Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39001104

RESUMO

This work proposes a design methodology for predictive control applied to the single-phase PWM inverter with an LC filter. In the design, we considered that the PWM inverter has parametric uncertainties in the filter inductance and output load resistance. The control system purpose is to track a sinusoidal signal at the inverter output. The designed control system with an embedded integrator uses the principle of receding horizon control, which underpinned predictive control. The methodology was described by linear matrix inequalities, which can be solved efficiently using convex programming techniques, and the optimal solution is obtained. MATLAB-Simulink and real-time FPGA-in-the-loop simulations illustrate the viability of the proposed control system. The LMI-based MPC reveals an effective performance for tracking of a sinusoidal reference signal and disturbance rejection of input voltage and load perturbations for the inverter subject to uncertainties.

2.
Sensors (Basel) ; 23(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765895

RESUMO

This paper discusses the use of networks of Inertial Measurement Units (IMUs) for the reconstruction of trajectories from sensor data. Logistics is a natural application domain to verify the quality of the handling of goods. This is a mass application and the economics of logistics impose that the IMUs to be used must be low-cost and use basic computational devices. The approach in this paper converts a strategy from the literature, used in the multi-target following problem, to reach a consensus in a network of IMUs. This paper presents results on how to achieve the consensus in trajectory reconstruction, along with covariance intersection data fusion of the information obtained by all the nodes in the network.

3.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408147

RESUMO

This work investigates sensor fault diagnostics and fault-tolerant control for a voltage source converter based microgrid (model) using a sliding-mode observer. It aims to provide a diagnosis of multiple faults (i.e., magnitude, phase, and harmonics) occurring simultaneously or individually in current/potential transformers. A modified algorithm based on convex optimization is used to determine the gains of the sliding-mode observer, which utilizes the feasibility optimization or trace minimization of a Ricatti equation-based modification of H-Infinity (H∞) constrained linear matrix inequalities. The fault and disturbance estimation method is modified and improved with some corrections in previous works. The stability and finite-time reachability of the observers are also presented for the considered faulty and perturbed microgrid system. A proportional-integral (PI) based control is utilized for the conventional regulations required for frequency and voltage sags occurring in a microgrid. However, the same control block features fault-tolerant control (FTC) functionality. It is attained by incorporating a sliding-mode observer to reconstruct the faults of sensors (transformers), which are fed to the control block after correction. Simulation-based analysis is performed by presenting the results of state/output estimation, state/output estimation errors, fault reconstruction, estimated disturbances, and fault-tolerant control performance. Simulations are performed for sinusoidal, constant, linearly increasing, intermittent, sawtooth, and random sort of often occurring sensor faults. However, this paper includes results for the sinusoidal nature voltage/current sensor (transformer) fault and a linearly increasing type of fault, whereas the remaining results are part of the supplementary data file. The comparison analysis is performed in terms of observer gains being estimated by previously used techniques as compared to the proposed modified approach. It also includes the comparison of the voltage-frequency control implemented with and without the incorporation of the used observer based fault estimation and corrections, in the control block. The faults here are considered for voltage/current sensor transformers, but the approach works for a wide range of sensors.

4.
J Process Control ; 118: 231-241, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36118074

RESUMO

The real-time prediction and estimation of the spread of diseases, such as COVID-19 is of paramount importance as evidenced by the recent pandemic. This work is concerned with the distributed parameter estimation of the time-space propagation of such diseases using a diffusion-reaction epidemiological model of the susceptible-exposed-infected-recovered (SEIR) type. State estimation is based on continuous measurements of the number of infections and deaths per unit of time and of the host spatial domain. The observer design method is based on positive definite matrices to parameterize a class of Lyapunov functionals, in order to stabilize the estimation error dynamics. Thus, the stability conditions can be expressed as a set of matrix inequality constraints which can be solved numerically using sum of squares (SOS) and standard semi-definite programming (SDP) tools. The observer performance is analyzed based on a simplified case study corresponding to the situation in France in March 2020 and shows promising results.

5.
J Math Biol ; 83(6-7): 64, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34792652

RESUMO

Hybrid models of genetic regulatory networks allow for a simpler analysis with respect to fully detailed quantitative models, still maintaining the main dynamical features of interest. In this paper we consider a piecewise affine model of a genetic regulatory network, in which the parameters describing the production function are affected by polytopic uncertainties. In the first part of the paper, after recalling how the problem of finding a Lyapunov function is solved in the nominal case, we present the considered polytopic uncertain system and then, after describing how to deal with sliding mode solutions, we prove a result of existence of a parameter dependent Lyapunov function subject to the solution of a feasibility linear matrix inequalities problem. In the second part of the paper, based on the previously described Lyapunov function, we are able to determine a set of domains where the system is guaranteed to converge, with the exception of a zero measure set of times, independently from the uncertainty realization. Finally a three nodes network example shows the validity of the results.


Assuntos
Redes Reguladoras de Genes , Incerteza
6.
Sensors (Basel) ; 21(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806253

RESUMO

In this paper, a robust fault-tolerant model predictive control (RFTPC) approach is proposed for discrete-time linear systems subject to sensor and actuator faults, disturbances, and input constraints. In this approach, a virtual observer is first considered to improve the observation accuracy as well as reduce fault effects on the system. Then, a real observer is established based on the proposed virtual observer, since the performance of virtual observers is limited due to the presence of unmeasurable information in the system. Based on the estimated information obtained by the observers, a robust fault-tolerant model predictive control is synthesized and used to control discrete-time systems subject to sensor and actuator faults, disturbances, and input constraints. Additionally, an optimized cost function is employed in the RFTPC design to guarantee robust stability as well as the rejection of bounded disturbances for the discrete-time system with sensor and actuator faults. Furthermore, a linear matrix inequality (LMI) approach is used to propose sufficient stability conditions that ensure and guarantee the robust stability of the whole closed-loop system composed of the states and the estimation error of the system dynamics. As a result, the entire control problem is formulated as an LMI problem, and the gains of both observer and robust fault-tolerant model predictive controller are obtained by solving the linear matrix inequalities (LMIs). Finally, the efficiency of the proposed RFTPC controller is tested by simulating a numerical example where the simulation results demonstrate the applicability of the proposed method in dealing with linear systems subject to faults in both actuators and sensors.

7.
Sensors (Basel) ; 21(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199181

RESUMO

This paper presents the design and validation of a model-based H∞ vehicle lateral controller for autonomous vehicles in a simulation environment. The controller was designed so that the position and orientation tracking errors are minimized and so that the vehicle is able to follow a trajectory computed in real-time by exploiting proper video-processing and lane-detection algorithms. From a computational point of view, the controller is obtained by solving a suitable LMI optimization problem and ensures that the closed-loop system is robust with respect to variations in the vehicle's longitudinal speed. In order to show the effectiveness of the proposed control strategy, simulations have been undertaken by taking advantage of a co-simulation environment jointly developed in Matlab/Simulink © and Carsim 8 ©. The simulation activity shows that the proposed control approach allows for good control performance to be achieved.

8.
Sensors (Basel) ; 21(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068593

RESUMO

Linear matrix inequalities (LMIs) have gained much importance in recent years for the design of robust controllers for linear dynamic systems, for the design of state observers, as well as for the optimization of both. Typical performance criteria that are considered in these cases are either H2 or H∞ measures. In addition to bounded parameter uncertainty, included in the LMI-based design by means of polytopic uncertainty representations, the recent work of the authors showed that state observers can be optimized with the help of LMIs so that their error dynamics become insensitive against stochastic noise. However, the joint optimization of the parameters of the output feedback controllers of a proportional-differentiating type with a simultaneous optimization of linear output filters for smoothening measurements and for their numeric differentiation has not yet been considered. This is challenging due to the fact that the joint consideration of both types of uncertainties, as well as the combined control and filter optimization lead to a problem that is constrained by nonlinear matrix inequalities. In the current paper, a novel iterative LMI-based procedure is presented for the solution of this optimization task. Finally, an illustrating example is presented to compare the new parameterization scheme for the output feedback controller-which was jointly optimized with a linear derivative estimator-with a heuristically tuned D-type control law of previous work that was implemented with the help of an optimized full-order state observer.

9.
Chaos Solitons Fractals ; 137: 109874, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32454569

RESUMO

A drone based on four rotors is considered in this research paper. Its chaotic solution is shown bounded in an inscribed sphere whose vertices are tangent to faces of octahedron. Based on concept of constrained optimization; Linear Matrix Inequalities (LMIs) satisfying quadratic constraint increment multiplier matrix σm , state observers and descriptors with estimated parameter is calculated. Moreover, an image file is decrypted by designing description for mentioned chaotic system and then encrypted on its receiver end. Furthermore, an electric circuit is designed for chaotic quadrotor using LTspice and is fitted into wireless flying robot to observe its dynamics in bounded rectangular region.

10.
Sensors (Basel) ; 20(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580369

RESUMO

The article described two full multidimensional controllers applied to steer a real vessel named 'Blue Lady' that is used by the Foundation for Safety of Navigation and Environment Protection at its training and research facility loacted at Silm lake in Poland. Both controllers were based on different approaches, but finally gave similar results. The first part describes the object to be controlled which is a training ship used for training of navigators in various conditions, areas and manoeuvres. This is followed by a short description of the theory for both controllers, Robust and Linear Matrix Inequalities (LMI). Next real time trials are described, which are 3 different manouvers for low velocities, executed by both LMI and Robust contrllers. In these trials 'Blue Lady' velocities, silhouete trajectory ans wind data are recorded. Finally the quality of work for both controllers is collected in two tables.

11.
Sensors (Basel) ; 18(8)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071591

RESUMO

This paper proposes a data-based approach for a robust fault detection (FD) of the inertial measurement unit (IMU) sensors of an aircraft. Fuzzy interval models (FIMs) have been introduced for coping with the significant modeling uncertainties caused by poorly modeled aerodynamics. The proposed FIMs are used to compute robust prediction intervals for the measurements provided by the IMU sensors. Specifically, a nonlinear neural network (NN) model is used as central prediction of the sensor response while the uncertainty around the central estimation is captured by the FIM model. The uncertainty has been also modelled using a conventional linear Interval Model (IM) approach; this allows a quantitative evaluation of the benefits provided by the FIM approach. The identification of the IMs and of the FIMs was formalized as a linear matrix inequality (LMI) optimization problem using as cost function the (mean) amplitude of the prediction interval and as optimization variables the parameters defining the amplitudes of the intervals of the IMs and FIMs. Based on the identified models, FD validation tests have been successfully conducted using actual flight data of a P92 Tecnam aircraft by artificially injecting additive fault signals on the fault free IMU readings.

12.
Network ; 27(4): 237-267, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27385193

RESUMO

In this paper, based on the knowledge of memristor-based recurrent neural networks (MRNNs), the model of the stochastic MRNNs with discrete and distributed delays is established. In real nervous systems and in the implementation of very large-scale integration (VLSI) circuits, noise is unavoidable, which leads to the stochastic model of the MRNNs. In this model, the delay interval is decomposed into two subintervals by using the tuning parameter α such that 0 < α < 1. By constructing proper Lyapunov-Krasovskii functional and employing direct delay decomposition technique, several sufficient conditions are given to guarantee the dissipativity and passivity of the stochastic MRNNs with discrete and distributed delays in the sense of Filippov solutions. Using the stochastic analysis theory and Itô's formula for stochastic differential equations, we establish sufficient conditions for dissipativity criterion. The dissipativity and passivity conditions are presented in terms of linear matrix inequalities, which can be easily solved by using Matlab Tools. Finally, three numerical examples with simulations are presented to demonstrate the effectiveness of the theoretical results.


Assuntos
Algoritmos , Redes Neurais de Computação , Fatores de Tempo
13.
Neural Netw ; 172: 106081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38181615

RESUMO

Synchronization between neural networks (NNs) has been intensively investigated to analyze stability, convergence properties, neuronal behaviors and response to various inputs. However, synchronization techniques of NNs with gated recurrent units (GRUs) have not been provided until now due to their complicated nonlinearity. In this paper, we address the sampled-data synchronization problems of GRUs for the first time, and propose controller design methods using discretely sampled control inputs to synchronize master and slave GRUs. The master and slave GRUs are mathematically modeled as a linear parameter varying (LPV) system in which the parameter of the slave GRUs is constructed independently of the master GRUs. This distinctive modeling feature provides flexibility to extend the existing master and slave NNs into a more general structure. Indeed, the sampled-data synchronization can be achieved by formulating the design condition in terms of linear matrix inequalities (LMIs). The novel sampled-data synchronization criteria are devised by combining the H∞ controller design with the looped-functional approach. The synthesized synchronization controllers guarantee not only asymptotic stability of the synchronization error system with aperiodic sampling, but also provides a satisfactory H∞ control performance. Moreover, the communication efficiency is improved by using the proposed method in which the sampled-data synchronization controller is combined with the event-triggered mechanism. Finally, the numerical example validates the proposed theoretical contributions via simulation results.


Assuntos
Redes Neurais de Computação , Simulação por Computador , Fatores de Tempo
14.
Neural Netw ; 180: 106671, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39260012

RESUMO

This paper designs the sampled-data control (SDC) scheme to delve into the synchronization problem of fuzzy inertial cellular neural networks (FICNNs). Technically, the rate at which the information or activation of cellular neuronal transmission made can be described in a first-order differential model, but the network response concerning the received information may be dependent on time that can be modeled as a second-order (inertial) cellular neural network (ICNN) model. Generally, a fuzzy cellular neural network (FCNN) is a combination of fuzzy logic and a cellular neural network. Fuzzy logic models are composed of input and output templates which are in the form of a sum of product operations that help to evaluate the information transmission on a rule-basis. Hence, this study proposes a user-controlled FICNNs model with the same dynamic properties as FICNN model. In this regard, the synchronization approach is considerably effective in ensuring the dynamical properties of the drive (without control input) and response (with external control input). Theoretically, the synchronization between the drive-response can be ensured by analyzing the error model derived from the drive-response but due to nonlinearities, the Lyapunov stability theory can be utilized to derive sufficient stability conditions in terms of linear matrix inequalities (LMIs) that will guarantee the convergence of the error model onto the origin. Distinct from the existing stability conditions, this paper derives the stability conditions by involving the delay information in the form of a quadratic function with lower and upper bounds, which are evaluated through the negative determination lemma (NDL). Besides, numerical simulations that support the validation of proposed theoretical frameworks are discussed. As a direct application, the FICNN model is considered as a cryptosystem in image encryption and decryption algorithm, and the corresponding outcomes are illustrated along with security measures.

15.
ISA Trans ; 137: 23-34, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36739243

RESUMO

A novel, identification-free, data-driven (DD) H∞ control method is presented for discrete-time (DT) linear time-invariant (LTI) systems under physical limitations and norm-bounded disturbances. The presented approach does not demand information on system matrices or any measurements of disturbance affecting the system. The only information needed to develop a static state-feedback (SF) controller is the bounds on disturbances, states and control signals. It is assumed that only the disturbance input matrix and the performance matrices the user generally defines are known, and all others are entirely unknown. The proposed method relies on the closed-loop (CL) parametrization of the LTI system with control input and state measurements. The disturbances affecting the system states are handled as affine uncertainties, later represented as Linear Fractional Transformation (LFT). For obtaining a less conservative controller, a full block S-procedure method (FBSPM) is used, which takes advantage of relaxations such as convex hull relaxation or Pólya relaxation for the inner approximation of the disturbance set with arbitrary precision. Numerical illustrations and extensive case studies on a bilateral teleoperation system indicate that the proposed design method allows us to obtain very effective controllers which never exceed the bounds of the state and input variables and are capable of reference and force tracking.

16.
Biomed Signal Process Control ; 86: 105123, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37337551

RESUMO

Finite-time stability analysis is a powerful tool for understanding the long-term behavior of epidemiological models and has been widely used to study the spread of infectious diseases such as COVID-19. In this paper, we present a finite-time stability analysis of a stochastic susceptible-infected-recovered (SIR) epidemic compartmental model with switching signals. The model includes a linear parameter variation (LPV) and switching system that represents the impact of external factors, such as changes in public health policies or seasonal variations, on the transmission rate of the disease. We use the Lyapunov stability theory to examine the long-term behavior of the model and determine conditions under which the disease is likely to die out or persist in the population. By taking advantage of the average dwell time method and Lyapunov functional (LF) method, and using novel inequality techniques the finite-time stability (FTS) criterion in linear matrix inequalities (LMIs) is developed. The finite-time stability of the resultant closed-loop system, with interval and linear parameter variation (LPV), is then guaranteed by state feedback controllers. By analyzing the modified SIR model with these interventions, we are able to examine the efficiency of different control measures and determine the most appropriate response to the COVID-19 pandemic and demonstrate the efficacy of the suggested strategy through simulation results.

17.
ISA Trans ; 134: 171-182, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36096914

RESUMO

This work deals with the problem of passive fault-tolerant control (FTC) for discrete-time networked control systems (NCSs). Network imperfections such as random time delay and packet dropout are modeled as a Markov chain that results in a Markovian jump linear system (MJLS). Some of the elements in the transition probability matrix (TPM) are supposed to be unknown so as to address network complexities. In addition, a comprehensive and practical fault model that considers the stochastic nature of networks is employed. By utilizing this fault model, the closed-loop NCS model is obtained by means of state augmentation technique. Then, a constrained model predictive control (MPC) is proposed to develop a fault-tolerant control strategy in which all these issues are considered as well as input constraint. Sufficient conditions to design the proposed reliable controller are derived in terms of linear matrix inequalities (LMIs). Finally, two examples are utilized to demonstrate the validity of the proposed FTC. The simulation results show that the proposed strategy works well, and results in more effective responses compared to state-of-the-arts studies.

18.
Biomed Signal Process Control ; 79: 104107, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35996470

RESUMO

Due to the importance of control actions in spreading coronavirus disease, this paper is devoted to first modeling and then proposing an appropriate controller for this model. In the modeling procedure, we used a nonlinear mathematical model for the covid-19 outbreak to form a T-S fuzzy model. Then, for proposing the suitable controller, multiple optimization techniques including Linear Quadratic Regulator (LQR) and mixed H 2 - H ∞ are taken into account. The mentioned controller is chosen because the model of corona-virus spread is not only full of disturbances like a sudden increase in infected people, but also noises such as unavailability of the exact number of each compartment. The controller is simulated accordingly to validate the results of mathematical calculations, and a comparative analysis is presented to investigate the different situations of the problem. Comparing the results of controlled and uncontrolled situations, it can be observed that we can tackle the devastating hazards of the covid-19 outbreak effectively if the suggested approaches and policies of controlling interventions are executed, appropriately.

19.
ISA Trans ; 133: 485-494, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35933169

RESUMO

In this paper, we design a proportional integral observe for a nonlinear synchronous reluctance motor described by a Takagi-Sugeno multi-model. In this design, both states and unknown inputs are estimated simultaneously. First, the mathematical nonlinear model of the synchronous reluctance motor is established, then it transformed into a Takagi-Sugeno exact form by a simple polytopic transformation. In The second step, the proposed observer is designed to the obtained fuzzy system. Convergence conditions are expressed under a linear matrix inequality formulation using the second Lyapunov theorem, which guarantee a bounded error. Observer gains are obtained by solving a sum of constraints. For validation purposes, a hardware-in-the-loop implementation were carried out leading to results that clearly demonstrate the performance and effectiveness of the proposed technique.


Assuntos
Algoritmos , Lógica Fuzzy , Simulação por Computador , Dinâmica não Linear , Modelos Teóricos
20.
ISA Trans ; 128(Pt B): 109-122, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34955240

RESUMO

This paper investigates the problem of finite-time H∞ synchronization (H∞FTS) for complex dynamical networks (CDNs) with time-varying delays(TVDs) and unknown internal coupling matrices. External disturbances are also considered into this model. By applying the adaptive control theory, this paper presents the adaptive control method to solve the H∞FTS of CDNs with external disturbances and TVDs. Some criteria are obtained by utilizing appropriate adaptive controllers and devising a special Lyapunov-Krasovskii function (LKF), which ensure the H∞FTS of CDNs based on passivity theory. Finally, using some effective mathematical techniques, comparative numerical example and Chua's circuit system are used to explain the advantages and applicability of the results and approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA