Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Virol ; 96(14): e0062422, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35867560

RESUMO

HIV-1 persistence in different cell types presents the main obstacle to an HIV-1 cure. We have previously shown that the renal epithelium is a site of HIV-1 infection and that the kidney represents a separate viral compartment from blood. Whether renal cells can harbor latent virus that can be reactivated upon treatment with latency reversing agents (LRAs) is unknown. To address this question, we developed an in vitro HIV-1 latency model in renal tubule epithelial (RTE) cells using a dual color HIV-1 reporter virus, R7/E-/GFP/EF1a-mCherry (R7GEmC), and evaluated the effect of LRAs, both as single agents and in combination, on viral reactivation. Our data show that HIV-1 can establish latency in RTE cells early postinfection. While the pool of latently infected cells expanded overtime, the percentage of productively infected cells declined. Following LRA treatment only a small fraction of latently infected cells, both T cells and RTE cells, could be reactivated, and the drug combinations more effective in reactivating HIV transcription in RTE cells differed from those more active in T cells. Our study demonstrates that HIV can establish latency in RTE cells and that current LRAs are only marginally effective in inducing HIV-1 reactivation. This suggests that further study of LRA dynamics in non-T cells may be warranted to assess the suitability of LRAs as a sterilizing cure strategy. IMPORTANCE Anti-retroviral therapy (ART) has dramatically reduced HIV-related morbidity and mortality. Despite this success, a number of challenges remain, including the long-term persistence of multiple, clinically latent viral reservoirs capable of reactivation in the absence of ART. As efforts proceed toward HIV eradication or functional cure, further understanding of the dynamics of HIV-1 replication, establishment of latency and mechanisms of reactivation in reservoirs harboring the virus throughout the body is necessary. HIV-1 can infect renal epithelial cells and the expression of viral genes in those cells contributes to the development of HIV associated nephropathy (HIVAN) in untreated individuals. The significance of our work is in developing the first model of HIV-1 latency in renal epithelial cells. This model enhances our understanding of HIV-1 latency and persistence in the kidney and can be used to screen candidate latency reversing agents.


Assuntos
Células Epiteliais , Infecções por HIV , Rim , Ativação Viral , Latência Viral , Linfócitos T CD4-Positivos , Células Cultivadas , Células Epiteliais/virologia , HIV-1 , Humanos , Rim/citologia , Rim/virologia
2.
J Virol ; 96(12): e0044522, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638831

RESUMO

HIV persistence requires lifelong antiretroviral therapy (ART), calling for a cure. The histone deacetylase inhibitor, romidepsin, is used in the "shock and kill" approach with the goal of reactivating virus and subsequently clearing infected cells through cell-mediated immune responses. We tested serial and double infusions of romidepsin in a rhesus macaque (RM) model of SIV functional cure, which controls virus without ART. Off ART, romidepsin reactivated SIV in all RMs. Subsequent infusions resulted in diminished reactivation, and two RMs did not reactivate the virus after the second or third infusions. Therefore, those two RMs received CD8-depleting antibody to assess the replication competence of the residual reservoir. The remaining RMs received double infusions, i.e., two doses separated by 48-h. Double infusions were well tolerated, induced immune activation, and effectively reactivated SIV. Although reactivation was gradually diminished, cell-associated viral DNA was minimally changed, and viral outgrowth occurred in 4/5 RMs. In the RM which did not reactivate after CD8 depletion, viral outgrowth was not detected in peripheral blood mononuclear cells (PBMC)-derived CD4+ cells. The frequency of SIV-specific CD8+ T cells increased after romidepsin administration, and the increased SIV-specific immune responses were associated, although not statistically, with the diminished reactivation. Thus, our data showing sequential decreases in viral reactivation with repeated romidepsin administrations with all RMs and absence of viral reactivation after CD8+ T-cell depletion in one animal suggest that, in the context of healthy immune responses, romidepsin affected the inducible viral reservoir and gradually increased immune-mediated viral control. Given the disparities between the results of romidepsin administration to ART-suppressed SIVmac239-infected RMs and HIV-infected normal progressors compared to our immune-healthy model, our data suggest that improving immune function for greater SIV-specific responses should be the starting point of HIV cure strategies. IMPORTANCE HIV cure is sought after due to the prevalence of comorbidities that occur in persons with HIV. One of the most investigated HIV cure strategies is the "shock and kill" approach. Our study investigated the use of romidepsin, a histone deacetylase (HDAC) inhibitor, in our rhesus macaque model of functional cure, which allows for better resolution of viral reactivation due to the lack of antiretroviral therapy. We found that repeated rounds of romidepsin resulted in gradually diminished viral reactivation. One animal inevitably lacked replication-competent virus in the blood. With the accompanying enhancement of the SIV-specific immune response, our data suggest that there is a reduction of the viral reservoir in one animal by the cell-mediated immune response. With the differences observed between our model and persons living with HIV (PWH) treated with romidepsin, specifically in the context of a healthy immune system in our model, our data thereby indicate the importance of restoring the immune system for cure strategies.


Assuntos
Antirretrovirais , Depsipeptídeos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos , Depsipeptídeos/farmacologia , Infecções por HIV , Leucócitos Mononucleares/virologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Carga Viral , Ativação Viral/efeitos dos fármacos , Replicação Viral
3.
Molecules ; 28(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36615199

RESUMO

The existence of latent viral reservoirs (LVRs), also called latent cells, has long been an acknowledged stubborn hurdle for effective treatment of HIV-1/AIDS. This stable and heterogeneous reservoir, which mainly exists in resting memory CD4+ T cells, is not only resistant to highly active antiretroviral therapy (HAART) but cannot be detected by the immune system, leading to rapid drug resistance and viral rebound once antiviral treatment is interrupted. Accordingly, various functional cure strategies have been proposed to combat this barrier, among which one of the widely accepted and utilized protocols is the so-called 'shock-and-kill' regimen. The protocol begins with latency-reversing agents (LRAs), either alone or in combination, to reactivate the latent HIV-1 proviruses, then eliminates them by viral cytopathic mechanisms (e.g., currently available antiviral drugs) or by the immune killing function of the immune system (e.g., NK and CD8+ T cells). In this review, we focuse on the currently explored small molecular LRAs, with emphasis on their mechanism-directed drug targets, binding modes and structure-relationship activity (SAR) profiles, aiming to provide safer and more effective remedies for treating HIV-1 infection.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Latência Viral , Humanos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD4-Positivos , Química Farmacêutica , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Ativação Viral , Latência Viral/efeitos dos fármacos , Relação Estrutura-Atividade
4.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29343578

RESUMO

Upon HIV-1 infection, a reservoir of latently infected resting T cells prevents the eradication of the virus from patients. To achieve complete depletion, the existing virus-suppressing antiretroviral therapy must be combined with drugs that reactivate the dormant viruses. We previously described a novel chemical scaffold compound, MMQO (8-methoxy-6-methylquinolin-4-ol), that is able to reactivate viral transcription in several models of HIV latency, including J-Lat cells, through an unknown mechanism. MMQO potentiates the activity of known latency-reversing agents (LRAs) or "shock" drugs, such as protein kinase C (PKC) agonists or histone deacetylase (HDAC) inhibitors. Here, we demonstrate that MMQO activates HIV-1 independently of the Tat transactivator. Gene expression microarrays in Jurkat cells indicated that MMQO treatment results in robust immunosuppression, diminishes expression of c-Myc, and causes the dysregulation of acetylation-sensitive genes. These hallmarks indicated that MMQO mimics acetylated lysines of core histones and might function as a bromodomain and extraterminal domain protein family inhibitor (BETi). MMQO functionally mimics the effects of JQ1, a well-known BETi. We confirmed that MMQO interacts with the BET family protein BRD4. Utilizing MMQO and JQ1, we demonstrate how the inhibition of BRD4 targets a subset of latently integrated barcoded proviruses distinct from those targeted by HDAC inhibitors or PKC pathway agonists. Thus, the quinoline-based compound MMQO represents a new class of BET bromodomain inhibitors that, due to its minimalistic structure, holds promise for further optimization for increased affinity and specificity for distinct bromodomain family members and could potentially be of use against a variety of diseases, including HIV infection.IMPORTANCE The suggested "shock and kill" therapy aims to eradicate the latent functional proportion of HIV-1 proviruses in a patient. However, to this day, clinical studies investigating the "shocking" element of this strategy have proven it to be considerably more difficult than anticipated. While the proportion of intracellular viral RNA production and general plasma viral load have been shown to increase upon a shock regimen, the global viral reservoir remains unaffected, highlighting both the inefficiency of the treatments used and the gap in our understanding of viral reactivation in vivo Utilizing a new BRD4 inhibitor and barcoded HIV-1 minigenomes, we demonstrate that PKC pathway activators and HDAC and bromodomain inhibitors all target different subsets of proviral integration. Considering the fundamental differences of these compounds and the synergies displayed between them, we propose that the field should concentrate on investigating the development of combinatory shock cocktail therapies for improved reservoir reactivation.


Assuntos
Infecções por HIV/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Quinolinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Azepinas/farmacologia , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células HEK293 , HIV-1/metabolismo , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células Jurkat , Domínios Proteicos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/biossíntese , Provírus/genética , Triazóis/farmacologia , Carga Viral/efeitos dos fármacos , Integração Viral/efeitos dos fármacos
5.
Pathogens ; 12(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678440

RESUMO

Toll-like receptors (TLRs), as a family of pattern recognition receptors, play an important role in the recognition of HIV-1 molecular structures by various cells of the innate immune system, but also provide a functional association with subsequent mechanisms of adaptive immunity. TLR7 and TLR8 play a particularly important role in the innate immune response to RNA viruses due to their ability to recognise GU-rich single-stranded RNA molecules and subsequently activate intracellular signalling pathways resulting in expression of genes coding for various biological response modifiers (interferons, proinflammatory cytokines, chemokines). The aim of this review is to summarise the most recent knowledge on the role of TLRs in the innate immune response to HIV-1 and the role of TLR gene polymorphisms in the biology and in the clinical aspects of HIV infections. In addition, the role of TLR agonists as latency reversing agents in research to treat HIV infections and as immunomodulators in HIV vaccine research will be discussed.

6.
Nanotheranostics ; 6(3): 325-336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721664

RESUMO

Background: Numbers of HIV latency reversal agents (LRAs) have been tested in clinical trials, but with limited effect. EK-16A is an ingenol derivative that isolated from Euphorbia kansui. Our prior studies have suggested that it could reactivate latent HIV and meanwhile inhibit HIV infection in vitro. Here, we further advanced the research in vivo. Methods:In vitro, the activity of EK-16A liposomes was measured in HIV latently infected cells. In serum pharmacology test, BALB/c mice were orally administered with EK-16A liposomes, serum was separated and co-cultured with cells, HIV reactivation was measured. In vivo, NSG mice were transplanted with human cells for 3 weeks and then administered with EK-16A liposomes for 3 days. In ACH2 cell engrafted NSG mice, P24 in plasma and cell-associated HIV RNA in tissues was measured. In J-Lat 10.6 cell engrafted NSG mice, GFP expression of J-Lat 10.6 cells in diverse tissues was measured. Hematoxylin and eosin (HE) staining was carried out for histopathological examination in both mice. Results: EK-16A liposomes can reactivate latent HIV in ACH2 and J-Lat 10.6 cells. Serum pharmacological test showed that EK-16A retained activity after oral administration. Importantly, in ACH2 cell engrafted NSG mice, EK-16A liposomes increased the secretion of P24 in plasma and the expression of cell-associated HIV RNA in tissues. In J-Lat 10.6 cell engrafted NSG mice, EK-16A liposomes increased the GFP expression of J-Lat 10.6 cells in diverse tissues, including the bone marrow, spleen, liver, lung and peripheral blood. Furthermore, there was no obvious histopathological change associated with the use of EK-16A liposomes in both mice. Conclusions: Our results confirmed the enhancing HIV replication activity and preliminary security of EK-16A in human cell engrafted NSG mice, laying the foundation for research in clinical trials.


Assuntos
Infecções por HIV , HIV-1 , Animais , Infecções por HIV/metabolismo , Lipossomos , Camundongos , RNA/farmacologia , RNA/uso terapêutico , Latência Viral , Replicação Viral
7.
Viruses ; 14(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35062339

RESUMO

HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".


Assuntos
Infecções por HIV/imunologia , HIV-1/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Antirretrovirais/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/transmissão , Humanos , Estágios do Ciclo de Vida , Macaca mulatta , Qualidade de Vida , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/fisiologia , Latência Viral
8.
mBio ; 13(2): e0374821, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35384697

RESUMO

Integration site landscapes, clonal dynamics, and latency reversal with or without vpr were compared in HIV-1-infected Jurkat cell populations, and the properties of individual clones were defined. Clones differed in fractions of long terminal repeat (LTR)-active daughter cells, with some clones containing few to no LTR-active cells, while almost all cells were LTR active for others. Clones varied over 4 orders of magnitude in virus release per active cell. Proviruses in largely LTR-active clones were closer to preexisting enhancers and promoters than low-LTR-active clones. Unsurprisingly, major vpr+ clones contained fewer LTR-active cells than vpr- clones, and predominant vpr+ proviruses were farther from enhancers and promoters than those in vpr- pools. Distances to these marks among intact proviruses previously reported for antiretroviral therapy (ART)-suppressed patients revealed that patient integration sites were more similar to those in the vpr+ pool than to vpr- integrants. Complementing vpr-defective proviruses with vpr led to the rapid loss of highly LTR-active clones, indicating that the effect of Vpr on proviral populations occurred after integration. However, major clones in the complemented pool and its vpr- parent population did not differ in burst sizes. When the latency reactivation agents prostratin and JQ1 were applied separately or in combination, vpr+ and vpr- population-wide trends were similar, with dual-treatment enhancement being due in part to reactivated clones that did not respond to either drug applied separately. However, the expression signatures of individual clones differed between populations. These observations highlight how Vpr, exerting selective pressure on proviral epigenetic variation, can shape integration site landscapes, proviral expression patterns, and reactivation properties. IMPORTANCE A bedrock assumption in HIV-1 population modeling is that all active cells release the same amount of virus. However, the findings here revealed that when HIV-infected cells expand into clones, each clone differs in virus production. Reasoning that this variation in expression patterns constituted a population of clones from which differing subsets would prevail under differing environmental conditions, the cytotoxic HIV-1 protein Vpr was introduced, and population dynamics and expression properties were compared in the presence and absence of Vpr. The results showed that whereas most clones produced fairly continuous levels of virus in the absence of Vpr, its presence selected for a distinct subset of clones with properties reminiscent of persistent populations in patients, suggesting the possibility that the interclonal variation in expression patterns observed in culture may contribute to proviral persistence in vivo.


Assuntos
Soropositividade para HIV , HIV-1 , HIV-1/fisiologia , Humanos , Células Jurkat , Provírus/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
9.
Life Sci ; 267: 118427, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32941894

RESUMO

AIMS: The fact that HIV-1 inside human bodies can perform reverse transcription and integrate resultant DNA into host chromosome remains a challenge in AIDS treatment. "Shock and kill" strategy was proposed to achieve the functional cure, which requested latency reactivating agents (LRAs) to reactivate latent HIV-1 and then extirpate viruses and infected cells with antiviral agents and the immune system. However, there are no feasible LRAs clinically applied. Herein, we examined a synthesized HDAC I inhibitor, CC-4a, in reactivating latent HIV-1 and investigated its mechanisms. MATERIALS AND METHODS: Two HIV-1 infected cell models and human PBMCs were used in this study. Flow cytometry, ELISA, luciferase, and RT-PCR assay were used to analyze the expression of viral protein and mRNA. The mechanisms were explored by using cytoplasmic nuclear protein isolation and western blotting assays. KEY FINDINGS: CC-4a could successfully reactivate latent HIV-1 at the protein and gene levels with low cytotoxicity. Intriguingly, CC-4a showed the ability to induce apoptosis in HIV-1 infected cell models. CC-4a exerted a synergistic activation effect with prostratin without triggering global T cell activation and inflammatory factor storm. It was further found that CC-4a down-regulated the expressions of CCR5 and CD4. Moreover, CC-4a together with antiviral drugs was proved to antagonize HIV-1 without mutual interference. Finally, the enhanced histone acetylation and activated NF-κB pathway were detected in CC-4a mechanisms. SIGNIFICANCE: The results suggested that CC-4a activated latent HIV-1 and showed promising clinical applications, demonstrating that CC-4a played a role in HIV-1 eradication in "shock and kill" strategy.


Assuntos
Inibidores de Histona Desacetilases/metabolismo , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Linhagem Celular , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , HIV-1/fisiologia , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , NF-kappa B/metabolismo , Quinolinas/farmacologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Replicação Viral/efeitos dos fármacos
10.
Pathogens ; 10(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832672

RESUMO

Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The "Shock or Kick, and Kill" approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely "Shoc-K(kill) and B(block)-Lock"], they may represent a better approach to a functional cure.

11.
Biochem Pharmacol ; 182: 114231, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979351

RESUMO

Human immunodeficiency virus (HIV) remains incurable due to latent reservoirs established in non-activated CD4 T cells. Current efforts to achieve a functional cure rely on immunomodulatory strategies focused on enhancing the functions of cytotoxic cells. Implementation of these actions requires a coordinated activation of the viral transcription in latently infected cells so that the reservoir became visible and accessible to cytotoxic cells. As no latency reversing agent (LRA) has been shown to be completely effective, new combinations are of increasing importance. Recent data have shown that maraviroc is a new LRA. In this work, we have explored how the combination of maraviroc with other LRAs influences on HIV reactivation using in vitro latency models as well as on the cell viability of CD8 T cells from ART-treated patients. Maraviroc reactivated HIV with a potency similar to other LRAs. Triple combinations resulted toxic and were rejected. No dual combination was synergistic. The combination with panobinostat or disulfiram maintained the effect of both drugs without inducing cell proliferation or toxicity. Maraviroc does not alter the viability of CD8 T cells isolated from patients under antiretroviral treatment. This finding enhances the properties of maraviroc as a LRA.


Assuntos
Fármacos Anti-HIV/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Maraviroc/farmacologia , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Adulto , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD8-Positivos/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/fisiopatologia , HIV-1/fisiologia , Humanos , Masculino , Maraviroc/uso terapêutico , Pessoa de Meia-Idade , Ativação Viral/fisiologia , Latência Viral/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
12.
Front Physiol ; 9: 1364, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323768

RESUMO

The use of latency reversing agents (LRAs) is currently a promising approach to eliminate latent reservoirs of HIV-1. However, this strategy has not been successful in vivo. It has been proposed that cellular post-transcriptional mechanisms are implicated in the underperformance of LRAs, but it is not clear whether proviral regulatory elements like viral non-coding RNAs (vncRNAs) are also implicated. In order to visualize the complexity of the HIV-1 gene expression, we used experimental data to construct a gene regulatory network (GRN) of latent proviruses in resting CD4+ T cells. We then analyzed the dynamics of this GRN using Boolean and continuous mathematical models. Our simulations predict that vncRNAs are able to counteract the activity of LRAs, which may explain the failure of these compounds to reactivate latent reservoirs of HIV-1. Moreover, our results also predict that using inhibitors of histone methyltransferases, such as chaetocin, together with releasers of the positive transcription elongation factor (P-TEFb), like JQ1, may increase proviral reactivation despite self-repressive effects of vncRNAs.

13.
Biochem Pharmacol ; 156: 511-523, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30170098

RESUMO

The existence of latent reservoirs of Human Immunodeficiency Virus type-1 (HIV-1) is a major obstacle in eliminating the virus. Thus, an urgent need exists for effective latency reversing agents (LRAs) based on the "shock and kill" strategy. Proteasome inhibitors were recently studied as LRAs, but were considered too toxic for clinical use. Here, we demonstrated that PR-957, a selective immunoproteasome inhibitor, effectively reactivated latent HIV-1 provirus in vitro and ex vivo. Our data also suggests that PR-957 has relatively low cytotoxicity. Furthermore, it does not influence global T cell activation and decreases the expression levels of HIV-1 receptors/co-receptors. We demonstrated synergistic activation of latent HIV-1 with PR-957 and Prostratin (a protein kinase C activator) that alleviated the extent of T cell activation induced by Prostratin. In addition, PR-957 exhibited latency reversing efficacy through activating p-TEFb mediated by HSF-1 pathway. Moreover, PR-957 did not affect the activity of combination antiretroviral therapy (cART) drugs and the PR-957-reactivated virus was effectively inhibited with cART drugs. In conclusion, the immunoproteasome inhibitor PR-957 is a promising candidate LRA for future HIV-1 eradication strategies.


Assuntos
HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Fatores de Transcrição de Choque Térmico/metabolismo , Oligopeptídeos/farmacologia , Fator B de Elongação Transcricional Positiva/metabolismo , Latência Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/genética , Humanos , Estrutura Molecular , Oligopeptídeos/química , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA