Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Sensors (Basel) ; 24(20)2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39460153

RESUMO

Low-power wide area network (LPWAN) technologies as part of IoT are gaining a lot of attention as they provide affordable communication over large areas. LoRa and Sigfox as part of LPWAN have emerged as highly effective and promising non-3GPP unlicensed band IoT technologies while challenging the supremacy of cellular technologies for machine-to-machine-(M2M)-based use cases. This paper presents the design goals of LoRa and Sigfox while throwing light on their suitability in congested environments. A practical traffic generator of both LoRa and Sigfox is introduced and further interpolated for understanding simultaneous operation of 100 to 10,000 such nodes in close vicinity while establishing deep understanding on effects of collision, re-transmissions, and link behaviour. Previous work in this field have overlooked simultaneous deployment, collision issues, effects of re-transmission, and propagation profile while arriving at a number of successful receptions. This work uses packet error rate (PER) and delivery ratio, which are correct metrics to calculate successful transmissions. The obtained results show that a maximum of 100 LoRa and 200 Sigfox nodes can be deployed in a fixed transmission use case over an area of up to 1 km. As part of the future scope, solutions have been suggested to increase the effectiveness of LoRa and Sigfox networks.

2.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066061

RESUMO

Safe drinking water is essential to a healthy lifestyle and has been recognised as a human right by numerous countries. However, the realisation of this right remains largely aspirational, particularly in impoverished nations that lack adequate resources for water quality testing. Kenya, a Sub-Saharan country, bears the brunt of this challenge. Pesticide imports in Kenya increased by 144% from 2015 to 2018, with sales data indicating that 76% of these pesticides are classified as highly hazardous. This trend continues to rise. Over 70% of Kenya's population resides in rural areas, with 75% of the rural population engaged in agriculture and using pesticides. Agriculture is the country's main economic activity, contributing over 30% of its gross domestic product (GDP). The situation is further exacerbated by the lack of monitoring for pesticide residues in surface water and groundwater, coupled with the absence of piped water infrastructure in rural areas. Consequently, contamination levels are high, as agricultural runoff is a major contaminant of surface water and groundwater. The increased use of pesticides to enhance agricultural productivity exacerbates environmental degradation and harms water ecosystems, adversely affecting public health. This study proposes the development of a wireless sensor system that utilizes radio-frequency identification (RFID), Long-range (LoRa) protocol and a global system for mobile communications (GSM) for monitoring pesticide prevalence in groundwater sources. From the system design, individuals with limited literacy skills, advanced age, or non-expert users can utilize it with ease. The reliability of the LoRa protocol in transmitting data packets is thoroughly investigated to ensure effective communication. The system features a user-friendly interface for straightforward data input and facilitates broader access to information by employing various remote wireless sensing methods.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Praguicidas , Tecnologia sem Fio , Quênia , Praguicidas/análise , Água Subterrânea/química , Água Subterrânea/análise , Monitoramento Ambiental/métodos , Humanos , Poluentes Químicos da Água/análise , Agricultura/métodos
3.
Sensors (Basel) ; 24(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39338706

RESUMO

We introduce a novel LoRa-based multi-hop communication architecture as an alternative to the public internet for earthquake early warning (EEW). We examine its effectiveness in generating a meaningful warning window for the New Zealand-based decentralised EEW sensor network implemented by the CRISiSLab operating with the adapted Propagation of Local Undamped Motion (PLUM)-based earthquake detection and node-level data processing. LoRa, popular for low-power, long-range applications, has the disadvantage of long transmission time for time-critical tasks like EEW. Our network overcomes this limitation by broadcasting EEWs via multiple short hops with a low spreading factor (SF). The network includes end nodes that generate warnings and relay nodes that broadcast them. Benchmarking with simulations against CRISiSLab's EEW system performance with internet connectivity shows that an SF of 8 can disseminate warnings across all the sensors in a 30 km urban area within 2.4 s. This approach is also resilient, with the availability of multiple routes for a message to travel. Our LoRa-based system achieves a 1-6 s warning window, slightly behind the 1.5-6.75 s of the internet-based performance of CRISiSLab's system. Nevertheless, our novel network is effective for timely mental preparation, simple protective actions, and automation. Experiments with Lilygo LoRa32 prototype devices are presented as a practical demonstration.

4.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123873

RESUMO

The number of applications of low-power wide-area networks (LPWANs) has been growing quite considerably in the past few years and so has the number of protocol stacks. Despite this fact, there is still no fully open LPWAN protocol stack available to the public, which limits the flexibility and ease of integration of the existing ones. The closest to being fully open is LoRa; however, only its medium access control (MAC) layer, known as LoRaWAN, is open and its physical and logical link control layers, also known as LoRa PHY, are still only partially understood. In this paper, the essential missing aspects of LoRa PHY are not only reverse engineered, but also, a new design of the transceiver and its sub-components are proposed and implemented in a modular and flexible way using GNU Radio. Finally, some examples of applications of both the transceiver and its components, which are made to be run in a simple setup by using cheap and widely available off-the-shelf hardware, are given to show how the library can be used and extended.

5.
Sensors (Basel) ; 24(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38676159

RESUMO

The presence of green areas in urbanized cities is crucial to reduce the negative impacts of urbanization. However, these areas can influence the signal quality of IoT devices that use wireless communication, such as LoRa technology. Vegetation attenuates electromagnetic waves, interfering with the data transmission between IoT devices, resulting in the need for signal propagation modeling, which considers the effect of vegetation on its propagation. In this context, this research was conducted at the Federal University of Pará, using measurements in a wooded environment composed of the Pau-Mulato species, typical of the Amazon. Two machine learning-based propagation models, GRNN and MLPNN, were developed to consider the effect of Amazonian trees on propagation, analyzing different factors, such as the transmitter's height relative to the trunk, the beginning of foliage, and the middle of the tree canopy, as well as the LoRa spreading factor (SF) 12, and the co-polarization of the transmitter and receiver antennas. The proposed models demonstrated higher accuracy, achieving values of root mean square error (RMSE) of 3.86 dB and standard deviation (SD) of 3.8614 dB, respectively, compared to existing empirical models like CI, FI, Early ITU-R, COST235, Weissberger, and FITU-R. The significance of this study lies in its potential to boost wireless communications in wooded environments. Furthermore, this research contributes to enhancing more efficient and robust LoRa networks for applications in agriculture, environmental monitoring, and smart urban infrastructure.

6.
Sensors (Basel) ; 24(20)2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39460091

RESUMO

Long-range networks, renowned for their long-range, low-power communication capabilities, form the backbone of many Internet of Things systems, enabling efficient and reliable data transmission. However, detecting tampered frequency signals poses a considerable challenge due to the vulnerability of LoRa devices to radio-frequency interference and signal manipulation, which can undermine both data integrity and security. This paper presents an innovative method for identifying tampered radio frequency transmissions by employing five sophisticated anomaly detection algorithms-Local Outlier Factor, Isolation Forest, Variational Autoencoder, traditional Autoencoder, and Principal Component Analysis within the framework of a LoRa-based Internet of Things network structure. The novelty of this work lies in applying image-based tampered frequency techniques with these algorithms, offering a new perspective on securing LoRa transmissions. We generated a dataset of over 26,000 images derived from real-world experiments with both normal and manipulated frequency signals by splitting video recordings of LoRa transmissions into frames to thoroughly assess the performance of each algorithm. Our results demonstrate that Local Outlier Factor achieved the highest accuracy of 97.78%, followed by Variational Autoencoder, traditional Autoencoder and Principal Component Analysis at 97.27%, and Isolation Forest at 84.49%. These findings highlight the effectiveness of these methods in detecting tampered frequencies, underscoring their potential for enhancing the reliability and security of LoRa networks.

7.
Sensors (Basel) ; 24(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39001190

RESUMO

LoRa enables long-range communication for Internet of Things (IoT) devices, especially those with limited resources and low power requirements. Consequently, LoRa has emerged as a popular choice for numerous IoT applications. However, the security of LoRa devices is one of the major concerns that requires attention. Existing device identification mechanisms use cryptography which has two major issues: (1) cryptography is hard on the device resources and (2) physical attacks might prevent them from being effective. Deep learning-based radio frequency fingerprinting identification (RFFI) is emerging as a key candidate for device identification using hardware-intrinsic features. In this paper, we present a comprehensive survey of the state of the art in the area of deep learning-based radio frequency fingerprinting identification for LoRa devices. We discuss various categories of radio frequency fingerprinting techniques along with hardware imperfections that can be exploited to identify an emitter. Furthermore, we describe different deep learning algorithms implemented for the task of LoRa device classification and summarize the main approaches and results. We discuss several representations of the LoRa signal used as input to deep learning models. Additionally, we provide a thorough review of all the LoRa RF signal datasets used in the literature and summarize details about the hardware used, the type of signals collected, the features provided, availability, and size. Finally, we conclude this paper by discussing the existing challenges in deep learning-based LoRa device identification and also envisage future research directions and opportunities.

8.
Sensors (Basel) ; 24(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38894225

RESUMO

The Internet of Things (IoT) is a growing network of interconnected devices used in transportation, finance, public services, healthcare, smart cities, surveillance, and agriculture. IoT devices are increasingly integrated into mobile assets like trains, cars, and airplanes. Among the IoT components, wearable sensors are expected to reach three billion by 2050, becoming more common in smart environments like buildings, campuses, and healthcare facilities. A notable IoT application is the smart campus for educational purposes. Timely notifications are essential in critical scenarios. IoT devices gather and relay important information in real time to individuals with special needs via mobile applications and connected devices, aiding health-monitoring and decision-making. Ensuring IoT connectivity with end users requires long-range communication, low power consumption, and cost-effectiveness. The LPWAN is a promising technology for meeting these needs, offering a low cost, long range, and minimal power use. Despite their potential, mobile IoT and LPWANs in healthcare, especially for emergency response systems, have not received adequate research attention. Our study evaluated an LPWAN-based emergency response system for visually impaired individuals on the Hazara University campus in Mansehra, Pakistan. Experiments showed that the LPWAN technology is reliable, with 98% reliability, and suitable for implementing emergency response systems in smart campus environments.


Assuntos
Internet das Coisas , Humanos , Aplicativos Móveis , Tecnologia sem Fio
9.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38894400

RESUMO

Dynamic liquid level monitoring and measurement in oil wells is essential in ensuring the safe and efficient operation of oil extraction machinery and formulating rational extraction policies that enhance the productivity of oilfields. This paper presents an intelligent infrasound-based measurement method for oil wells' dynamic liquid levels; it is designed to address the challenges of conventional measurement methods, including high costs, low precision, low robustness and inadequate real-time performance. Firstly, a novel noise reduction algorithm is introduced to effectively mitigate both periodic and stochastic noise, thereby significantly improving the accuracy of dynamic liquid level detection. Additionally, leveraging the PyQT framework, a software platform for real-time dynamic liquid level monitoring is engineered, capable of generating liquid level profiles, computing the sound velocity and liquid depth and visualizing the monitoring data. To bolster the data storage and analytical capabilities, the system incorporates an around-the-clock unattended monitoring approach, utilizing Internet of Things (IoT) technology to facilitate the transmission of the collected dynamic liquid level data and computed results to the oilfield's central data repository via LoRa and 4G communication modules. Field trials on dynamic liquid level monitoring and measurement in oil wells demonstrate a measurement range of 600 m to 3000 m, with consistent and reliable results, fulfilling the requirements for oil well dynamic liquid level monitoring and measurement. This innovative system offers a new perspective and methodology for the computation and surveillance of dynamic liquid level depths.

10.
Sensors (Basel) ; 24(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39204966

RESUMO

Low-Earth-orbit (LEO) satellites are widely acknowledged as a promising infrastructure solution for global Internet of Things (IoT) services. However, the Doppler effect presents a significant challenge in the context of long-range (LoRa) modulation uplink connectivity. This study comprehensively examines the operational efficiency of LEO satellites concerning the Doppler weather effect, with state-of-the-art artificial intelligence techniques. Two LEO satellite constellations-Globalstar and the International Space Station (ISS)-were detected and tracked using ground radars in Perth and Brisbane, Australia, for 24 h starting 1 January 2024. The study involves modelling the constellation, calculating latency, and frequency offset and designing a hybrid Iterative Input Selection-Long Short-Term Memory Network (IIS-LSTM) integrated model to predict the Doppler weather profile for LEO satellites. The IIS algorithm selects relevant input variables for the model, while the LSTM algorithm learns and predicts patterns. This model is compared with Convolutional Neural Network and Extreme Gradient Boosting (XGBoost) models. The results show that the packet delivery rate is above 91% for the sensitive spread factor 12 with a bandwidth of 11.5 MHz for Globalstar and 145.8 MHz for ISS NAUKA. The carrier frequency for ISS orbiting at 402.3 km is 631 MHz and 500 MHz for Globalstar at 1414 km altitude, aiding in combating packet losses. The ISS-LSTM model achieved an accuracy of 97.51% and a loss of 1.17% with signal-to-noise ratios (SNRs) ranging from 0-30 dB. The XGB model has the fastest testing time, attaining ≈0.0997 s for higher SNRs and an accuracy of 87%. However, in lower SNR, it proves to be computationally expensive. IIS-LSTM attains a better computation time for lower SNRs at ≈0.4651 s, followed by XGB at ≈0.5990 and CNN at ≈0.6120 s. The study calls for further research on LoRa Doppler analysis, considering atmospheric attenuation, and relevant space parameters for future work.

11.
Sensors (Basel) ; 24(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39275439

RESUMO

To evaluate the ecosystem services of silvopastoral systems through grazing activities, an advanced Internet of Things (IoT) framework is introduced for capturing extensive data on the spatial dynamics of sheep and goat grazing. The methodology employed an innovative IoT system, integrating a Global Navigation Satellite System (GNSS) tracker and environmental sensors mounted on the animals to accurately monitor the extent, intensity, and frequency of grazing. The experimental results demonstrated the high performance and robustness of the IoT system, with minimal data loss and significant battery efficiency, validating its suitability for long-term field evaluations. Long Range (LoRa) technology ensured consistent communication over long distances, covering the entire grazing zone and a range of 6 km in open areas. The superior battery performance, enhanced by a solar panel, allowed uninterrupted operation for up to 37 days with 5-min interval acquisitions. The GNSS module provided high-resolution data on movement patterns, with an accuracy of up to 10 m after firmware adjustments. The two-part division of the device ensured it did not rotate on the animals' necks. The system demonstrated adaptability and resilience in various terrains and animal conditions, confirming the viability of IoT-based systems for pasture monitoring and highlighting their potential to improve silvopastoral management, promoting sustainable practices and conservation strategies. This work uniquely focuses on documenting the shepherd's role in the ecosystem, providing a low-cost solution that distinguishes itself from commercial alternatives aimed primarily at real-time flock tracking.


Assuntos
Cabras , Internet das Coisas , Animais , Ovinos , Sistemas de Informação Geográfica/instrumentação , Coleta de Dados , Criação de Animais Domésticos/instrumentação , Criação de Animais Domésticos/métodos , Ecossistema
12.
Sensors (Basel) ; 24(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275766

RESUMO

One of the key parameters in radio link planning is the propagation path loss. Most of the existing methods for its prediction are not characterized by a good balance between accuracy, generality, and low computational complexity. To address this problem, a machine learning approach for path loss prediction is presented in this study. The novelty is the proposal of a compound model, which consists of two regression models and one classifier. The first regression model is adequate when a line-of-sight scenario is fulfilled in radio wave propagation, whereas the second one is appropriate for non-line-of-sight conditions. The classification model is intended to provide a probabilistic output, through which the outputs of the regression models are combined. The number of used input parameters is only five. They are related to the distance, the antenna heights, and the statistics of the terrain profile and line-of-sight obstacles. The proposed approach allows creation of a generalized model that is valid for various types of areas and terrains, different antenna heights, and line-of-sight and non line-of-sight propagation conditions. An experimental dataset is provided by measurements for a variety of relief types (flat, hilly, mountain, and foothill) and for rural, urban, and suburban areas. The experimental results show an excellent performances in terms of a root mean square error of a prediction as low as 7.3 dB and a coefficient of determination as high as 0.702. Although the study covers only one operating frequency of 433 MHz, the proposed model can be trained and applied for any frequency in the decimeter wavelength range. The main reason for the choice of such an operating frequency is because it falls within the range in which many wireless systems of different types are operating. These include Internet of Things (IoT), machine-to-machine (M2M) mesh radio networks, power efficient communication over long distances such as Low-Power Wide-Area Network (LPWAN)-LoRa, etc.

13.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475155

RESUMO

Designing and deploying telecommunications and broadcasting networks in the challenging terrain of the Amazon region pose significant obstacles due to its unique morphological characteristics. Within low-power wide-area networks (LPWANs), this research study introduces a comprehensive approach to modeling large-scale propagation loss channels specific to the LoRaWAN protocol operating at 915 MHz. The objective of this study is to facilitate the planning of Internet of Things (IoT) networks in riverside communities while accounting for the mobility of end nodes. We conducted extensive measurement campaigns along the banks of Universidade Federal do Pará, capturing received signal strength indication (RSSI), signal-to-noise ratio (SNR), and geolocated point data across various spreading factors. We fitted the empirical close-in (CI) and floating intercept (FI) propagation models for uplink path loss prediction and compared them with the Okumura-Hata model. We also present a new model for path loss with dense vegetation. Furthermore, we calculated received packet rate statistics between communication links to assess channel quality for the LoRa physical layer (PHY). Remarkably, both CI and FI models exhibited similar behaviors, with the newly proposed model demonstrating enhanced accuracy in estimating radio loss within densely vegetated scenarios, boasting lower root mean square error (RMSE) values than the Okumura-Hata model, particularly for spreading factor 9 (SF9). The radius coverage threshold, accounting for node mobility, was 945 m. This comprehensive analysis contributes valuable insights for the effective deployment and optimization of LoRa-based IoT networks in the intricate environmental conditions of the Amazon region.

14.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38610314

RESUMO

The capacity to update firmware is a vital component in the lifecycle of Internet of Things (IoT) devices, even those with restricted hardware resources. This paper explores the best way to wirelessly (Over The Air, OTA) update low-end IoT nodes with difficult access, combining the use of unicast and broadcast communications. The devices under consideration correspond to a recent industrial IoT project that focuses on the installation of intelligent lighting systems within ATEX (potentially explosive atmospheres) zones, connected via LoRa to a gateway. As energy consumption is not limited in this use case, the main figure of merit is the total time required for updating a project. Therefore, the objective is to deliver all the fragments of the firmware to each and all the nodes in a safe way, in the least amount of time. Three different methods, combining unicast and broadcast transmissions in different ways, are explored analytically, with the aim of obtaining the expected update time. The methods are also tested via extensive simulations, modifying different parameters such as the size of the scenario, the number of bytes of each firmware chunk, the number of nodes, and the number of initial broadcast rounds. The simulations show that the update time of a project can be significant, considering the limitations posed by regulations, in terms of the percentage of airtime consumption. However, significant time reductions can be achieved by using the proper method: in some cases, when the number of nodes is high, the update time can be reduced by two orders of magnitude if the correct method is chosen. Moreover, one of the proposed methods is implemented using actual hardware. This real implementation is used to perform firmware update experiments in a lab environment. Overall, the article illustrates the advantage of broadcast approaches in this kind of technology, in which the transmission rate is constant despite the distance between the gateway and the node. However, the advantage of these broadcast methods with respect to the unicast one could be mitigated if the nodes do not run exactly the same firmware version, since the control of the broadcast update would be more difficult and the total update time would increase.

15.
Sensors (Basel) ; 24(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38676127

RESUMO

The Internet of Things (IoT) will bring about the next industrial revolution in Industry 4.0. The communication aspect of IoT devices is one of the most critical factors in choosing the device that is suitable for use. Thus far, the IoT physical layer communication challenges have been met with various communications protocols that provide varying strengths and weaknesses. This paper summarizes the network architectures of some of the most popular IoT wireless communications protocols. It also presents a comparative analysis of some of the critical features, including power consumption, coverage, data rate, security, cost, and quality of service (QoS). This comparative study shows that low-power wide area network (LPWAN)-based IoT protocols (LoRa, Sigfox, NB-IoT, LTE-M) are more suitable for future industrial applications because of their energy efficiency, high coverage, and cost efficiency. In addition, the study also presents an Industrial Internet of Things (IIoT) application perspective on the suitability of LPWAN protocols in a particular scenario and addresses some open issues that need to be researched. Thus, this study can assist in deciding the most suitable IoT communication protocol for an industrial and production field.

16.
Sensors (Basel) ; 24(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793846

RESUMO

The agricultural sector is amidst an industrial revolution driven by the integration of sensing, communication, and artificial intelligence (AI). Within this context, the internet of things (IoT) takes center stage, particularly in facilitating remote livestock monitoring. Challenges persist, particularly in effective field communication, adequate coverage, and long-range data transmission. This study focuses on employing LoRa communication for livestock monitoring in mountainous pastures in the north-western Alps in Italy. The empirical assessment tackles the complexity of predicting LoRa path loss attributed to diverse land-cover types, highlighting the subtle difficulty of gateway deployment to ensure reliable coverage in real-world scenarios. Moreover, the high expense of densely deploying end devices makes it difficult to fully analyze LoRa link behavior, hindering a complete understanding of networking coverage in mountainous environments. This study aims to elucidate the stability of LoRa link performance in spatial dimensions and ascertain the extent of reliable communication coverage achievable by gateways in mountainous environments. Additionally, an innovative deep learning approach was proposed to accurately estimate path loss across challenging terrains. Remote sensing contributes to land-cover recognition, while Bidirectional Long Short-Term Memory (Bi-LSTM) enhances the path loss model's precision. Through rigorous implementation and comprehensive evaluation using collected experimental data, this deep learning approach significantly curtails estimation errors, outperforming established models. Our results demonstrate that our prediction model outperforms established models with a reduction in estimation error to less than 5 dB, marking a 2X improvement over state-of-the-art models. Overall, this study signifies a substantial advancement in IoT-driven livestock monitoring, presenting robust communication and precise path loss prediction in rugged landscapes.

17.
Sensors (Basel) ; 24(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931661

RESUMO

LoRa systems are emerging as a promising technology for wireless sensor networks due to their exceptional range and low power consumption. The successful deployment of LoRa networks relies on accurate propagation models to facilitate effective network planning. Therefore, this review explores the landscape of propagation models supporting LoRa networks. Specifically, we examine empirical propagation models commonly employed in communication systems, assessing their applicability across various environments such as outdoor, indoor, and within vegetation. Our investigation underscores the prevalence of logarithmic decay in most empirical models. In addition, we survey the relationship between model parameters and environmental factors, clearing their nuanced interplay. Analyzing published measurement results, we extract the log-distance model parameters to decipher environmental influences comprehensively. Drawing insights from published measurement results for LoRa, we compare them with the model's outcomes, highlighting successes and limitations. We additionally explore the application of multi-slope models to LoRa measurements to evaluate its effectiveness in enhancing the accuracy of path loss prediction. Finally, we propose new lines for future research in propagation modelling to improve empirical models.

18.
Sensors (Basel) ; 24(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39275681

RESUMO

Long-range frequency hopping spread spectrum (LR-FHSS) is a pivotal advancement in the LoRaWAN protocol that is designed to enhance the network's capacity and robustness, particularly in densely populated environments. Although energy consumption is paramount in LoRaWAN-based end devices, this is the first study in the literature, to our knowledge, that models the impact of this novel mechanism on energy consumption. In this article, we provide a comprehensive energy consumption analytical model of LR-FHSS, focusing on three critical metrics: average current consumption, battery lifetime, and energy efficiency of data transmission. The model is based on measurements performed on real hardware in a fully operational LR-FHSS network. While in our evaluation, LR-FHSS can show worse consumption figures than LoRa, we find that with optimal configuration, the battery lifetime of LR-FHSS end devices can reach 2.5 years for a 50 min notification period. For the most energy-efficient payload size, this lifespan can be extended to a theoretical maximum of up to 16 years with a one-day notification interval using a cell-coin battery.

19.
Mod Rheumatol ; 34(6): 1095-1102, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38511322

RESUMO

OBJECTIVES: Late-onset rheumatoid arthritis (LORA), which has been increasing in recent years, lacks evidence for initial treatment. Japanese rheumatology experts recognized this gap and addressed it by developing consensus statements on the first clinical application of LORA. METHODS: These statements were created following an introductory discussion about treatment fundamentals, which included a review of existing literature and cohort data. The steering committee created a draft, which was refined using a modified Delphi method that involved panel members reaching a consensus. The panel made decisions based on input from geriatric experts, clinical epidemiologists, guideline developers, patient groups, and the LORA Research Subcommittee of the Japan College of Rheumatology. RESULTS: The consensus identified four established facts, three basic approaches, and six expert opinions for managing LORA. Methotrexate was recommended as the primary treatment, with molecular-targeted agents being considered if treatment goals cannot be achieved. An emphasis was placed on assessing the lives of older patients due to challenges in risk management and methotrexate accessibility caused by comorbidities or cognitive decline. CONCLUSIONS: The experts substantiated and refined 13 statements for the initial treatment of LORA. To validate these claims, the next is to conduct a registry study focusing on new LORA cases.


Assuntos
Antirreumáticos , Artrite Reumatoide , Consenso , Metotrexato , Humanos , Artrite Reumatoide/tratamento farmacológico , Antirreumáticos/uso terapêutico , Metotrexato/uso terapêutico , Idade de Início , Idoso , Reumatologia/normas
20.
Artigo em Inglês | MEDLINE | ID: mdl-37773999

RESUMO

OBJECTIVES: Oral contraceptives (OC) and menopausal hormone therapy (MHT) contain exogenous sex hormones and are used by millions of women around the world. However, their effect on development of rheumatoid arthritis (RA) is still debated and the current literature suggests that they may exert opposite effects on the risk of RA. The present study aimed to estimate the effects of exogenous hormones on development of RA, both during the reproductive lifespan and later in life. METHODS: The association between OC and RA, as well as between MHT and late-onset RA (LORA), was investigated using time-dependent Cox regression modelling in white British women from the UK Biobank (N = 236 602 and N = 102 466, respectively) and replicated in women from all ethnic groups. RESULTS: OC use was associated with a decreased risk of RA in ever-users (hazard ratio [HR]=0.89; 95% CI = 0.82-0.96), as well as in current (HR = 0.81; 0.73-0.91) and former users (HR = 0.92; 0.84 -1.00), compared with never-users. In contrast, MHT use was associated with an increased risk of LORA in ever-users (HR = 1.16; 1.06-1.26) as well as in former users (HR = 1.13; 1.03-1.24) compared with never-users. CONCLUSION: OC use appears to protect against RA, while MHT may increase the risk of LORA. This study provides new insights into the possible inverse effect of exposure to different exogenous sex hormones on the risk of RA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA