Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Evol Comput ; : 1-25, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713737

RESUMO

Evolutionary Computation (EC) often throws away learned knowledge as it is reset for each new problem addressed. Conversely, humans can learn from small-scale problems, retain this knowledge (plus functionality) and then successfully reuse them in larger-scale and/or related problems. Linking solutions to problems together has been achieved through layered learning, where an experimenter sets a series of simpler related problems to solve a more complex task. Recent works on Learning Classifier Systems (LCSs) has shown that knowledge reuse through the adoption of Code Fragments, GP-like tree-based programs, is plausible. However, random reuse is inefficient. Thus, the research question is how LCS can adopt a layered-learning framework, such that increasingly complex problems can be solved efficiently? An LCS (named XCSCF*) has been developed to include the required base axioms necessary for learning, refined methods for transfer learning and learning recast as a decomposition into a series of subordinate problems. These subordinate problems can be set as a curriculum by a teacher, but this does not mean that an agent can learn from it. Especially if it only extracts over-fitted knowledge of each problem rather than the underlying scalable patterns and functions. Results show that from a conventional tabula rasa, with only a vague notion of what subordinate problems might be relevant, XCSCF* captures the general logic behind the tested domains and therefore can solve any n-bit Multiplexer, n-bit Carry-one, n-bit Majority-on, and n-bit Even-parity problems. This work demonstrates a step towards continual learning as learned knowledge is effectively reused in subsequent problems.

2.
Evol Comput ; 28(1): 87-114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30817200

RESUMO

We propose a new evolutionary approach for discovering causal rules in complex classification problems from batch data. Key aspects include (a) the use of a hypergeometric probability mass function as a principled statistic for assessing fitness that quantifies the probability that the observed association between a given clause and target class is due to chance, taking into account the size of the dataset, the amount of missing data, and the distribution of outcome categories, (b) tandem age-layered evolutionary algorithms for evolving parsimonious archives of conjunctive clauses, and disjunctions of these conjunctions, each of which have probabilistically significant associations with outcome classes, and (c) separate archive bins for clauses of different orders, with dynamically adjusted order-specific thresholds. The method is validated on majority-on and multiplexer benchmark problems exhibiting various combinations of heterogeneity, epistasis, overlap, noise in class associations, missing data, extraneous features, and imbalanced classes. We also validate on a more realistic synthetic genome dataset with heterogeneity, epistasis, extraneous features, and noise. In all synthetic epistatic benchmarks, we consistently recover the true causal rule sets used to generate the data. Finally, we discuss an application to a complex real-world survey dataset designed to inform possible ecohealth interventions for Chagas disease.


Assuntos
Algoritmos , Evolução Biológica , Doença de Chagas/genética , Doença de Chagas/prevenção & controle , Epistasia Genética , Genoma , Humanos , Probabilidade
3.
Evol Comput ; 25(2): 173-204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26406166

RESUMO

A main research direction in the field of evolutionary machine learning is to develop a scalable classifier system to solve high-dimensional problems. Recently work has begun on autonomously reusing learned building blocks of knowledge to scale from low-dimensional problems to high-dimensional ones. An XCS-based classifier system, known as XCSCFC, has been shown to be scalable, through the addition of expression tree-like code fragments, to a limit beyond standard learning classifier systems. XCSCFC is especially beneficial if the target problem can be divided into a hierarchy of subproblems and each of them is solvable in a bottom-up fashion. However, if the hierarchy of subproblems is too deep, then XCSCFC becomes impractical because of the needed computational time and thus eventually hits a limit in problem size. A limitation in this technique is the lack of a cyclic representation, which is inherent in finite state machines (FSMs). However, the evolution of FSMs is a hard task owing to the combinatorially large number of possible states, connections, and interaction. Usually this requires supervised learning to minimize inappropriate FSMs, which for high-dimensional problems necessitates subsampling or incremental testing. To avoid these constraints, this work introduces a state-machine-based encoding scheme into XCS for the first time, termed XCSSMA. The proposed system has been tested on six complex Boolean problem domains: multiplexer, majority-on, carry, even-parity, count ones, and digital design verification problems. The proposed approach outperforms XCSCFA (an XCS that computes actions) and XCSF (an XCS that computes predictions) in three of the six problem domains, while the performance in others is similar. In addition, XCSSMA evolved, for the first time, compact and human readable general classifiers (i.e., solving any n-bit problems) for the even-parity and carry problem domains, demonstrating its ability to produce scalable solutions using a cyclic representation.


Assuntos
Algoritmos , Aprendizado de Máquina/tendências , Inteligência Artificial , Evolução Biológica , Humanos , Aprendizado de Máquina/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA