Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 11(7)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284457

RESUMO

The occurrence of marine harmful algae is increasing worldwide and, therefore, the accumulation of lipophilic marine toxins from harmful phytoplankton represents a food safety threat in the shellfish industry. Galicia, which is a commercially important EU producer of edible bivalve mollusk have been subjected to recurring cases of mussel farm closures, in the last decades. This work aimed to study the toxic profile of commercial mussels (Mytilus galloprovincialis) in order to establish a potential risk when ingested. For this, a total of 41 samples of mussels farmed in 3 Rías (Ares-Sada, Arousa, and Pontevedra) and purchased in 5 local markets were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Chromatograms showed the presence of okadaic acid (OA), dinophysistoxin-2 (DTX-2), pectenotoxin-2 (PTX-2), azaspiracid-2 (AZA-2), and the emerging toxins 13-desmethyl spirolide C (SPX-13), and pinnatoxin-G (PnTX-G). Quantification of each toxin was determined using their own standard calibration in the range 0.1%-50 ng/mL (R2 > 0.99) and by considering the toxin recovery (62-110%) and the matrix correction (33-211%). Data showed that OA and DTX-2 (especially in the form of esters) are the main risk in Galician mollusks, which was detected in 38 samples (93%) and 3 of them exceeded the legal limit (160 µg/kg), followed by SPX-13 that was detected in 19 samples (46%) in quantities of up to 28.9 µg/kg. Analysis from PTX-2, AZA-2, and PnTX-G showed smaller amounts. Fifteen samples (37%) were positive for PTX-2 (0.7-2.9 µg/kg), 12 samples (29%) for AZA-2 (0.1-1.8 µg/kg), and PnTX-G was detected in 5 mussel samples (12%) (0.4 µg/kg-0.9 µg/kg). This is the first time Galician mollusk was contaminated with PnTX-G. Despite results indicating that this toxin was not a potential risk through the mussel ingestion, it should be considered in the shellfish safety monitoring programs through the LC-MS/MS methods.


Assuntos
Alcaloides/análise , Furanos/análise , Toxinas Marinhas/análise , Mytilus/química , Ácido Okadáico/análise , Piranos/análise , Compostos de Espiro/análise , Animais , Cromatografia Líquida , Esterificação , Contaminação de Alimentos/análise , Espectrometria de Massas em Tandem
2.
Toxicon ; 120: 57-60, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27475861

RESUMO

The marine polycyclic-ether toxin gambierol and 1-butanol (n-alkanol) inhibit Shaker-type Kv channels by interfering with the gating machinery. Competition experiments indicated that both compounds do not share an overlapping binding site but gambierol is able to affect 1-butanol affinity for Shaker through an allosteric effect. Furthermore, the Shaker-P475A mutant, which inverses 1-butanol effect, is inhibited by gambierol with nM affinity. Thus, gambierol and 1-butanol inhibit Shaker-type Kv channels via distinct parts of the gating machinery.


Assuntos
1-Butanol/toxicidade , Ciguatoxinas/toxicidade , Bloqueadores dos Canais de Potássio/toxicidade , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Sítios de Ligação , Ativação do Canal Iônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA