Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Cell ; 179(5): 1057-1067.e14, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730849

RESUMO

The transition to a terrestrial environment, termed terrestrialization, is generally regarded as a pivotal event in the evolution and diversification of the land plant flora that changed the surface of our planet. Through phylogenomic studies, a group of streptophyte algae, the Zygnematophyceae, have recently been recognized as the likely sister group to land plants (embryophytes). Here, we report genome sequences and analyses of two early diverging Zygnematophyceae (Spirogloea muscicola gen. nov. and Mesotaenium endlicherianum) that share the same subaerial/terrestrial habitat with the earliest-diverging embryophytes, the bryophytes. We provide evidence that genes (i.e., GRAS and PYR/PYL/RCAR) that increase resistance to biotic and abiotic stresses in land plants, in particular desiccation, originated or expanded in the common ancestor of Zygnematophyceae and embryophytes, and were gained by horizontal gene transfer (HGT) from soil bacteria. These two Zygnematophyceae genomes represent a cornerstone for future studies to understand the underlying molecular mechanism and process of plant terrestrialization.


Assuntos
Evolução Biológica , Embriófitas/genética , Genoma de Planta , Estreptófitas/genética , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Família Multigênica , Filogenia , Proteínas de Plantas/química , Domínios Proteicos , Estreptófitas/classificação , Simbiose/genética , Sintenia/genética
2.
Development ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133134

RESUMO

Rho/Rac of plant (ROP) GTPases are a plant-specific proteins that function as molecular switches, activated by guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). The bryophyte Marchantia polymorpha contains single copies of ROP (MpROP), GEFs (ROPGEF and SPIKE (SPK)), and GAPs (ROPGAP and ROP ENHANCER (REN)). MpROP regulates the development of various tissues and organs such as rhizoids, gemmae, and air chambers. While the ROPGEF, KARAPPO (MpKAR) is essential for gemma initiation, the functions of other ROP regulatory factors are less understood. This study focused on two GAPs: MpROPGAP and MpREN. Mpren single mutants showed defects in thallus growth, rhizoid tip growth, gemma development, and air chamber formation, whereas Mpropgap mutants showed no visible abnormalities. However, Mpropgap Mpren double mutants had more severe phenotypes than the Mpren single mutants, suggesting backup roles of MpROPGAP in MpREN-involving processes. Overexpression of MpROPGAP, MpREN resulted in similar gametophyte defects, highlighting the importance of MpROP activation/inactivation cycling (or balancing). Thus, MpREN predominantly, and MpROPGAP as a backup, regulate gametophyte development, most likely by controlling MpROP activation in M. polymorpha.

3.
Semin Cell Dev Biol ; 134: 37-58, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35292191

RESUMO

The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.


Assuntos
Evolução Biológica , Embriófitas , Plantas , Filogenia
4.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660859

RESUMO

A complete picture of how signaling pathways lead to multicellularity is largely unknown. Previously, we generated mutations in a protein prenylation enzyme, GGB, and showed that it is essential for maintaining multicellularity in the moss Physcomitrium patens. Here, we show that ROP GTPases act as downstream factors that are prenylated by GGB and themselves play an important role in the multicellularity of P. patens. We also show that the loss of multicellularity caused by the suppression of GGB or ROP GTPases is due to uncoordinated cell expansion, defects in cell wall integrity and the disturbance of the directional control of cell plate orientation. Expressing prenylatable ROP in the ggb mutant not only rescues multicellularity in protonemata but also results in development of gametophores. Although the prenylation of ROP is important for multicellularity, a higher threshold of active ROP is required for gametophore development. Thus, our results suggest that ROP activation via prenylation by GGB is a key process at both cell and tissue levels, facilitating the developmental transition from one dimension to two dimensions and to three dimensions in P. patens.


Assuntos
Bryopsida , GTP Fosfo-Hidrolases , Bryopsida/metabolismo , Parede Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Prenilação , Transdução de Sinais
5.
Plant J ; 115(5): 1331-1344, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243383

RESUMO

The plant-specific TOPLESS (TPL) family of transcriptional corepressors is integral to multiple angiosperm developmental processes. Despite this, we know little about TPL function in other plants. To address this gap, we investigated the roles TPL plays in the bryophyte Physcomitrium patens, which diverged from angiosperms approximately 0.5 billion years ago. Although complete loss of PpTPL function is lethal, transgenic lines with reduced PpTPL activity revealed that PpTPLs are essential for two fundamental developmental switches in this plant: the transitions from basal photosynthetic filaments (chloronemata) to specialised foraging filaments (caulonemata) and from two-dimensional (2D) to three-dimensional (3D) growth. Using a transcriptomics approach, we integrated PpTPL into the regulatory network governing 3D growth and we propose that PpTPLs represent another important class of regulators that are essential for the 2D-to-3D developmental switch. Transcriptomics also revealed a previously unknown role for PpTPL in the regulation of flavonoids. Intriguingly, 3D growth and the formation of caulonemata were crucial innovations that facilitated the colonisation of land by plants, a major transformative event in the history of life on Earth. We conclude that TPL, which existed before the land plants, was co-opted into new developmental pathways, enabling phytoterrestrialisation and the evolution of land plants.


Assuntos
Bryopsida , Plantas , Proteínas Correpressoras/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Bryopsida/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652031

RESUMO

MADS-box transcription factors (TFs), among the first TFs extensively studied, exhibit a wide distribution across eukaryotes and play diverse functional roles. Varying by domain architecture, MADS-box TFs in land plants are categorized into Type I (M-type) and Type II (MIKC-type). Type I and II genes have been considered orthologous to the SRF and MEF2 genes in animals, respectively, presumably originating from a duplication before the divergence of eukaryotes. Here, we exploited the increasing availability of eukaryotic MADS-box sequences and reassessed their evolution. While supporting the ancient duplication giving rise to SRF- and MEF2-types, we found that Type I and II genes originated from the MEF2-type genes through another duplication in the most recent common ancestor (MRCA) of land plants. Protein structures predicted by AlphaFold2 and OmegaFold support our phylogenetic analyses, with plant Type I and II TFs resembling the MEF2-type structure, rather than SRFs. We hypothesize that the ancestral SRF-type TFs were lost in the MRCA of Archaeplastida (the kingdom Plantae sensu lato). The retained MEF2-type TFs acquired a Keratin-like domain and became MIKC-type before the divergence of Streptophyta. Subsequently in the MRCA of land plants, M-type TFs evolved from a duplicated MIKC-type precursor through loss of the Keratin-like domain, leading to the Type I clade. Both Type I and II TFs expanded and functionally differentiated in concert with the increasing complexity of land plant body architecture. The recruitment of these originally stress-responsive TFs into developmental programs, including those underlying reproduction, may have facilitated the adaptation to the terrestrial environment.


Assuntos
Embriófitas , Fatores de Transcrição , Animais , Filogenia , Embriófitas/genética , Queratinas , Eucariotos
7.
New Phytol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840553

RESUMO

Contemporary glaciers are inhabited by streptophyte algae that balance photosynthesis and growth with tolerance of low temperature, desiccation and UV radiation. These same environmental challenges have been hypothesised as the driving force behind the evolution of land plants from streptophyte algal ancestors in the Cryogenian (720-635 million years ago). We sequenced, assembled and analysed the metagenome-assembled genome of the glacier alga Ancylonema nordenskiöldii to investigate its adaptations to life in ice, and whether this represents a vestige of Cryogenian exaptations. Phylogenetic analysis confirms the placement of glacier algae within the sister lineage to land plants, Zygnematophyceae. The metagenome-assembled genome is characterised by an expansion of genes involved in tolerance of high irradiance and UV light, while lineage-specific diversification is linked to the novel screening pigmentation of glacier algae. We found no support for the hypothesis of a common genomic basis for adaptations to ice and to land in streptophytes. Comparative genomics revealed that the reductive morphological evolution in the ancestor of Zygnematophyceae was accompanied by reductive genome evolution. This first genome-scale data for glacier algae suggests an Ancylonema-specific adaptation to the cryosphere, and sheds light on the genome evolution of land plants and Zygnematophyceae.

8.
New Phytol ; 241(2): 937-949, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37644727

RESUMO

The first land ecosystems were composed of organisms considered simple in nature, yet the morphological diversity of their flora was extraordinary. The biological significance of this diversity remains a mystery largely due to the absence of feasible study approaches. To study the functional biology of Early Devonian flora, we have reconstructed extinct plants from fossilised remains in silico. We explored the morphological diversity of sporangia in relation to their mechanical properties using finite element method. Our approach highlights the impact of sporangia morphology on spore dispersal and adaptation. We discovered previously unidentified innovations among early land plants, discussing how different species might have opted for different spore dispersal strategies. We present examples of convergent evolution for turgor pressure resistance, achieved by homogenisation of stress in spherical sporangia and by torquing force in Tortilicaulis-like specimens. In addition, we show a potential mechanism for stress-assisted sporangium rupture. Our study reveals the deceptive complexity of this seemingly simple group of organisms. We leveraged the quantitative nature of our approach and constructed a fitness landscape to understand the different ecological niches present in the Early Devonian Welsh Borderland flora. By connecting morphology to functional biology, these findings facilitate a deeper understanding of the diversity of early land plants and their place within their ecosystem.


Assuntos
Ecossistema , Embriófitas , Plantas , Reprodução
9.
J Exp Bot ; 75(14): 4210-4218, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38400751

RESUMO

All land plants-the embryophytes-produce multicellular embryos, as do other multicellular organisms, such as brown algae and animals. A unique characteristic of plant embryos is their immobile and confined nature. Their embedding in maternal tissues may offer protection from the environment, but also physically constrains development. Across the different land plants, a huge discrepancy is present between their reproductive structures whilst leading to similarly complex embryos. Therefore, we review the roles that maternal tissues play in the control of embryogenesis across land plants. These nurturing, constraining, and protective roles include both direct and indirect effects. In this review, we explore how the maternal surroundings affect embryogenesis and which chemical and mechanical barriers are in place. We regard these questions through the lens of evolution, and identify key questions for future research.


Assuntos
Sementes , Sementes/crescimento & desenvolvimento , Embriófitas/crescimento & desenvolvimento , Evolução Biológica
10.
J Exp Bot ; 75(14): 4287-4299, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38787597

RESUMO

Land plants have to face an oxidizing, heterogeneous, and fast changing environment. Redox-dependent post-translational modifications emerge as a critical component of plant responses to stresses. Among the thiol oxidoreductase superfamily, class III CC-type glutaredoxins (called ROXYs) are land plant specific, and their evolutionary history is highly dynamic. Angiosperms encode many isoforms, classified into five subgroups (Aα, Aß, Bα, Bß, Bγ) that probably evolved from five common ancestral ROXYs, with higher evolutionary dynamics in the Bγ subgroup compared with the other subgroups. ROXYs can modulate the transcriptional activity of TGA transcription factor target genes, although their biochemical function is still debated. ROXYs participate in the control of proper plant development and reproduction, and are mainly negative regulators of plant responses to biotic and abiotic stresses. This suggests that most ROXYs could play essential and conserved functions in resetting redox-dependent changes in transcriptional activity upon stress signaling to ensure the responsiveness of the system and/or avoid exaggerated responses that could lead to major defects in plant growth and reproduction. In Arabidopsis Bγ members acquired important functions in responses to nitrogen availability and endogenous status, but the rapid and independent evolution of this subclass might suggest that this function results from neofunctionalization, specifically observed in core eudicots.


Assuntos
Glutarredoxinas , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Desenvolvimento Vegetal/genética , Adaptação Fisiológica , Evolução Biológica , Evolução Molecular , Regulação da Expressão Gênica de Plantas
11.
J Exp Bot ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302086

RESUMO

The large size and complex structural rearrangements inherent in mitochondrial genomes of land plants pose challenges for their sequencing. Originally, the assembly of these genomes required the cloning of mitochondrial DNA fragments, followed by Sanger sequencing. Subsequently, the advent of next-generation sequencing significantly expedited the process. This review highlights instances of plant mitochondrial genome assembly employing various technologies, including 454 sequencing, Illumina short sequencing reads, and Pacific Biosciences or Oxford Nanopore Technology long sequencing reads. The combination of short and long reads in hybrid assembly has proven to be the most efficient approach for achieving reliable assemblies of land plant mitochondrial genomes.

12.
Plant J ; 109(5): 1086-1097, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34845788

RESUMO

Argonaute (AGO) proteins are central players in RNA interference in eukaryotes. They associate with small RNAs (sRNA) and lead to transcriptional or posttranscriptional silencing of targets, thereby regulating diverse biological processes. The molecular and biological functions of AGO proteins have been extensively characterized, particularly in a few angiosperm species, leading to the recognition that the AGO family has expanded to accommodate diverse sRNAs thereby performing diverse biological functions. However, understanding of the expansion of AGO proteins in plants is still limited, due to a dearth of knowledge of AGO proteins in green algal groups. Here, we identified more than 2900 AGO proteins from 244 plant species, including green algae, and performed a large-scale phylogenetic analysis. The phylogeny shows that the plant AGO family gave rise to four clades after the emergence of hydrobiontic algae and prior to the emergence of land plants. Subsequent parallel expansion in ferns and angiosperms resulted in eight main clades in angiosperms: AGO2, AGO7, AGO6, AGO4, AGO1, AGO10a, AGO10b and AGO5. On the basis of this phylogeny, we identified two novel AGO4 orthologs that Arabidopsis does not have, and redefined AGO10, which is composed of AGO10a and AGO10b. Finally, we propose a hypothetical evolutionary model of AGO proteins in plants. Our studies provide a deeper understanding of the phylogenetic relationships of AGO family members in the green lineage, which would help to further reveal their roles as RNAi effectors.


Assuntos
Arabidopsis , Magnoliopsida , Arabidopsis/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Magnoliopsida/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo
13.
Plant Cell Physiol ; 64(6): 604-621, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36943747

RESUMO

In plants, microRNA (miRNA)-target interactions (MTIs) require high complementarity, a feature from which bioinformatic programs have predicted numerous and diverse targets for any given miRNA, promoting the idea of complex miRNA networks. Opposing this is a hypothesis of constrained miRNA specificity, in which functional MTIs are restricted to the few targets whose required expression output is compatible with the expression of the miRNA. To explore these opposing views, the bioinformatic pipeline Targets Ranked Using Experimental Evidence was applied to strongly conserved miRNAs to identity their high-evidence (HE) targets across species. For each miRNA family, HE targets predominantly consisted of homologs from one conserved target gene family (primary family). These primary families corresponded to the known canonical miRNA-target families, validating the approach. Very few additional HE target families were identified (secondary family), and if so, they were likely functionally related to the primary family. Many primary target families contained highly conserved nucleotide sequences flanking their miRNA-binding sites that were enriched in HE homologs across species. A number of these flanking sequences are predicted to form conserved RNA secondary structures that preferentially base pair with the miRNA-binding site, implying that these sites are highly structured. Our findings support a target landscape view that is dominated by the conserved primary target families, with a minority of either secondary target families or non-conserved targets. This is consistent with the constrained hypothesis of functional miRNA specificity, which potentially in part is being facilitated by features beyond complementarity.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas/genética , Plantas/metabolismo , Sequência Conservada/genética , Sítios de Ligação , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
14.
New Phytol ; 239(6): 2404-2415, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381083

RESUMO

Heterogeneity in gene trees, morphological characters, and composition has been associated with several major plant clades. Here, we examine heterogeneity in composition across a large transcriptomic dataset of plants to better understand whether locations of shifts in composition are shared across gene regions and whether directions of shifts within clades are shared across gene regions. We estimate mixed models of composition for both nucleotide and amino acids across a recent large-scale transcriptomic dataset for plants. We find shifts in composition across both nucleotide and amino acid datasets, with more shifts detected in nucleotides. We find that Chlorophytes and lineages within experience the most shifts. However, many shifts occur at the origins of land, vascular, and seed plants. While genes in these clades do not typically share the same composition, they tend to shift in the same direction. We discuss potential causes of these patterns. Compositional heterogeneity has been highlighted as a potential problem for phylogenetic analysis, but the variation presented here highlights the need to further investigate these patterns for the signal of biological processes.


Assuntos
Evolução Biológica , Plantas , Filogenia , Plantas/genética , Aminoácidos/genética , Nucleotídeos/genética
15.
New Phytol ; 240(6): 2204-2209, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658677

RESUMO

Plant evolution has been characterised by a series of major novelties in their vegetative and reproductive traits that have led to greater complexity. Underpinning this diversification has been the evolution of the genome. When viewed at the scale of the plant kingdom, plant genome evolution has been punctuated by conspicuous instances of gene and whole-genome duplication, horizontal gene transfer and extensive gene loss. The periods of dynamic genome evolution often coincide with the evolution of key traits, demonstrating the coevolution of plant genomes and phenotypes at a macroevolutionary scale. Conventionally, plant complexity and diversity have been considered through the lens of gene duplication and the role of gene loss in plant evolution remains comparatively unexplored. However, in light of reductive evolution across multiple plant lineages, the association between gene loss and plant phenotypic diversity warrants greater attention.


Assuntos
Evolução Molecular , Plantas , Plantas/genética , Genoma de Planta , Duplicação Gênica , Transferência Genética Horizontal , Filogenia
16.
New Phytol ; 239(6): 2353-2366, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391893

RESUMO

Telomerase, telomeric DNA and associated proteins together represent a complex, finely tuned and functionally conserved mechanism that ensures genome integrity by protecting and maintaining chromosome ends. Changes in its components can threaten an organism's viability. Nevertheless, molecular innovation in telomere maintenance has occurred multiple times during eukaryote evolution, giving rise to species/taxa with unusual telomeric DNA sequences, telomerase components or telomerase-independent telomere maintenance. The central component of telomere maintenance machinery is telomerase RNA (TR) as it templates telomere DNA synthesis, its mutation can change telomere DNA and disrupt its recognition by telomere proteins, thereby leading to collapse of their end-protective and telomerase recruitment functions. Using a combination of bioinformatic and experimental approaches, we examine a plausible scenario of evolutionary changes in TR underlying telomere transitions. We identified plants harbouring multiple TR paralogs whose template regions could support the synthesis of diverse telomeres. In our hypothesis, formation of unusual telomeres is associated with the occurrence of TR paralogs that can accumulate mutations, and through their functional redundancy, allow for the adaptive evolution of the other telomere components. Experimental analyses of telomeres in the examined plants demonstrate evolutionary telomere transitions corresponding to TR paralogs with diverse template regions.


Assuntos
Telomerase , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , RNA/genética , RNA/metabolismo , Plantas/metabolismo
17.
Am J Bot ; 110(11): e16249, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37792319

RESUMO

PREMISE: Bryophytes form a major component of terrestrial plant biomass, structuring ecological communities in all biomes. Our understanding of the evolutionary history of hornworts, liverworts, and mosses has been significantly reshaped by inferences from molecular data, which have highlighted extensive homoplasy in various traits and repeated bursts of diversification. However, the timing of key events in the phylogeny, patterns, and processes of diversification across bryophytes remain unclear. METHODS: Using the GoFlag probe set, we sequenced 405 exons representing 228 nuclear genes for 531 species from 52 of the 54 orders of bryophytes. We inferred the species phylogeny from gene tree analyses using concatenated and coalescence approaches, assessed gene conflict, and estimated the timing of divergences based on 29 fossil calibrations. RESULTS: The phylogeny resolves many relationships across the bryophytes, enabling us to resurrect five liverwort orders and recognize three more and propose 10 new orders of mosses. Most orders originated in the Jurassic and diversified in the Cretaceous or later. The phylogenomic data also highlight topological conflict in parts of the tree, suggesting complex processes of diversification that cannot be adequately captured in a single gene-tree topology. CONCLUSIONS: We sampled hundreds of loci across a broad phylogenetic spectrum spanning at least 450 Ma of evolution; these data resolved many of the critical nodes of the diversification of bryophytes. The data also highlight the need to explore the mechanisms underlying the phylogenetic ambiguity at specific nodes. The phylogenomic data provide an expandable framework toward reconstructing a comprehensive phylogeny of this important group of plants.


Assuntos
Briófitas , Hepatófitas , Filogenia , Briófitas/genética , Plantas/genética , Hepatófitas/genética
18.
Plant Cell Rep ; 42(12): 1891-1906, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743376

RESUMO

KEY MESSAGE: The study of the origin, evolution, and diversification of the wall-associated kinase gene family in plants facilitates their functional investigations in the future. Wall-associated kinases (WAKs) make up one subfamily of receptor-like kinases (RLKs), and function directly in plant cell elongation and responses to biotic and abiotic stresses. The biological functions of WAKs have been extensively characterized in angiosperms; however, the origin and evolutionary history of the WAK family in green plants remain unclear. Here, we performed a comprehensive analysis of the WAK family to reveal its origin, evolution, and diversification in green plants. In total, 1061 WAK genes were identified in 37 species from unicellular algae to multicellular plants, and the results showed that WAK genes probably originated before bryophyte differentiation and were widely distributed in land plants, especially angiosperms. The phylogeny indicated that the land plant WAKs gave rise to five clades and underwent lineage-specific expansion after species differentiation. Cis-acting elements and expression patterns analyses of WAK genes in Arabidopsis and rice demonstrated the functional diversity of WAK genes in these two species. Many gene gains and losses have occurred in angiosperms, leading to an increase in the number of gene copies. The evolutionary trajectory of the WAK family during polyploidization was uncovered using Gossypium species. Our results provide insights into the evolution of WAK genes in green plants, facilitating their functional investigations in the future.


Assuntos
Arabidopsis , Plantas , Plantas/genética , Genes de Plantas/genética , Arabidopsis/genética , Família Multigênica
19.
Plant J ; 106(2): 366-378, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33484592

RESUMO

The shoot apical meristems (SAMs) of land plants are crucial for plant growth and organ formation. In several angiosperms, the HAIRY MERISTEM (HAM) genes function as key regulators that control meristem development and stem cell homeostasis. To date, the origin and evolutionary history of the HAM family in land plants remains unclear. Potentially shared and divergent functions of HAM family members from angiosperms and non-angiosperms are also not known. In constructing a comprehensive phylogeny of the HAM family, we show that HAM proteins are widely present in land plants and that HAM proteins originated prior to the divergence of bryophytes. The HAM family was duplicated in a common ancestor of angiosperms, leading to two distinct groups: type I and type II. Type-II HAM members are widely present in angiosperms, whereas type-I HAM members were independently lost in different orders of monocots. Furthermore, HAM members from angiosperms and non-angiosperms (including bryophytes, lycophytes, ferns and gymnosperms) are able to replace the role of the type-II HAM genes in Arabidopsis, maintaining established SAMs and promoting the initiation of new stem cell niches. Our results uncover the conserved functions of HAM family members and reveal the conserved regulatory mechanisms underlying HAM expression patterning in meristems, providing insight into the evolution of key stem cell regulators in land plants.


Assuntos
Sequência Conservada/genética , Embriófitas/genética , Genes de Plantas/genética , Meristema/crescimento & desenvolvimento , Briófitas/genética , Variações do Número de Cópias de DNA/genética , Embriófitas/crescimento & desenvolvimento , Evolução Molecular , Genes de Plantas/fisiologia , Meristema/genética , Filogenia
20.
Mol Biol Evol ; 38(8): 3332-3344, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33871608

RESUMO

The relationships among the four major embryophyte lineages (mosses, liverworts, hornworts, vascular plants) and the timing of the origin of land plants are enigmatic problems in plant evolution. Here, we resolve the monophyly of bryophytes by improving taxon sampling of hornworts and eliminating the effect of synonymous substitutions. We then estimate the divergence time of crown embryophytes based on three fossil calibration strategies, and reveal that maximum calibration constraints have a major effect on estimating the time of origin of land plants. Moreover, comparison of priors and posteriors provides a guide for evaluating the optimal calibration strategy. By considering the reliability of fossil calibrations and the influences of molecular data, we estimate that land plants originated in the Precambrian (980-682 Ma), much older than widely recognized. Our study highlights the important contribution of molecular data when faced with contentious fossil evidence, and that fossil calibrations used in estimating the timescale of plant evolution require critical scrutiny.


Assuntos
Anthocerotophyta/genética , Briófitas/genética , Fósseis , Genoma de Planta , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA