulation and specific organization of the flexible cytoplasmic tails for efficient recruitment of downstream factors. Super-resolution microscopy and cellular functional assays demonstrate that mutations at both dimeric and oligomeric interfaces disrupt LMP1 higher-order assembly and block multiple LMP1-mediated signaling pathways. Our research provides a framework for understanding the mechanism of LMP1 and for developing potential therapies targeting EBV-associated diseases.

2.
Proc Natl Acad Sci U S A ; 120(20): e2219755120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155846

RESUMO

Latent Epstein-Barr virus (EBV) infection promotes undifferentiated nasopharyngeal carcinomas (NPCs) in humans, but the mechanism(s) for this effect has been difficult to study because EBV cannot transform normal epithelial cells in vitro and the EBV genome is often lost when NPC cells are grown in culture. Here we show that the latent EBV protein, LMP1 (Latent membrane protein 1), induces cellular proliferation and inhibits spontaneous differentiation of telomerase-immortalized normal oral keratinocytes (NOKs) in growth factor-deficient conditions by increasing the activity of the Hippo pathway effectors, YAP (Yes-associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif). We demonstrate that LMP1 enhances YAP and TAZ activity in NOKs both by decreasing Hippo pathway-mediated serine phosphorylation of YAP and TAZ and increasing Src kinase-mediated Y357 phosphorylation of YAP. Furthermore, knockdown of YAP and TAZ is sufficient to reduce proliferation and promote differentiation in EBV-infected NOKs. We find that YAP and TAZ are also required for LMP1-induced epithelial-to-mesenchymal transition. Importantly, we demonstrate that ibrutinib (an FDA-approved BTK inhibitor that blocks YAP and TAZ activity through an off-target effect) restores spontaneous differentiation and inhibits proliferation of EBV-infected NOKs at clinically relevant doses. These results suggest that LMP1-induced YAP and TAZ activity contributes to the development of NPC.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Diferenciação Celular , Proliferação de Células , Células Epiteliais/metabolismo , Herpesvirus Humano 4/genética , Neoplasias Nasofaríngeas/genética , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas de Sinalização YAP
3.
Cancer Immunol Immunother ; 73(2): 29, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280007

RESUMO

EBV+ diffuse large B cell lymphoma (DLBCL) not otherwise specified (NOS) is a new entity confirmed by the World Health Organization (WHO) in 2017. In this new entity, the virus may contribute to a tolerogenic microenvironment. Traces of the virus have been described in DLBCL with more sensitive methods, in cases that were originally diagnosed as negative. The aim of this study was to analyze the expression of immune response genes in the tumor microenvironment to disclose the role of the virus and its traces in DLBCL. In 48 DLBCL cases, the expression of immune response genes and the presence of molecules that induce tolerance, such as TIM3, LAG3 and PDL1 by immunohistochemistry (IHC), were studied. To broaden the study of the microenvironment, tumor-associated macrophages (TMAs) were also explored. No significant differences were observed in the expression of immune response genes in the EBV+ DLBCL and those cases that were EBV- DLBCL but that exhibited viral traces, assessed by ViewRNA assay. Only the EBV+ DLBCL cases displayed a significantly higher increase in the expression of CD8 and cytotoxic T cells detected by gene expression analysis, and of PDL1 in tumor cells and in the expression of CD68 in the tumor microenvironment detected by IHC, not observed in those cases with viral traces. The increase in CD8 and cytotoxic T cells, PDL1 and CD68 markers only in EBV+ DLBCL may indicate that traces of viral infection might not have influence in immune response markers.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma Difuso de Grandes Células B , Humanos , Herpesvirus Humano 4 , Linfoma Difuso de Grandes Células B/patologia , Linfócitos T Citotóxicos/metabolismo , Tolerância Imunológica , Microambiente Tumoral
4.
J Virol ; 97(10): e0021923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37702487

RESUMO

IMPORTANCE: A growing body of evidence has supported the notion that viruses utilize EVs and associated pathways to incorporate viral products. This allows for the evasion of an immune response while enabling viral spread within the host. Given that viral proteins often elicit strong antigenic peptides that are recognized by T cells, the regulation of the PD-L1 pathway through the overexpression of lEV-associated PD-L1 may serve as a strategy for immune evasion by viruses. The discovery that EBV LMP1 increases the secretion of PD-L1 in larger EVs identifies a new potential target for immune blockade therapy in EBV-associated cancers. Our findings may help to clarify the mechanism of LMP1-mediated enhancement of PD-L1 packaging into lEVs and may lead to the identification of more specific targets for treatment. Additionally, the identification of lEV biomarkers that predict a viral origin of disease could allow for more targeted therapies to be developed.


Assuntos
Infecções por Vírus Epstein-Barr , Vesículas Extracelulares , Proteínas da Matriz Viral , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Herpesvirus Humano 4/fisiologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
5.
J Med Virol ; 96(3): e29504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445794

RESUMO

While most NOD-like receptors (NLRs) are predominately expressed by innate immune cells, NLRC3, an inhibitory NLR of immune signaling, exhibits the highest expression in lymphocytes. The role of NLRC3 or any NLRs in B lymphocytes is completely unknown. Gammaherpesviruses, including human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV-68), establish latent infection in B lymphocytes, which requires elevated NF-κB. This study shows that during latent EBV infection of human B cells, viral-encoded latent membrane protein 1 (LMP1) decreases NLRC3 transcript. LMP1-induced-NF-κB activation suppresses the promoter activity of NLRC3 via p65 binding to the promoter. Conversely, NLRC3 inhibits NF-κB activation by promoting the degradation of LMP1 in a proteasome-dependent manner. In vivo, MHV-68 infection reduces Nlrc3 transcripts in splenocytes, and Nlrc3-deficient mice show greater viral latency than controls. These results reveal a bidirectional regulatory circuit in B lymphocytes, where viral latent protein LMP1 reduces NLRC3 expression, while NLRC3 disrupts gammaherpesvirus latency, which is an important step for tumorigenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Latência Viral , Animais , Humanos , Camundongos , Herpesvirus Humano 4/genética , NF-kappa B , Linfócitos B , Peptídeos e Proteínas de Sinalização Intercelular
6.
Ann Diagn Pathol ; 70: 152286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447253

RESUMO

Epstein-Barr virus (EBV) is responsible for many B cell lymphoproliferative disorders (LPD) spanning subclinical infection to immunodeficiency-related neoplasms. EBV establishes a latent infection in the host B cell as defined histologically by the expression of EBV latent membrane proteins and nuclear antigens. Herein, we characterize the latency patterns of immunodeficiency-related neoplasms including post-transplant lymphoproliferative disorders (PTLD) and therapy-related LPD (formerly iatrogenic) with latent membrane protein-1 (LMP-1) and EBV nuclear antigen-2 (EBNA-2) immunohistochemistry. The latency pattern was correlated with immunodeficiency and dysregulation (IDD) status and time from transplant procedure. 38 cases of EBV+ PTLD in comparison to 27 cases of classic Hodgkin lymphoma (CHL) and diffuse large B cell lymphoma (DLBCL) arising in either the therapy-related immunodeficiency setting (n = 12) or without an identified immunodeficiency (n = 15) were evaluated for EBV-encoded small RNAs by in situ hybridization (EBER-ISH) and for LMP-1 and EBNA-2 by immunohistochemistry. A full spectrum of EBV latency patterns was observed across PTLD in contrast to CHL and DLBCL arising in the therapy-related immunodeficiency setting. Polymorphic-PTLD (12 of 16 cases, 75 %) and DLBCL-PTLD (9 of 11 cases, 82 %) showed the greatest proportion of cases with latency III pattern. Whereas, EBV+ CHL in an immunocompetent patient showed exclusively latency II pattern (13 of 13 cases, 100 %). The majority of EBV+ PTLD occurred by three years of transplant procedure date and were enriched for latency III pattern (21 of 22 cases, 95 %). Immunohistochemical identification of EBV latency by LMP-1 and EBNA-2 can help classify PTLD in comparison to other EBV+ B cell LPD and lymphomas arising in therapy-related immunodeficiency and non-immunodeficiency settings.


Assuntos
Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Doença de Hodgkin , Linfoma Difuso de Grandes Células B , Transtornos Linfoproliferativos , Proteínas da Matriz Viral , Proteínas Virais , Latência Viral , Humanos , Transtornos Linfoproliferativos/virologia , Transtornos Linfoproliferativos/patologia , Transtornos Linfoproliferativos/diagnóstico , Herpesvirus Humano 4/isolamento & purificação , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/complicações , Masculino , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Feminino , Adulto , Pessoa de Meia-Idade , Proteínas da Matriz Viral/metabolismo , Doença de Hodgkin/virologia , Doença de Hodgkin/patologia , Linfoma Difuso de Grandes Células B/virologia , Linfoma Difuso de Grandes Células B/patologia , Idoso , Adulto Jovem , Adolescente , Imuno-Histoquímica , Criança , Linfoma/virologia , Linfoma/patologia , Hibridização In Situ
7.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732219

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus etiologically associated with benign and malignant diseases. Since the pathogenic mechanisms of EBV are not fully understood, understanding EBV genetic diversity is an ongoing goal. Therefore, the present work describes the genetic diversity of the lytic gene BZLF1 in a sampling of 70 EBV-positive cases from southeastern Brazil. Additionally, together with the genetic regions previously characterized, the aim of the present study was to determine the impact of viral genetic factors that may influence EBV genetic diversity. Accordingly, the phylogenetic analysis of the BZLF1 indicated two main clades with high support, BZ-A and BZ-B (PP > 0.85). Thus, the BZ-A clade was the most diverse clade associated with the main polymorphisms investigated, including the haplotype Type 1 + V3 (p < 0.001). Furthermore, the multigene phylogenetic analysis (MLA) between BZLF1 and the oncogene LMP1 showed specific clusters, revealing haplotypic segregation that previous single-gene phylogenies from both genes failed to demonstrate. Surprisingly, the LMP1 Raji-related variant clusters were shown to be more diverse, associated with BZ-A/B and the Type 2/1 + V3 haplotypes. Finally, due to the high haplotypic diversity of the Raji-related variants, the number of DNA recombination-inducing motifs (DRIMs) was evaluated within the different clusters defined by the MLA. Similarly, the haplotype BZ-A + Raji was shown to harbor a greater number of DRIMs (p < 0.001). These results call attention to the high haplotype diversity of EBV in southeast Brazil and strengthen the hypothesis of the recombinant potential of South American Raji-related variants via the LMP1 oncogene.


Assuntos
Infecções por Vírus Epstein-Barr , Variação Genética , Herpesvirus Humano 4 , Filogenia , Recombinação Genética , Herpesvirus Humano 4/genética , Humanos , Brasil , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/genética , Transativadores/genética , Masculino , Feminino , Haplótipos/genética , Adulto , Proteínas da Matriz Viral/genética , Criança , Pessoa de Meia-Idade , Adolescente , Latência Viral/genética , Pré-Escolar , Adulto Jovem
8.
Int J Cancer ; 153(5): 1043-1050, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318089

RESUMO

In 2017, the World Health Organization (WHO) confirmed a new entity, Epstein Barr virus (EBV) + Diffuse large B cell lymphoma (DLBCL), not otherwise specified (NOS). Traces of EBV transcripts were described in lymphomas, including DLBCL, that were diagnosed as EBV negative by conventional methods. The aim of this study was to detect viral genome by qPCR, as well as LMP1 and EBNA2 transcripts, with a more sensitive method in DLBCL cases from Argentina. Fourteen cases originally considered as EBV negative expressed LMP1 and/or EBNA2 transcripts. In addition, LMP1 and/or EBNA2 transcripts were also observed in bystander cells. However, EBERs+ cells cases by conventional ISH showed higher numbers of cells with LMP1 transcripts and LMP1 protein. In the cases that were EBERS- in tumor cells but with expression of LMP1 and/or EBNA2 transcripts, the viral load was below the limit of detection. This study provides further evidence that EBV could be detected in tumor cells by more sensitive methods. However, higher expression of the most important oncogenic protein, LMP1, as well as increased viral load, are only observed in cases with EBERs+ cells by conventional ISH, suggesting that traces of EBV might not display a key role in DLBCL pathogenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma Difuso de Grandes Células B , Humanos , Adulto , Criança , Herpesvirus Humano 4/genética , Linfoma Difuso de Grandes Células B/patologia , Argentina , Antígenos Nucleares do Vírus Epstein-Barr/genética , Proteínas da Matriz Viral/genética
9.
Am J Transplant ; 23(5): 611-618, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36796762

RESUMO

Epstein-Barr virus (EBV)-positive posttransplant lymphoproliferative disorder (PTLD) results in significant morbidity and mortality in pediatric transplant recipients. Identifying individuals at an increased risk of EBV-positive PTLD could influence clinical management of immunosuppression and other therapies, improving posttransplant outcomes. A 7-center prospective, observational clinical trial of 872 pediatric transplant recipients evaluated the presence of mutations at positions 212 and 366 of EBV latent membrane protein 1 (LMP1) as an indicator of risk of EBV-positive PTLD (clinical trials: NCT02182986). DNA was isolated from peripheral blood of EBV-positive PTLD case patients and matched controls (1:2 nested case:control), and the cytoplasmic tail of LMP1 was sequenced. Thirty-four participants reached the primary endpoint of biopsy-proven EBV-positive PTLD. DNA was sequenced from 32 PTLD case patients and 62 matched controls. Both LMP1 mutations were present in 31 of 32 PTLD cases (96.9%) and in 45 of 62 matched controls (72.6%) (P = .005; OR = 11.7; 95% confidence interval, 1.5, 92.6). The presence of both G212S and S366T carries a nearly 12-fold increased risk of development of EBV-positive PTLD. Conversely, transplant recipients without both LMP1 mutations carry a very low risk of PTLD. Analysis of mutations at positions 212 and 366 of LMP1 can be informative in stratifying patients for risk of EBV-positive PTLD.


Assuntos
Infecções por Vírus Epstein-Barr , Transtornos Linfoproliferativos , Humanos , Criança , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Estudos Prospectivos , Transtornos Linfoproliferativos/etiologia , Mutação , Proteínas de Membrana
10.
BMC Med ; 21(1): 330, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649020

RESUMO

BACKGROUND: Natural killer/T cell lymphoma (NKTCL) is an aggressive lymphoma with a poor prognosis. Chimeric antigen receptor-transduced T (CAR-T) cell therapy has become a promising immunotherapeutic strategy against haematologic malignancies. METHODS: In this study, four CAR-T cell lines (CD38-CAR, LMP1-CAR, CD38-LMP1 tandem CAR 1 and CD38-LMP1 tandem CAR 2) were generated. The effect of CAR-T cells against NKTCL cells was evaluated both in vitro and in vivo. Expression of T cell activation markers and cytokines produced by CAR-T cells were detected by flow cytometry. RESULTS: The four CAR-T cell lines could effectively eliminate malignant NKTCL cells. They could be activated and produce inflammatory cytokines in a target-dependent manner. In vivo tests showed that the CAR-T cells exhibited significant antitumour effects in a xenotransplanted NKTCL mouse model. CONCLUSIONS: In summary, four CAR-T cell lines exhibited significant cytotoxicity against NKTCL cells both in vitro and in vivo. These results indicated the effective therapeutic promise of CD38 and LMP1 CAR-T cells in NKTCL.


Assuntos
Linfoma de Células T , Receptores de Antígenos Quiméricos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Citocinas , Modelos Animais de Doenças , Linfócitos T
11.
J Virol ; 96(5): e0194121, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019715

RESUMO

Epstein-Barr virus (EBV) is associated with several malignant diseases, including Burkitt's lymphoma, nasopharyngeal carcinoma (NPC), certain types of lymphomas, and a portion of gastric cancers. The virus-encoded oncoprotein, LMP1, induces the epithelial-to-mesenchymal transition (EMT), leading to cancer stem cell formation. In the current study, we investigated how LMP1 contributes to cancer stem cell development in NPC. We found that LMP1 plays an essential role in acquiring cancer stem cell (CSC) characteristics, including tumor initiation, metastasis, and therapeutic resistance by activating the PI3K/mTOR/Akt signaling pathway. We dissected the functions of distinct signaling (mTORC1 and mTORC2) in the acquisition of different CSC characteristics. Side population (SP) formation, which represents the chemotherapy resistance feature of CSC, requires mTORC1 signaling. Tumor initiation capability is mainly attributed to mTORC2, which confers on NPC the capabilities of proliferation and survival by activating mTORC2 downstream genes c-Myc. Both mTORC1 and mTORC2 enhance cell migration and invasion of NPC cells, suggesting that mTORC1/2 coregulate metastasis of NPC. The revelation of the roles of the mTOR signaling pathways in distinct tumorigenic features provides a guideline for designing efficient therapies by choosing specific mTOR inhibitors targeting mTORC1, mTORC2, or both to achieve durable remission of NPC in patients. IMPORTANCE LMP1 endows NPC to gain cancer stem cell characteristics through activating mTORC1 and mTORC2 pathways. The different mTOR pathways are responsible for distinct tumorigenic features. Rapamycin-insensitive mTORC1 is essential for CSC drug resistance. NPC tumor initiation capacity is mainly attributed to mTORC2 signaling. mTORC1 and mTORC2 coregulate NPC cell migration and invasion. The revelation of the roles of mTOR signaling in NPC CSC establishment has implications for novel therapeutic strategies to treat relapsed and metastatic NPC and achieve durable remission.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proliferação de Células/genética , Sobrevivência Celular/genética , Infecções por Vírus Epstein-Barr/fisiopatologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Carcinoma Nasofaríngeo/fisiopatologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/fisiopatologia , Neoplasias Nasofaríngeas/virologia , Células-Tronco Neoplásicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Am J Med Genet A ; 191(8): 2164-2174, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37218523

RESUMO

A 54-year-old man with a history of unimelic, post-traumatic multifocal heterotopic ossification (HO) and normal genetic analysis of ACVR1 and GNAS had variants of unknown significance (VUS) in PDLIM-7 (PDZ and LIM Domain Protein 7), the gene encoding LMP-1 (LIM Mineralization Protein-1), an intracellular protein involved in the bone morphogenetic protein (BMP) pathway signaling and ossification. In order to determine if the LMP-1 variants were plausibly responsible for the phenotype observed, a series of in vitro experiments were conducted. C2C12 cells were co-transfected with a BMP-responsive reporter as well as the LMP-1 wildtype (wt) construct or the LMP-1T161I or the LMP-1D181G constructs (herein designated as LMP-161 or LMP-181) corresponding to the coding variants detected in the patient. A significantly increased BMP-reporter activity was observed in LMP-161 or LMP-181 transfected cells compared to the wt cells. The LMP-181 variant exhibited BMP-reporter activity with a four-fold increase over the LMP-1 wt protein. Similarly, mouse pre-osteoblastic MC3T3 cells transfected with the patient's LMP-1 variants expressed higher levels of osteoblast markers both at mRNA and protein levels and preferentially mineralized when stimulated with recombinant BMP-2 compared to control cells. Presently, there are no pathogenic variants of LMP-1 known to induce HO in humans. Our findings suggest that the germline variants in LMP-1 detected in our patient are plausibly related to his multifocal HO (LMP1-related multifocal HO). Further observations will be required to firmly establish this gene-disease relationship.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Camundongos , Humanos , Animais , Pessoa de Meia-Idade , Linhagem Celular , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Transdução de Sinais , Osteogênese , Células Germinativas/metabolismo , Miosite Ossificante/genética , Receptores de Ativinas Tipo I/genética
13.
Virol J ; 20(1): 107, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259131

RESUMO

BACKGROUND: Patients infected with HIV are at high risk of developing Epstein-Barr Virus (EBV)-related diseases. The genotype and viral biological behavior of EBV infection in patients with human immunodeficiency virus-1 (HIV) in China remain unclear. This study analyzed the characteristics of EBV in patients infected with HIV in southeastern China. METHODS: A total of 162 HIV-infected patients and 52 patients without HIV were enrolled in this study. EBV viral load in blood was determined by fluorescence quantitative PCR. EBV typing was performed using saliva according to polymorphisms in the EBNA3C region. EBV LMP-1 carboxy terminus (C-ter) was sequenced, and compared with the epidemic strains in the world. RESULTS: Among HIV infected patients, the EBV strain variant was mainly EBV-1, while EBV-2 had a higher viral load than EBV-1 (P = 0.001) and EBV-1/2 (P = 0.002). HIV infected patients had higher active virus replication. The EBV LMP-1 variants were mainly the China1 variant. HIV-infected patients had different nucleic acid positions of 30-bp deletion (del30) and had a higher incidence of high 33-bp tandem repeats (rep33) copies than non-HIV-infected patients. There was a difference in the mutations of EBV LMP-1 C-ter del30 and ins15 between HIV infected patients and the control group (P < 0.001). CONCLUSION: In southeastern China, EBV in HIV-infected patients had higher active virus replication; EBV infection was mainly EBV-1, and EBV-2 infection has higher EBV virus load; hotspot mutations of LMP-1 C-ter were different between HIV-infected patients and non-HIV-infected patients. TRIAL REGISTRATION: This study was approved by the ethics committee of the First Affiliated Hospital of Zhejiang University School of Medicine (Approval No. 2018764), and registered in Chinese Clinical Trial Registry on 3 June 2019 (ChiCTR, ChiCTR1900023600, http://www.chictr.org.cn/usercenter.aspx ).


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por HIV , HIV-1 , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/epidemiologia , Infecções por Vírus Epstein-Barr/genética , Sequência de Bases , HIV-1/genética , China/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , DNA Viral/genética
14.
Virus Genes ; 59(4): 541-553, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37243920

RESUMO

The critical Epstein‒Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) and BamHI fragment H rightward open reading frame 1 (BHRF-1) genes affect EBV-mediated malignant transformation and virus replication during EBV infection. Therefore, these two genes are considered ideal targets for EBV vaccine development. However, gene mutations in LMP-1 and BHRF-1 in different cohorts may affect the biological functions of EBV, which would seriously hinder development of personalized vaccines for EBV. In the present study, by performing nested polymerase chain reaction (nested PCR) and DNA sequence techniques, we analyzed the nucleotide variability and phylogeny of LMP-1 containing a 30 bp deletion region (del-LMP-1) and BHRF-1 in EBV-infected patients (N = 382) and healthy persons receiving physical examination (N = 98; defined as the control group) in Yunnan Province, China. Three BHRF-1 subtypes were identified in this study: 79V88V, 79L88L, and 79V88L, with mutation frequencies of 58.59%, 24.24%, and 17.17%, respectively. Compared with the control group, the distribution of BHRF-1 subtypes of the three groups showed no significant difference, suggesting that BHRF-1 is highly conserved in EBV-related samples. In addition, a short fragment of del-LMP-1 was found in 133 cases, and the nucleotide variation rate was 87.50% (133/152). For del-LMP-1, a significant distribution in three groups was detected, as characterized by a high mutation rate. In conclusion, our study illustrates gene variability and mutations of EBV-encoded del-LMP-1 and BHRF-1 in clinical samples. Highly mutated LMP-1 might be associated with various types of EBV-related diseases, indicating that BHRF-1 combined with LMP-1 may be used as an ideal target for development of EBV personalized vaccines.


Assuntos
Infecções por Vírus Epstein-Barr , Vacinas , Humanos , China , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Mutação , Nucleotídeos , Proteínas da Matriz Viral/genética , Proteínas Virais/genética
15.
Mol Ther ; 30(2): 534-549, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34628050

RESUMO

We generated dual-antigen receptor (DR) T cells from induced pluripotent stem cells (iPSCs) to mitigate tumor antigen escape. These cells were engineered to express a chimeric antigen receptor (CAR) for the antigen cell surface latent membrane protein 1 (LMP1; LMP1-CAR) and a T cell receptor directed to cell surface latent membrane protein 2 (LMP2), in association with human leucocyte antigen A24, to treat therapy-refractory Epstein-Barr virus-associated lymphomas. We introduced LMP1-CAR into iPSCs derived from LMP2-specific cytotoxic T lymphocytes (CTLs) to generate rejuvenated CTLs (rejTs) active against LMP1 and LMP2, or DRrejTs. All DRrejT-treated mice survived >100 days. Furthermore, DRrejTs rejected follow-up inocula of lymphoma cells, demonstrating that DRrejTs persisted long-term. We also demonstrated that DRrejTs targeting CD19 and LMP2 antigens exhibited a robust tumor suppressive effect and conferred a clear survival advantage. Co-operative antitumor effect and in vivo persistence, with unlimited availability of DRrejT therapy, will provide powerful and sustainable T cell immunotherapy.


Assuntos
Infecções por Vírus Epstein-Barr , Células-Tronco Pluripotentes Induzidas , Linfoma , Receptores de Antígenos Quiméricos , Animais , Terapia Baseada em Transplante de Células e Tecidos , Herpesvirus Humano 4/genética , Imunoterapia Adotiva , Células-Tronco Pluripotentes Induzidas/metabolismo , Linfoma/genética , Linfoma/terapia , Camundongos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T Citotóxicos , Proteínas da Matriz Viral/genética
16.
Proc Natl Acad Sci U S A ; 117(25): 14421-14432, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522871

RESUMO

Epstein-Barr virus (EBV) is a B cell transforming virus that causes B cell malignancies under conditions of immune suppression. EBV orchestrates B cell transformation through its latent membrane proteins (LMPs) and Epstein-Barr nuclear antigens (EBNAs). We here identify secondary mutations in mouse B cell lymphomas induced by LMP1, to predict and identify key functions of other EBV genes during transformation. We find aberrant activation of early B cell factor 1 (EBF1) to promote transformation of LMP1-expressing B cells by inhibiting their differentiation to plasma cells. EBV EBNA3A phenocopies EBF1 activities in LMP1-expressing B cells, promoting transformation while inhibiting differentiation. In cells expressing LMP1 together with LMP2A, EBNA3A only promotes lymphomagenesis when the EBNA2 target Myc is also overexpressed. Collectively, our data support a model where proproliferative activities of LMP1, LMP2A, and EBNA2 in combination with EBNA3A-mediated inhibition of terminal plasma cell differentiation critically control EBV-mediated B cell lymphomagenesis.


Assuntos
Transformação Celular Viral , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/patogenicidade , Linfoma de Células B/patologia , Plasmócitos/patologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Fibroblastos , Herpesvirus Humano 4/metabolismo , Humanos , Linfoma de Células B/virologia , Camundongos , Camundongos Knockout , Plasmócitos/virologia , Cultura Primária de Células , Transativadores/genética , Transativadores/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo
17.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373272

RESUMO

Antibodies are considered highly specific therapeutic agents in cancer medicines, and numerous formats have been developed. Among them, bispecific antibodies (BsAbs) have gained a lot of attention as a next-generation strategy for cancer therapy. However, poor tumor penetration is a major challenge because of their large size and thus contributes to suboptimal responses within cancer cells. On the other hand, affibody molecules are a new class of engineered affinity proteins and have achieved several promising results with their applications in molecular imaging diagnostics and targeted tumor therapy. In this study, an alternative format for bispecific molecules was constructed and investigated, named ZLMP110-277 and ZLMP277-110, that targets Epstein-Barr virus latent membrane protein 1 (LMP1) and latent membrane protein 2 (LMP2). Surface plasmon resonance (SPR), indirect immunofluorescence assay, co-immunoprecipitation, and near-infrared (NIR) imaging clearly demonstrated that ZLMP110-277 and ZLMP277-110 have good binding affinity and specificity for both LMP1 and LMP2 in vitro and in vivo. Moreover, ZLMP110-277 and ZLMP277-110, especially ZLMP277-110, significantly reduced the cell viability of C666-1 and CNE-2Z as compared to their monospecific counterparts. ZLMP110-277 and ZLMP277-110 could inhibit phosphorylation of proteins modulated by the MEK/ERK/p90RSK signaling pathway, ultimately leading to suppression of oncogene nuclear translocations. Furthermore, ZLMP110-277 and ZLMP277-110 showed significant antitumor efficacy in nasopharyngeal carcinoma-bearing nude mice. Overall, our results demonstrated that ZLMP110-277 and ZLMP277-110, especially ZLMP277-110, are promising novel prognostic indicators for molecular imaging and targeted tumor therapy of EBV-associated nasopharyngeal carcinoma.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Animais , Camundongos , Carcinoma Nasofaríngeo , Herpesvirus Humano 4/fisiologia , Carcinoma/patologia , Neoplasias Nasofaríngeas/patologia , Camundongos Nus , Proteínas da Matriz Viral/metabolismo
18.
J Virol ; 95(4)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33208446

RESUMO

Latent membrane protein 1 (LMP1) is the major transforming protein of Epstein-Barr virus (EBV) and is critical for EBV-induced B-cell transformation in vitro Several B-cell malignancies are associated with latent LMP1-positive EBV infection, including Hodgkin's and diffuse large B-cell lymphomas. We have previously reported that promotion of B cell proliferation by LMP1 coincided with an induction of aerobic glycolysis. To further examine LMP1-induced metabolic reprogramming in B cells, we ectopically expressed LMP1 in an EBV-negative Burkitt's lymphoma (BL) cell line preceding a targeted metabolic analysis. This analysis revealed that the most significant LMP1-induced metabolic changes were to fatty acids. Significant changes to fatty acid levels were also found in primary B cells following EBV-mediated B-cell growth transformation. Ectopic expression of LMP1- and EBV-mediated B-cell growth transformation induced fatty acid synthase (FASN) and increased lipid droplet formation. FASN is a crucial lipogenic enzyme responsible for de novo biogenesis of fatty acids in transformed cells. Furthermore, inhibition of lipogenesis caused preferential killing of LMP1-expressing B cells and significantly hindered EBV immortalization of primary B cells. Finally, our investigation also found that USP2a, a ubiquitin-specific protease, is significantly increased in LMP1-positive BL cells and mediates FASN stability. Our findings demonstrate that ectopic expression of LMP1- and EBV-mediated B-cell growth transformation leads to induction of FASN, fatty acids, and lipid droplet formation, possibly pointing to a reliance on lipogenesis. Therefore, the use of lipogenesis inhibitors could be used in the treatment of LMP1+ EBV-associated malignancies by targeting an LMP1-specific dependency on lipogenesis.IMPORTANCE Despite many attempts to develop novel therapies, EBV-specific therapies currently remain largely investigational, and EBV-associated malignancies are often associated with a worse prognosis. Therefore, there is a clear demand for EBV-specific therapies for both prevention and treatment of virus-associated malignancies. Noncancerous cells preferentially obtain fatty acids from dietary sources, whereas cancer cells will often produce fatty acids themselves by de novo lipogenesis, often becoming dependent on the pathway for cell survival and proliferation. LMP1- and EBV-mediated B-cell growth transformation leads to induction of FASN, a key enzyme responsible for the catalysis of endogenous fatty acids. Preferential killing of LMP1-expressing B cells following inhibition of FASN suggests that targeting LMP-induced lipogenesis is an effective strategy in treating LMP1-positive EBV-associated malignancies. Importantly, targeting unique metabolic perturbations induced by EBV could be a way to explicitly target EBV-positive malignancies and distinguish their treatment from EBV-negative counterparts.


Assuntos
Linfócitos B , Transformação Celular Neoplásica , Infecções por Vírus Epstein-Barr/virologia , Ácido Graxo Sintase Tipo I/metabolismo , Lipogênese , Proteínas da Matriz Viral/metabolismo , Linfócitos B/patologia , Linfócitos B/virologia , Linhagem Celular Tumoral , Reprogramação Celular , Herpesvirus Humano 4/fisiologia , Humanos
19.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555277

RESUMO

Hodgkin lymphomas (HLs) are a heterogeneous group of lymphoid neoplasia associated with Epstein-Barr virus (EBV) infection. EBV, considered to be an important etiological co-factor in approximately 1% of human malignancies, can be classified into two genotypes based on EBNA-2, EBNA-3A and EBNA-3C sequences, and into genetic variants based on the sequence variation of the gene coding for the LMP1 protein. Here, we present the results on the distribution of EBV genotypes 1 and 2 as well as LMP1 gene variants in 50 patients with EBV-positive classical HL selected from a cohort of 289 histologically verified cases collected over a 9-year period in a tertiary clinical center in the Southeast of Europe. The population-based sequencing of the EBNA-3C gene showed the exclusive presence of EBV genotype 1 in all cHL samples. The analysis of EBV LMP1 variant distribution showed a predominance of the wild-type strain B95-8 and the Mediterranean subtype with 30 bp deletion. These findings could contribute to the understanding of EBV immunobiology in cHL as well as to the development of a prophylactic and therapeutic vaccine.


Assuntos
Infecções por Vírus Epstein-Barr , Doença de Hodgkin , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Doença de Hodgkin/patologia , Antígenos Virais/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas da Matriz Viral/genética
20.
Biochem Biophys Res Commun ; 547: 1-8, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33588233

RESUMO

Epstein-Barr virus (EBV) is the first identified human tumor-related DNA virus, and has a high infection among people worldwide. Recent studies have showed that nearly 10% of gastric cancers have shown EBV infection and this kind of gastric cancer has been identified as a new subtype: EBV associated Gastric cancer (EBVaGC). Furthermore, it has been reported that tumor related genes in the EBVaGC showed frequent methylation modifications compared to those in the EBV negative gastric cancer (EBVnGC). To fully understand the role of EBV in EBVaGC, we analyzed and found that 16.67% of gastric carcinoma samples showed positive EBER1 signals. Mechanically, EBV-encoded Latent membrane protein 1 (LMP1) inhibited the expression of RASSF10, and promoted tumorigenesis by recruiting DNMT1 and inducing the DNA methylation of RASSF10. Altogether, it allows us a better understanding of the possible mechanism of EBV-induced gene hypermethylation in gastric cancer genome. Targeting EBV-induced DNA methylation is a potential therapeutic modality of EBVaGC.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Infecções por Vírus Epstein-Barr/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Proteínas Supressoras de Tumor/genética , Proteínas da Matriz Viral/metabolismo , Animais , Proliferação de Células/fisiologia , DNA (Citosina-5-)-Metiltransferase 1/genética , Epigênese Genética , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Feminino , Herpesvirus Humano 4/isolamento & purificação , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fatores de Risco , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Proteínas da Matriz Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA