Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791124

RESUMO

The use of lipase immobilized on an octyl-agarose support to obtain the optically pure enantiomers of chiral drugs in reactions carried out in organic solvents is a great challenge for chemical and pharmaceutical sciences. Therefore, it is extremely important to develop optimal procedures to achieve a high enantioselectivity of the biocatalysts in the organic medium. Our paper describes a new approach to biocatalysis performed in an organic solvent with the use of CALB-octyl-agarose support including the application of a polypropylene reactor, an appropriate buffer for immobilization (Tris base-pH 9, 100 mM), a drying step, and then the storage of immobilized lipases in a climatic chamber or a refrigerator. An immobilized lipase B from Candida antarctica (CALB) was used in the kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification with methanol, reaching a high enantiomeric excess (eep = 89.6 ± 2.0%). As part of the immobilization optimization, the influence of different buffers was investigated. The effect of the reactor material and the reaction medium on the lipase activity was also studied. Moreover, the stability of the immobilized lipases: lipase from Candida rugosa (CRL) and CALB during storage in various temperature and humidity conditions (climatic chamber and refrigerator) was tested. The application of the immobilized CALB in a polypropylene reactor allowed for receiving over 9-fold higher conversion values compared to the results achieved when conducting the reaction in a glass reactor, as well as approximately 30-fold higher conversion values in comparison with free lipase. The good stability of the CALB-octyl-agarose support was demonstrated. After 7 days of storage in a climatic chamber or refrigerator (with protection from humidity) approximately 60% higher conversion values were obtained compared to the results observed for the immobilized form that had not been stored. The new approach involving the application of the CALB-octyl-agarose support for reactions performed in organic solvents indicates a significant role of the polymer reactor material being used in achieving high catalytic activity.


Assuntos
Biocatálise , Enzimas Imobilizadas , Proteínas Fúngicas , Lipase , Sefarose , Lipase/química , Lipase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Sefarose/química , Propionatos/química , Estereoisomerismo , Cinética , Esterificação , Temperatura , Estabilidade Enzimática , Candida/enzimologia , Solventes/química , Saccharomycetales
2.
Molecules ; 25(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952168

RESUMO

Lipase B from Candida antarctica immobilized by covalent binding on sebacoyl-activated chitosan-coated magnetic nanoparticles proved to be an efficient biocatalyst (49.2-50% conversion in 3-16 h and >96% enantiomeric excess) for the enzymatic kinetic resolution of some racemic heteroarylethanols through transesterification with vinyl acetate. Under optimal conditions (vinyl acetate, n-hexane, 45 °C), the biocatalyst remains active after 10 cycles.


Assuntos
Candida/enzimologia , Quitosana/química , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Nanopartículas de Magnetita/química , Compostos de Vinila/química , Catálise , Enzimas Imobilizadas/química , Esterificação , Proteínas Fúngicas/química , Cinética , Lipase/química , Estereoisomerismo
3.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752306

RESUMO

The synthesis of ethyl butyrate catalyzed by lipases A (CALA) or B (CALB) from Candida antarctica immobilized onto magnetic nanoparticles (MNP), CALA-MNP and CALB-MNP, respectively, is hereby reported. MNPs were prepared by co-precipitation, functionalized with 3-aminopropyltriethoxysilane, activated with glutaraldehyde, and then used as support to immobilize either CALA or CALB (immobilization yield: 100 ± 1.2% and 57.6 ± 3.8%; biocatalysts activities: 198.3 ± 2.7 Up-NPB/g and 52.9 ± 1.7 Up-NPB/g for CALA-MNP and CALB-MNP, respectively). X-ray diffraction and Raman spectroscopy analysis indicated the production of a magnetic nanomaterial with a diameter of 13.0 nm, whereas Fourier-transform infrared spectroscopy indicated functionalization, activation and enzyme immobilization. To determine the optimum conditions for the synthesis, a four-variable Central Composite Design (CCD) (biocatalyst content, molar ratio, temperature and time) was performed. Under optimized conditions (1:1, 45 °C and 6 h), it was possible to achieve 99.2 ± 0.3% of conversion for CALA-MNP (10 mg) and 97.5 ± 0.8% for CALB-MNP (12.5 mg), which retained approximately 80% of their activity after 10 consecutive cycles of esterification. Under ultrasonic irradiation, similar conversions were achieved but at 4 h of incubation, demonstrating the efficiency of ultrasound technology in the enzymatic synthesis of esters.


Assuntos
Butiratos/metabolismo , Candida/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Nanopartículas de Magnetita/química , Biocatálise , Esterificação/fisiologia , Glutaral/metabolismo , Ondas Ultrassônicas
4.
Life (Basel) ; 13(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511935

RESUMO

In lipase-catalyzed kinetic resolutions (KRs), the choice of immobilization support and acylating agents (AAs) is crucial. Lipase B from Candida antarctica immobilized onto magnetic nanoparticles (CaLB-MNPs) has been successfully used for diverse KRs of racemic compounds, but there is a lack of studies of the utilization of this potent biocatalyst in the KR of chiral amines, important pharmaceutical building blocks. Therefore, in this work, several racemic amines (heptane-2-amine, 1-methoxypropan-2-amine, 1-phenylethan-1-amine, and 4-phenylbutan-2-amine, (±)-1a-d, respectively) were studied in batch and continuous-flow mode utilizing different AAs, such as diisopropyl malonate 2A, isopropyl 2-cyanoacetate 2B, and isopropyl 2-ethoxyacetate 2C. The reactions performed with CaLB-MNPs were compared with Novozym 435 (N435) and the results in the literature. CaLB-MNPs were less active than N435, leading to lower conversion, but demonstrated a higher enantiomer selectivity, proving to be a good alternative to the commercial form. Compound 2C resulted in the best balance between conversion and enantiomer selectivity among the acylating agents. CaLB-MNPs proved to be efficient in the KR of chiral amines, having comparable or superior properties to other CaLB forms utilizing porous matrices for immobilization. An additional advantage of using CaLB-MNPs is that the purification and reuse processes are facilitated via magnetic retention/separation. In the continuous-flow mode, the usability and operational stability of CaLB-MNPs were reaffirmed, corroborating with previous studies, and the results overall improve our understanding of this potent biocatalyst and the convenient U-shape reactor used.

5.
Int J Biol Macromol ; 165(Pt B): 2957-2963, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33122063

RESUMO

Nanobiocatalysts were produced via immobilization of CalB lipase on polyurethane (PU) based nanoparticles and their application on the synthesis of important industrial products was evaluated. Nanoparticles of polyurethane functionalized with poly(ethylene glycol) (PU-PEG) were synthetized through miniemulsion polymerization and the addition of crosslinking agents were evaluated. The nanoparticles were employed as support for CalB and the kinetic parameters were reported. The performance of new biocatalysts was evaluated on the hydrolysis reaction of p-NPB and on the enantioselective hydrolysis of (R,S)-mandelic acid. The esterification reaction was evaluated on the production of ethyl esters of Omega-3. The effect of poly(ethylene glycol) molar mass (400, 4000 or 6000 Da)on the biocatalyst activity was also analyzed. The PU-PEG6000-CalB showed the highest value of the kinetic parameters, highlighting the high reaction rate. The addition of trehalose as crosslinking agent improved the thermal stability of the biocatalysts. PU-PEG400-CalB was the most active nanobiocatalyst, exhibiting a ethyl esters production of 43.72 and 16.83 mM.U -1 using EPA and DHA, respectively. The nanobiocatalyst was also applied in enantiomeric resolution of mandelic acid, showing promising enantiomeric ratios. The results obtained in this work present alternative and sustainable routes for the synthesis of important compounds used on food and pharmaceutical industries.


Assuntos
Enzimas/química , Proteínas Fúngicas/química , Lipase/química , Nanopartículas/química , Nanoestruturas/química , Indústria Farmacêutica , Enzimas/síntese química , Indústria Alimentícia , Proteínas Fúngicas/farmacologia , Humanos , Lipase/farmacologia , Poliuretanos/química
6.
Methods Enzymol ; 627: 23-55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31630742

RESUMO

The research on biocatalyzed polycondensation has delivered an array of polyesters having molecular weights below 20,000gmol-1 but characterized by controlled structures and desired functionalities. Their unique catalytic efficiency under mild conditions enables enzymes to catalyze the polycondensation of monomers bearing labile lateral moieties that can be easily accessed via post-polymerization modifications. Despite this great potential, nowadays biocatalysts are not employed for polycondensation on industrial scale due to some bottlenecks related to the formulation of biocatalysts and the process configuration, which make the enzymatic technology non-economic. Recycling the enzymatic catalysts is not only a matter of producing an active and robust formulation, but it also requires the optimal integration of such biocatalyst within a specific reactor and process configuration that must enable efficient mass-transfer while preserving the integrity of the enzymatic preparation. In this chapter, we describe examples of integrated experimental-computational approaches for the rational planning and implementation of enzymatic polycondensation using lipase B from Candida antarctica and cutinase 1 from Thermobifida cellulosilytica. They rely on molecular visualization, molecular modeling and chemometrics, which are methods requiring very modest computational power and approachable by operators who do not have specific computational background. The examples also address the sustainability issue, by describing solvent-free processes involving bio-based monomers and biocatalysts immobilized on renewable carriers.


Assuntos
Biocatálise , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Poliésteres/metabolismo , Actinobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Candida/enzimologia , Biologia Computacional , Química Computacional , Modelos Moleculares , Poliésteres/síntese química , Thermobifida
7.
J Biosci Bioeng ; 126(4): 451-457, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29764765

RESUMO

In this work, magnetic cross-linked enzyme aggregates (mCLEAs) of CALB (lipase B from Candida antarctica) were prepared and characterized. Moreover, a method for an easy, sustainable and economic extraction of lipids from nitrogen-starved cells of Chlorella vulgaris var L3 was developed. Then, the extracted lipids (oils and free fatty acids, FFAs) were converted to biodiesel using mCLEAs and chemical acid catalysis. Among several lipid extraction methods, saponification was selected given the amount of wet microalgal biomass it can process per unit of time, its low market value, and because it allows for the use of less toxic solvents. A biodiesel conversion of 80.2 ± 4.4% was obtained by chemical catalysis (1 h at 100°C) using FFAs and methanol as the alkyl donor. However, a biodiesel conversion of more than 90% (3 h at 30°C) was obtained using mCLEAs and methanol. Both chemical and enzymatic catalysts gave biodiesel with similar fatty acid alkyl ester (FAAE) composition. Methanol, at 15% (v/v) or higher concentration, caused a decrease of lipase activity and a concomitant increase in the size of mCLEA aggregates (up to 2 µm), as measured by dynamic light scattering (DLS). The magnetic character of the novel biocatalyst permits its easy recovery and reuse, for at least ten consecutive catalytic cycles (retaining 90% of the initial biodiesel conversion), using mild reaction conditions and environmentally-friendly solvents.


Assuntos
Biocombustíveis/análise , Candida/enzimologia , Chlorella vulgaris/química , Proteínas Fúngicas/química , Microbiologia Industrial/métodos , Lipase/química , Lipídeos/química , Candida/metabolismo , Chlorella vulgaris/metabolismo , Ácidos Graxos/química , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Magnetismo , Metanol/química , Microalgas/química , Microalgas/metabolismo
8.
Biotechnol Prog ; 34(4): 878-889, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29536666

RESUMO

Novozyme 435, which is a commercial immobilized lipase B from Candida antarctica (CALB), has been proven to be inadequate for the kinetic resolution of rac-indanyl acetate. As it has been previously described that different immobilization protocols may greatly alter lipase features, in this work, CALB was covalently immobilized on epoxy Immobead-350 (IB-350) and on glyoxyl-agarose to ascertain if better kinetic resolution would result. Afterwards, all CALB biocatalysts were utilized in the hydrolytic resolution of rac-indanyl acetate and rac-(chloromethyl)-2-(o-methoxyphenoxy) ethyl acetate. After optimization of the immobilization protocol on IB-350, its loading capacity was 150 mg protein/g dried support. Furthermore, the CALB-IB-350 thermal and solvent stabilities were higher than that of the soluble enzyme (e.g., by a 14-fold factor at pH 5-70°C and by a 11-fold factor in dioxane 30%-65°C) and that of the glyoxyl-agarose-CALB (e.g., by a 12-fold factor at pH 10-50°C and by a 21-fold factor in dioxane 30%-65°C). The CALB-IB-350 preparation (with 98% immobilization yield and activity versus p-nitrophenyl butyrate of 6.26 ± 0.2 U/g) was used in the hydrolysis of rac-indanyl acetate using a biocatalyst/substrate ratio of 2:1 and a pH value of 7.0 at 30°C for 24 h. The conversion obtained was 48% and the enantiomeric excess of the product (e.e.p ) was 97%. These values were much higher than the ones obtained with Novozyme 435, 13% and 26% of conversion and e.e.p, respectively. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:878-889, 2018.


Assuntos
Candida/enzimologia , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Catálise , Concentração de Íons de Hidrogênio , Cinética
9.
Bioresour Technol ; 200: 853-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26590760

RESUMO

Carboxylated single-walled carbon nanotubes (SWCNTCOOH) were used as support for covalent immobilization of Candida antarctica lipase B (CaL-B) using linkers with different lengths. The obtained nanostructured biocatalysts with low diffusional limitation were tested in batch mode in the ethanolysis of the sunflower oil. SWCNTCOOH-CaL-B proved to be a highly efficient and stable biocatalyst in acetonitrile (83.4% conversion after 4h at 35°C, retaining >90% of original activity after 10 cycles).


Assuntos
Biocombustíveis , Biotecnologia/métodos , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Nanoconjugados/química , Nanotubos de Carbono/química , Biocatálise/efeitos dos fármacos , Enzimas Imobilizadas/metabolismo , Esterificação/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Óleos de Plantas/química , Solventes/farmacologia , Óleo de Girassol , Tensoativos/farmacologia , Temperatura , Fatores de Tempo , Água/química
10.
Colloids Surf B Biointerfaces ; 131: 108-14, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25973762

RESUMO

The paper at hand deals with the influence of the pH-value on the conformation and activity of the lipase B from Candida antarctica (CalB) which is incorporated in a bicontinuous microemulsion. The microemulsion used for this purpose consists of water/NaCl, n-octane, and the non-ionic surfactant penthaethylene glycol monodecylether (C10E5). The conformational study clearly shows (1) that CalB molecules are partitioned between the interfacial monolayer and the water domains and (2) that the pH-value of the microemulsion's water domains strongly influences the conformation of CalB at the interfacial monolayer. From these observations we conclude that there is a continuous exchange between the CalB molecules, which are located at the interfacial monolayer and those which are located in the water domains of the microemulsion. This exchange strongly influences the CalB conformation in both regions. In addition to the conformation, we also studied the catalytic activity of CalB. The catalytic measurements revealed a bell-shaped dependence between the CalB activity and the pH-value. The maximum catalytic activity of CalB in bicontinuous microemulsions was observed at pH=5.5. At this pH we observed the highest amount of α-helix conformation of the CalB molecules that are located at the interfacial monolayer, which, in turn, allows connecting the activity with the conformation.


Assuntos
Candida/enzimologia , Emulsões/química , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Biocatálise , Dicroísmo Circular , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Cinética , Lipase/química , Modelos Químicos , Estrutura Molecular , Nitrofenóis/química , Nitrofenóis/metabolismo , Octanos/química , Palmitatos/química , Palmitatos/metabolismo , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Conformação Proteica , Cloreto de Sódio/química , Propriedades de Superfície , Tensoativos/química , Água/química
11.
Eur J Med Chem ; 68: 482-96, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24051242

RESUMO

In the search for new antifungal compounds and to explore structure activity relationships, a series of 24 chiral benzyl amine type antifungals was synthesised and characterised. In vitro testing against the human pathogen Cryptococcus neoformans revealed that several derivatives had MIC50 values similar to that of the commercial drug Butenafine. All of these contained a bulky group in the para position of the benzyl fragment. Eighteen compounds were also tested for activity against the dermatophytes Trichophyton mentagrophytes and Trichophyton rubrum. Of these (R)-N-(4-tert-butylbenzyl)-N-methyl-1-(naphthalen-1-yl)ethanamine (MIC50: 0.06 µg/mL) and a para-benzyloxy substituted derivative (MIC50: 0.125 µg/mL) possessed high activity. Testing of derivatives with a stereocentre at the benzylic carbon, revealed that (S)-stereochemistry was required for potency: a MIC50 value of 1 µg/mL was obtained for (S)-1-(4-tert-butylphenyl)-N-methyl-N-(naphthalen-1-ylmethyl)ethanamine. Preparation of the corresponding fluoromethyl compound was achieved employing lipase B from Candida antarctica as catalyst in the key step. A low antifungal activity was observed for the fluorinated derivative indicating the importance of the amine basicity for the antifungal potency of these compounds.


Assuntos
Aminas/farmacologia , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Trichophyton/efeitos dos fármacos , Antifúngicos/química , Benzilaminas/síntese química , Benzilaminas/química , Benzilaminas/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Naftalenos/farmacologia , Estereoisomerismo , Terbinafina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA