RESUMO
Perfluorooctanoic acid (PFOA) is potentially toxic and exceptionally stable attributed to its robust CF bond, which is hard to be removed by UV/TiO2 systems. In this research, bismuth nanoparticle (Bi NP) modified titanium oxides (Bi/TiO2) were synthesized by a simple photochemical deposition-calcination method and were applied as photocatalysts for the first time to degrade PFOA. The removal rate of 50 mg/L PFOA reached 99.3 % with 58.6 % defluorination rate after 30 min of irradiation via a mercury lamp. Bi/TiO2 exhibited superior performance in PFOA degradation compared to commercial photocatalysts (TiO2, Ga2O3, Bi2O3 and In2O3). In addition, Bi/TiO2 showed high degradation activity under actual sunlight, achieved 100 % removal rate and 59.3 % defluorination rate within 2 h. Bi NPs increase the light trapping ability of Bi/TiO2 and promote the separation of photogenerated electron-hole pairs via local surface plasmon resonance (LSPR) effect, which results in more photogenerated holes (h+) and hydroxyl radicals (OH). Combined with DFT calculations and intermediate detections, the degradation reaction is initiated from the oxidation of the PFOA carboxyl group via h+, followed by the loss of the CF2 unit step by step with the participation of OH. This work presents a novel approach for the practical implementation of TiO2-based photocatalysts to achieve highly efficient photocatalytic degradation of perfluorocarboxylic acids (PFCAs).
RESUMO
Inspired by the desert beetle, a novel biomimetic chip was developed to detect chloramphenicol (CP). The chip was characterized by a periodic array in which hydrophobic Au nanoparticles (AuNPs) were semi-embedded on hydrophilic polymethyl methacrylate (PMMA) spheres. Among them, the AuNPs exhibited both a localized surface plasmon resonance effect to amplify the reflected signal and a synergistic effect with PMMA spheres to create a significant hydrophilic-hydrophobic interface, which facilitated the enrichment of target CP molecules and improved sensitivity. After optimization, the chip showed direct, ultrasensitive (as low as 0.2 ng/mL), fast (5 min), and selective detection of CP with a wide concentration range extending from 0.2 ng/mL to 1000 ng/mL. During detection, color changes of the chip were observed by naked eyes without any color display equipment. The recovery of CP was between 94.65 % and 108.70 % in chicken and milk samples.
Assuntos
Galinhas , Cloranfenicol , Besouros , Contaminação de Alimentos , Ouro , Nanopartículas Metálicas , Leite , Cloranfenicol/análise , Cloranfenicol/química , Animais , Ouro/química , Nanopartículas Metálicas/química , Besouros/química , Contaminação de Alimentos/análise , Leite/química , Antibacterianos/análise , Antibacterianos/química , Coloides/químicaRESUMO
How to simultaneously utilize photogenerated electrons and holes still remains a critical challenge in the field of artificial photosynthesis, especially in the process of photocatalytic hydrogen (H2) evolution coupled with biomass oxidation to value-added chemicals. Herein, a series-parallel photocatalyst (Cu NPs/CdS/In2O3) that can intrinsically regulate the transfer of photogenerated carriers is ingeniously designed for photocatalytic H2 evolution synergized with furfural alcohol (FFA) selective oxidation to furfural (FF). Accordingly, the desired H2 and FF evolution rates with near 100% selectivity toward FF are achieved on Cu NPs/CdS/In2O3 in a sealed atmospheric system. Experimental and theoretical analyses confirm that the localized surface plasmon resonance (LSPR) effect induced by Cu NPs accelerates the reduction of protons (H+) to H2 efficiently, while the photogenerated holes from In2O3 preferentially activate the α-C-H bond of FFA adsorbed on Lewis acid sites to generate FF. This work provides a reference for regulating the transfer of photogenerated carriers for H2 evolution coupled with FF synthesis.
RESUMO
The high thermal storage density of phase change materials (PCMs) has attracted considerable attention in solar energy applications. However, the practicality of PCMs is often limited by the problems of leakage, poor solar-thermal conversion capability, and low thermal conductivity, resulting in low-efficiency solar energy storage. In this work, a new system of MXene-integrated solid-solid PCMs is presented as a promising solution for a solar-thermal energy storage and electric conversion system with high efficiency and energy density. The composite system's performance is enhanced by the intrinsic photo-thermal behavior of MXene and the heterogeneous phase transformation properties of PCM molecular chains. The optimal composites system has an impressive solar thermal energy storage efficiency of up to 94.5%, with an improved energy storage capacity of 149.5 J g-1, even at a low MXene doping level of 5 wt.%. Additionally, the composite structure shows improved thermal conductivity and high thermal cycling stability. Furthermore, a proof-of-concept solar-thermal-electric conversion device is designed based on the optimized M-SSPCMs and commercial thermoelectric generators, which exhibit excellent energy conversion efficiency. The results of this study highlight the potential of the developed PCM composites in high-efficiency solar energy utilization for advanced photo-thermal systems.
RESUMO
Converting CO2 into chemicals and fuels by solar energy can alleviate global warming and solve the energy crisis. In this work, CoAl-LDO/MoO3-x (LDO/MO) composites were successfully prepared and achieved efficient CO2 reduction under visible light. The CoAl-layered double oxides (CoAl-LDO) evolved from CoAl-layered double hydroxide (CoAl-LDH) exhibited a more robust structure, broader light absorption, and improved CO2 adsorption ability. The local surface plasmon resonance (LSPR) effect excited by nonstoichiometric MoO3-x broadened the photo-response range of CoAl-LDO/MoO3-x. In addition, constructing step-scheme (S-scheme) heterojunctions could simultaneously optimize the migration mechanism of photogenerated electrons and holes, and retain carriers with strong redox ability. Therefore, the production rates of CO and CH4 on the optimal LDO/MO composite were 7 and 9 times higher than the pristine CoAl-LDH, respectively. This work hybridizes oxidation photocatalysts and LDO-based materials to optimize the charge separation and migration mechanisms, which guides the modification of LDO-based materials.
RESUMO
A quartet dual-band electrochromic device (ECD) was developed to selectively control the transmittance from the visible to near-infrared wavelengths for the application of an energy-efficient smart window. The new AgNO3+TBABr+LiClO4 (ATL)-based electrolyte was developed to independently control the redox reaction of lithium and silver ions to demonstrate the quartet mode of an ECD. A dual-band ECD with a sandwich structure was assembled using an ATL-based electrolyte, WO3 electrochromic layer, and antimony-doped tin oxide (ATO) ion storage layer. The employed WO3 and ATO films were fabricated using a nanoparticle deposition system (NPDS), a novel ecofriendly dry deposition method. Four modes, namely, transparent, warm, cool, and all-block modes, were demonstrated via an independent redox reaction of both lithium and silver ions through the simple control of the applied voltage. In the warm mode, the localized surface plasmon resonance effect was exploited by producing silver nanoparticles upon two-step voltage application. Furthermore, since the high surface roughness of the WO3 thin film fabricated by NPDS maximized the light scattering effect, 0% transmittance at all wavelengths was observed in the all-block mode. Dual-band ECD showed high optical contrasts of 73% and long-term durability over 1000 cycles with no degradation. Therefore, the possibility of controlling transmittance at the target wavelength was confirmed using a simple device with a simple process, suggesting a new strategy for the design of dual-band smart windows to reduce the energy consumption of buildings.
RESUMO
Nb2AlC/Nb2C MXene (NAC/NC) heterojunction photocatalysts with Schottky junctions were obtained by selective etching of the Al layer, resulting in 146.25 µmol·g-1 electrons and 15.28 µmol·g-1 holes stored in the heterojunction. The average conversion of NAC/NC thermally coupled photocatalytic reduction of CO2 under the simulated solar irradiation reached 110.15 µmolâ g-1â h-1, and the CO selectivity reached over 92%, which was 1.49 and 1.74 times higher than that of pure Nb2AlC and Nb2C MXene, respectively. After light excitation, the localized surface plasmon resonance (LSPR) effect of holes distributed on the surface of Nb2C MXene crystals in the heterojunction will form high-energy thermal holes to dissociate H2 to H+ and reduce CO2 to form H2O at the same time. The high-energy electrons formed by the LSPR effect of Nb2C MXene and the conduction band electrons generated by the photoexcitation of Nb2C MXene can be migrated to Nb2AlC under the action of the interfacial Schottky junction to supplement the electrons needed for the LSPR effect of Nb2AlC, which continuously forms high-energy hot electrons to convert the adsorbed CO2 into *CO2-, b-HCO3, and HCOO. Subsequently, HCOO releases â OH in a cyclic reaction to continuously reduce to form CO. The dual LSPR effect of Nb2AlC and Nb2C MXene is used to enhance the hydrogenation activity of thermally coupled photocatalytic reduction of CO2, which provides a new research idea for the application of MXene in thermally coupled photoreduction of CO2.
RESUMO
The semiconductor-based photocatalysts with local surface plasmon resonance (LSPR) effect can extend light response to near-infrared region (NIR), as well as promote charge-carriers transfer, which provide a novel insight into designing light-driven photocatalyst with excellent photocatalytic performance. Here, we designed cost-effective wide-spectrum Zn2In2S5/W18O49 composite with enhanced photocatalytic performance based on a dual-channel charge transfer pathway. Benefiting from the synergistic effect of Z-scheme heterostructure and unique LSPR effect, the interfacial charge-carriers transfer rate and light-absorbing ability of Zn2In2S5/W18O49 were enhanced significantly under visible and NIR (vis-NIR) light irradiation. More reactive oxygen species (ROS) were formed by efficient molecular oxygen activation, which were the critical factors for both Escherichia coli (E. coli) photoinactivation and tetracycline (TC) photodegradation. The enhancement of molecular oxygen activation (MOA) ability was verified via quantitative analyses, which evaluated the amount of ROS through degrading nitrotetrazolium blue chloride (NBT) and p-phthalic acid (TA). By combining theoretical calculations with diverse experimental results, we proposed a credible photocatalytic reaction mechanism for antibiotic degradation and bacteria inactivation. This study develops a new insight into constructing promising photocatalysts with efficient photocatalytic activity in practical wastewater treatment.
Assuntos
Elétrons , Escherichia coli , Antibacterianos/farmacologia , Catálise , Oxigênio , ZincoRESUMO
Precise design of high efficacious catalysts and the insight into the mechanism for photo-electrocoupling catalytic methanol oxidation reaction (MOR) are two major issues for the development and practical application of direct methanol fuel cells (DMFCs). Herein, a novel self-standing three-dimensional nanosheet assembly PdAu nanoflower with local surface plasmon resonance effect is fabricated to acquire excellent catalytic performance and explore the photo-electrocatalytic mechanism for MOR. Interestingly, the Pd1Au1 nanoflower electrocatalyst exhibits superior mass activity than pure Pd and Pd/C catalysts thanks to the abundant active sites and efficacious charge transfer. Further on, with the assistance of LSPR effect, the catalytic activity for MOR of Pd1Au1 catalyst (4179.04 mA mg-1Pd) under visible light illumination achieved 2.41-fold than dark conditions (1731.42 mA mg-1Pd). Moreover, the long-term durability of Pd1Au1 catalysts with visible light is also improved compare to dark condition and other mentioned Pd catalyst. More significantly, a photo-electrocoupling CO-free dominant mechanism is proposed to in-depth understand the promotion of catalytic activity and durability for MOR. This contribution provides the rational design of plasma-enhanced high-effective photo-electrocatalyst and reveals a CO-free dominant MOR mechanism for the progress of future liquid direct fuel cells.
RESUMO
The localized surface plasmon resonance (LSPR) from noble metal nanomaterials (NMs) is a promising solution to approach the theoretical efficiency for photovoltaic devices. However, the plasmon resonance of metal NMs with particular shapes and sizes can only be excited within narrow spectral ranges, which can hardly cover the broad-band solar spectrum. To address this issue, in this article, Ag NMs with irregular shapes and sizes are synthesized and embedded in the electron transport layer of perovskite solar cells. With the outstanding conductivity of Ag NMs, the series resistance and charge transfer resistance of the devices are dramatically decreased. The Ag NMs with larger size could enhance the light-trapping of the devices owing to the far-field light scattering effect. The near-field enhancement by LSPR of Ag NMs with a small size mainly contributes to the promotion of carrier transport and extraction. As a result, broad-band improvements in photovoltaic performance are achieved due to the significant enhancement of light absorption and electrical features. The highest power conversion efficiency of the perovskite solar cells increases from 19.52 to 22.42% after the incorporation of Ag NMs.
RESUMO
Conversion of light energy and chemical energy in a wide spectrum region, especially in the near-infrared (NIR) light region, is still a challenge in the field of photocatalysis. In this work, a layered Bi-WN photocatalyst with a heterojunction was prepared by reducing flake-shaped WN and flower-shaped Bi2O3 in an ammonia atmosphere. Under the process of NIR light (λ > 700 nm)-driven water splitting, the optimal hydrogen (H2) generation rates based on the Bi-WN photocatalyst can reach to 7.49 µmol g-1 h-1, which is 2.47 times higher than that of WN of 3.03 µmol g-1 h-1. The result indicates that the Bi-WN photocatalyst can be effective under NIR light. Through ultraviolet-visible-NIR diffuse reflectance spectrum analysis, it can be seen that the light absorption edge of Bi-WN is obviously redshifted. Combining the results of electrochemical characterizations, we have found that the addition of the Bi metal plays an important role in NIR light-driven water splitting. Under irradiation of NIR light, the electrons on the Bi-WN substrate are stronger due to local surface plasmon resonance, which reduces the possibility of recombination of photogenerated electrons and holes on WN. In addition, after the Bi metal absorbs the photon energy, the electron-hole pairs are separated, and the H2 production rate increases significantly under the combined action of the charge transfer mechanism and the local electric field enhancement mechanism.
RESUMO
An ultrasensitive and selective photoelectrochemical (PEC) biosensor with cathodic background signal was developed for the detection of carcinoembryonic antigen (CEA) based on innovative plasmonic TiO2@Au nanoparticles//CdS quantum dots (TiO2@Au NPs//CdS QDs) photocurrent-direction switching system, coupling with hybridization chain reaction (HCR) for the signal amplification. Firstly, innovative TiO2@Au NPs were successfully fabricated through in situ ascorbic acid-reduction of Au NPs dispersed on TiO2 surface, and TiO2@Au NPs as the photoactive material showed a cathodic background signal. When target CEA existed, a sandwich-type reaction was performed in capture CEA aptamer-modified TiO2@Au NPs and trigger CEA aptamer. Interestingly, after HCR triggered by target CEA, a mass of CdS QDs were introduced into the biosensing platform, resulting in the formation of TiO2@Au NPs//CdS QDs system, along with the switch of photocurrents from cathodic to anodic. The obtained remarkable anodic photocurrent was depended on the localized surface plasmon resonance (LSPR) effect of Au between TiO2 and CdS. Under the optimal conditions, plasmonic TiO2@Au NPs//CdS QDs photocurrent-direction switching PEC biosensing platform with cathodic background signal exhibited ultrasensitive for the determination of CEA with a low limit of detection of 18.9 fg/mL. Importantly, the proposed PEC biosensor can eliminate the interferences of the initial photocurrent and background signal, and has high-efficiency anti-interference ability, satisfactory stability and excellent reproducibility, which may have great potentials in bioanalysis and disease diagnosis.
Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Nanopartículas Metálicas , Pontos Quânticos , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Reprodutibilidade dos Testes , Sulfetos , TitânioRESUMO
Silver nanoparticles in carbon nanotubes (AgNPs-in-CNTs) were prepared through a simple thermal decomposition method. Synthesized AgNPs-in-CNTs were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS). In the presence of hydrogen peroxide (H2O2), AgNPs-in-CNTs exhibited perfect photocatalytic activity in rhodamine B (RhB) degradation under visible light irradiation. Hydrogen peroxide (H2O2) concentration and initial pH values were comprehensively scrutinized. When the concentration of H2O2 was 20 mM, about 99.8% RhB (20 mg L-1) could be degraded within 50 min while the initial pH (3-10) values had a negligible effect on the degradation. From the investigations of Raman spectroscopy, transient photocurrent responses, photoluminescence, and radical quenching experiments, the findings suggest that under light irradiation, AgNPs-in-CNTs can absorb photons and generate photogenerated electrons through localized surface plasmon resonance (LSPR) effect, the photogenerated electrons react with H2O2 to produce ·OH radicals for decomposing RhB.
Assuntos
Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Prata/química , Catálise , Elétrons , Corantes Fluorescentes/química , Luz , Microscopia Eletrônica de Transmissão , Processos Fotoquímicos , Espectroscopia Fotoeletrônica , Rodaminas/química , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Difração de Raios XRESUMO
A new way was meticulously designed to utilize the localized surface plasmon resonance (LSPR) effect and the light scattering effect of silver nanoplate (Ag-nPl) and core-shell Ag@SiO2 nanoparticles (Ag@SiO2-NPs) to enhance the photovoltaic performances of polymer solar cells (PSCs). To prevent direct contact between silver nanoparticles (Ag-NPs) and photoactive materials which will cause electrons quenching, bare Ag-nPl were spin-coated on indium tin oxide and silica capsulated Ag-NPs were incorporated to a PBDTTT-C-T:PC71BM active layer. As a result, the devices incorporated with Ag-nPl and Ag@SiO2-NPs showed great enhancements. With the dual effects of Ag-nPl and Ag@SiO2-NPs in devices, all wavelength sensitization in the visible range was realized; therefore, the power conversion efficiency (PCE) of PSCs showed a great enhancement of 14.0% to 8.46%, with an increased short-circuit current density of 17.23 mA·cm-2. The improved photovoltaic performances of the devices were ascribed to the LSPR effect and the light scattering effect of metallic nanoparticles. Apart from optical effects, the charge collection efficiency of PSCs was improved after the incorporation of Ag-nPl.