Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
1.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37949654

RESUMO

Sudden and surprising sensory events trigger neural processes that swiftly adjust behavior. To study the phylogenesis and the mechanism of this phenomenon, we trained two male rhesus monkeys to keep a cursor inside a visual target by exerting force on an isometric joystick. We examined the effect of surprising auditory stimuli on exerted force, scalp electroencephalographic (EEG) activity, and local field potentials (LFPs) recorded from the dorsolateral prefrontal cortex. Auditory stimuli elicited (1) a biphasic modulation of isometric force, a transient decrease followed by a corrective tonic increase, and (2) EEG and LFP deflections dominated by two large negative-positive waves (N70 and P130). The EEG potential was symmetrical and maximal at the scalp vertex, highly reminiscent of the human "vertex potential." Electrocortical potentials and force were tightly coupled: the P130 amplitude predicted the magnitude of the corrective force increase, particularly in the LFPs recorded from deep rather than superficial cortical layers. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to salient sensory events.Significance Statement Survival in the natural world depends on an animal's capacity to adapt ongoing behavior to abrupt unexpected events. To study the neural mechanisms underlying this capacity, we trained monkeys to apply constant force on a joystick while we recorded their brain activity from the scalp and the prefrontal cortex contralateral to the hand holding the joystick. Unexpected auditory stimuli elicited a biphasic force modulation: a transient reduction followed by a corrective adjustment. The same stimuli also elicited EEG and LFP responses, dominated by a biphasic wave that predicted the magnitude of the behavioral adjustment. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to unexpected events.


Assuntos
Eletroencefalografia , Humanos , Animais , Masculino , Macaca mulatta , Eletroencefalografia/métodos
2.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38724284

RESUMO

While ipsilesional cortical electroencephalography has been associated with poststroke recovery mechanisms and outcomes, the role of the cerebellum and its interaction with the ipsilesional cortex is still largely unknown. We have previously shown that poststroke motor control relies on increased corticocerebellar coherence (CCC) in the low beta band to maintain motor task accuracy and to compensate for decreased excitability of the ipsilesional cortex. We now extend our work to investigate corticocerebellar network changes associated with chronic stimulation of the dentato-thalamo-cortical pathway aimed at promoting poststroke motor rehabilitation. We investigated the excitability of the ipsilesional cortex, the dentate (DN), and their interaction as a function of treatment outcome measures. Relative to baseline, 10 human participants (two women) at the end of 4-8 months of DN deep brain stimulation (DBS) showed (1) significantly improved motor control indexed by computerized motor tasks; (2) significant increase in ipsilesional premotor cortex event-related desynchronization that correlated with improvements in motor function; and (3) significant decrease in CCC, including causal interactions between the DN and ipsilesional cortex, which also correlated with motor function improvements. Furthermore, we show that the functional state of the DN in the poststroke state and its connectivity with the ipsilesional cortex were predictive of motor outcomes associated with DN-DBS. The findings suggest that as participants recovered, the ipsilesional cortex became more involved in motor control, with less demand on the cerebellum to support task planning and execution. Our data provide unique mechanistic insights into the functional state of corticocerebellar-cortical network after stroke and its modulation by DN-DBS.


Assuntos
Núcleos Cerebelares , Estimulação Encefálica Profunda , Recuperação de Função Fisiológica , Acidente Vascular Cerebral , Humanos , Feminino , Estimulação Encefálica Profunda/métodos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Recuperação de Função Fisiológica/fisiologia , Idoso , Núcleos Cerebelares/fisiopatologia , Núcleos Cerebelares/fisiologia , Córtex Motor/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Adulto , Eletroencefalografia
3.
Brain ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869168

RESUMO

Control of actions allows adaptive, goal-directed behaviour. The basal ganglia, including the subthalamic nucleus, are thought to play a central role in dynamically controlling actions through recurrent negative feedback loops with the cerebral cortex. Here, we summarize recent translational studies that used deep brain stimulation to record neural activity from and apply electrical stimulation to the subthalamic nucleus in people with Parkinson's disease. These studies have elucidated spatial, spectral and temporal features of the neural mechanisms underlying the controlled delay of actions in cortico-subthalamic networks and demonstrated their causal effects on behaviour in distinct processing windows. While these mechanisms have been conceptualized as control signals for suppressing impulsive response tendencies in conflict tasks and as decision threshold adjustments in value-based and perceptual decisions, we propose a common framework linking decision-making, cognition and movement. Within this framework subthalamic deep brain stimulation can lead to suboptimal choices by reducing the time that patients take for deliberation before committing to an action. However, clinical studies have consistently shown that the occurrence of impulse control disorders is reduced, not increased, after subthalamic deep brain stimulation surgery. This apparent contradiction can be reconciled when recognizing the multifaceted nature of impulsivity, its underlying mechanisms and modulation by treatment. While subthalamic deep brain stimulation renders patients susceptible to making decisions without proper forethought, this can be disentangled from effects related to dopamine comprising sensitivity to benefits vs. costs, reward delay aversion and learning from outcomes. Alterations in these dopamine-mediated mechanisms are thought to underlie the development of impulse control disorders, and can be relatively spared with reduced dopaminergic medication after subthalamic deep brain stimulation. Together, results from studies using deep brain stimulation as an experimental tool have improved our understanding of action control in the human brain and have important implications for treatment of patients with Neurological disorders.

4.
Proc Natl Acad Sci U S A ; 119(35): e2205881119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36018837

RESUMO

Deep brain stimulation procedures offer an invaluable opportunity to study disease through intracranial recordings from awake patients. Here, we address the relationship between single-neuron and aggregate-level (local field potential; LFP) activities in the subthalamic nucleus (STN) and thalamic ventral intermediate nucleus (Vim) of patients with Parkinson's disease (n = 19) and essential tremor (n = 16), respectively. Both disorders have been characterized by pathologically elevated LFP oscillations, as well as an increased tendency for neuronal bursting. Our findings suggest that periodic single-neuron bursts encode both pathophysiological beta (13 to 33 Hz; STN) and tremor (4 to 10 Hz; Vim) LFP oscillations, evidenced by strong time-frequency and phase-coupling relationships between the bursting and LFP signals. Spiking activity occurring outside of bursts had no relationship to the LFP. In STN, bursting activity most commonly preceded the LFP oscillation, suggesting that neuronal bursting generated within STN may give rise to an aggregate-level LFP oscillation. In Vim, LFP oscillations most commonly preceded bursting activity, suggesting that neuronal firing may be entrained by periodic afferent inputs. In both STN and Vim, the phase-coupling relationship between LFP and high-frequency oscillation (HFO) signals closely resembled the relationships between the LFP and single-neuron bursting. This suggests that periodic single-neuron bursting is likely representative of a higher spatial and temporal resolution readout of periodic increases in the amplitude of HFOs, which themselves may be a higher resolution readout of aggregate-level LFP oscillations. Overall, our results may reconcile "rate" and "oscillation" models of Parkinson's disease and shed light on the single-neuron basis and origin of pathophysiological oscillations in movement disorders.


Assuntos
Tremor Essencial , Neurônios , Doença de Parkinson , Núcleo Subtalâmico , Ritmo beta , Estimulação Encefálica Profunda , Tremor Essencial/fisiopatologia , Humanos , Neurônios/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia
5.
J Neurosci ; 43(50): 8700-8722, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37903594

RESUMO

Social communication is crucial for the survival of many species. In most vertebrates, a dedicated chemosensory system, the vomeronasal system (VNS), evolved to process ethologically relevant chemosensory cues. The first central processing stage of the VNS is the accessory olfactory bulb (AOB), which sends information to downstream brain regions via AOB mitral cells (AMCs). Recent studies provided important insights about the functional properties of AMCs, but little is known about the principles that govern their coordinated activity. Here, we recorded local field potentials (LFPs) and single-unit activity in the AOB of adult male and female mice during presentation of natural stimuli. Our recordings reveal prominent LFP theta-band oscillatory episodes with a characteristic spatial pattern across the AOB. Throughout an experiment, the AOB network shows varying degrees of similarity to this pattern, in a manner that depends on the sensory stimulus. Analysis of LFP signal polarity and single-unit activity indicates that oscillatory episodes are generated locally within the AOB, likely representing a reciprocal interaction between AMCs and granule cells. Notably, spike times of many AMCs are constrained to the negative LFP oscillation phase in a manner that can drastically affect integration by downstream processing stages. Based on these observations, we propose that LFP oscillations may gate, bind, and organize outgoing signals from individual AOB neurons to downstream processing stages. Our findings suggest that, as in other neuronal systems and brain regions, population-level oscillations play a key role in organizing and enhancing transmission of socially relevant chemosensory information.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is the first central stage of the vomeronasal system, a chemosensory system dedicated to processing cues from other organisms. Information from the AOB is conveyed to other brain regions via activity of its principal neurons, AOB mitral cells (AMCs). Here, we show that socially relevant sensory stimulation of the mouse vomeronasal system leads not only to changes in AMC activity, but also to distinct theta-band (∼5 Hz) oscillatory episodes in the local field potential. Notably AMCs favor the negative phase of these oscillatory events. Our findings suggest a novel mechanism for the temporal coordination of distributed patterns of neuronal activity, which can serve to efficiently activate downstream processing stages.


Assuntos
Neurônios , Bulbo Olfatório , Camundongos , Masculino , Feminino , Animais , Bulbo Olfatório/fisiologia , Neurônios/fisiologia , Sinais (Psicologia)
6.
J Neurosci ; 43(50): 8649-8662, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37852789

RESUMO

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that is rapidly growing in popularity for studying causal brain-behavior relationships. However, its dose-dependent centrally induced neural mechanisms and peripherally induced sensory costimulation effects remain debated. Understanding how TMS stimulation parameters affect brain responses is vital for the rational design of TMS protocols. Studying these mechanisms in humans is challenging because of the limited spatiotemporal resolution of available noninvasive neuroimaging methods. Here, we leverage invasive recordings of local field potentials in a male and a female nonhuman primate (rhesus macaque) to study TMS mesoscale responses. We demonstrate that early TMS-evoked potentials show a sigmoidal dose-response curve with stimulation intensity. We further show that stimulation responses are spatially specific. We use several control conditions to dissociate centrally induced neural responses from auditory and somatosensory coactivation. These results provide crucial evidence regarding TMS neural effects at the brain circuit level. Our findings are highly relevant for interpreting human TMS studies and biomarker developments for TMS target engagement in clinical applications.SIGNIFICANCE STATEMENT Transcranial magnetic stimulation (TMS) is a widely used noninvasive brain stimulation method to stimulate the human brain. To advance its utility for clinical applications, a clear understanding of its underlying physiological mechanisms is crucial. Here, we perform invasive electrophysiological recordings in the nonhuman primate brain during TMS, achieving a spatiotemporal precision not available in human EEG experiments. We find that evoked potentials are dose dependent and spatially specific, and can be separated from peripheral stimulation effects. This means that TMS-evoked responses can indicate a direct physiological stimulation response. Our work has important implications for the interpretation of human TMS-EEG recordings and biomarker development.


Assuntos
Eletroencefalografia , Estimulação Magnética Transcraniana , Masculino , Humanos , Feminino , Animais , Estimulação Magnética Transcraniana/métodos , Eletroencefalografia/métodos , Macaca mulatta , Potenciais Evocados/fisiologia , Biomarcadores , Potencial Evocado Motor/fisiologia
7.
J Neurosci ; 43(24): 4418-4433, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37169591

RESUMO

Automatic detection of a surprising change in the sensory input is a central element of exogenous attentional control. Stimulus-specific adaptation (SSA) is a potential neuronal mechanism detecting such changes and has been robustly described across sensory modalities and different instances of the ascending sensory pathways. However, little is known about the relationship of SSA to perception. To assess how deviating stimuli influence target signal detection, we used a behavioral cross-modal paradigm in mice and combined it with extracellular recordings from the primary somatosensory whisker cortex. In this paradigm, male mice performed a visual detection task while task-irrelevant whisker stimuli were either presented as repetitive "standard" or as rare deviant stimuli. We found a deviance distraction effect on the animals' performance: Faster reaction times but worsened target detection was observed in the presence of a deviant stimulus. Multiunit activity and local field potentials exhibited enhanced neuronal responses to deviant compared with standard whisker stimuli across all cortical layers, as a result of SSA. The deviant-triggered behavioral distraction correlated with these enhanced neuronal deviant responses only in the deeper cortical layers. However, the layer-specific effect of SSA on perception reduced with increasing task experience as a result of statistical distractor learning. These results demonstrate a layer-specific involvement of SSA on perception that is susceptible to modulation over time.SIGNIFICANCE STATEMENT Detecting sudden changes in our immediate environment is behaviorally relevant and important for efficient perceptual processing. However, the connection between the underpinnings of cortical deviance detection and perception remains unknown. Here, we investigate how the cortical representation of deviant whisker stimuli impacts visual target detection by recording local field potential and multiunit activity in the primary somatosensory cortex of mice engaged in a cross-modal visual detection task. We find that deviant whisker stimuli distract animals in their task performance, which correlates with enhanced neuronal responses for deviants in a layer-specific manner. Interestingly, this effect reduces with the increased experience of the animal as a result of distractor learning on statistical regularities.


Assuntos
Neurônios , Córtex Somatossensorial , Camundongos , Masculino , Animais , Córtex Somatossensorial/fisiologia , Tempo de Reação/fisiologia , Neurônios/fisiologia , Atenção/fisiologia , Estimulação Acústica/métodos
8.
Neuroimage ; 296: 120686, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871037

RESUMO

Centromedian nucleus (CM) is one of several intralaminar nuclei of the thalamus and is thought to be involved in consciousness, arousal, and attention. CM has been suggested to play a key role in the control of attention, by regulating the flow of information to different brain regions such as the ascending reticular system, basal ganglia, and cortex. While the neurophysiology of attention in visual and auditory systems has been studied in animal models, combined single unit and LFP recordings in human have not, to our knowledge, been reported. Here, we recorded neuronal activity in the CM nucleus in 11 patients prior to insertion of deep brain stimulation electrodes for the treatment of epilepsy while subjects performed an auditory attention task. Patients were requested to attend and count the infrequent (p = 0.2) odd or "deviant" tones, ignore the frequent standard tones and report the total number of deviant tones at trial completion. Spikes were discriminated, and LFPs were band pass filtered (5-45 Hz). Average peri­stimulus time histograms and spectra were constructed by aligning on tone onsets and statistically compared. The firing rate of CM neurons showed selective, multi-phasic responses to deviant tones in 81% of the tested neurons. Local field potential analysis showed selective beta and low gamma (13-45 Hz) modulations in response to deviant tones, also in a multi-phasic pattern. The current study demonstrates that CM neurons are under top-down control and participate in the selective processing during auditory attention and working memory. These results, taken together, implicate the CM in selective auditory attention and working memory and support a role of beta and low gamma oscillatory activity in cognitive processes. It also has potential implications for DBS therapy for epilepsy and non-motor symptoms of PD, such as apathy and other disorders of attention.


Assuntos
Atenção , Percepção Auditiva , Núcleos Intralaminares do Tálamo , Memória de Curto Prazo , Neurônios , Humanos , Atenção/fisiologia , Masculino , Feminino , Memória de Curto Prazo/fisiologia , Adulto , Percepção Auditiva/fisiologia , Núcleos Intralaminares do Tálamo/fisiologia , Pessoa de Meia-Idade , Neurônios/fisiologia , Adulto Jovem , Estimulação Acústica , Estimulação Encefálica Profunda/métodos
9.
Neuroimage ; 297: 120696, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909761

RESUMO

How is information processed in the cerebral cortex? In most cases, recorded brain activity is averaged over many (stimulus) repetitions, which erases the fine-structure of the neural signal. However, the brain is obviously a single-trial processor. Thus, we here demonstrate that an unsupervised machine learning approach can be used to extract meaningful information from electro-physiological recordings on a single-trial basis. We use an auto-encoder network to reduce the dimensions of single local field potential (LFP) events to create interpretable clusters of different neural activity patterns. Strikingly, certain LFP shapes correspond to latency differences in different recording channels. Hence, LFP shapes can be used to determine the direction of information flux in the cerebral cortex. Furthermore, after clustering, we decoded the cluster centroids to reverse-engineer the underlying prototypical LFP event shapes. To evaluate our approach, we applied it to both extra-cellular neural recordings in rodents, and intra-cranial EEG recordings in humans. Finally, we find that single channel LFP event shapes during spontaneous activity sample from the realm of possible stimulus evoked event shapes. A finding which so far has only been demonstrated for multi-channel population coding.

10.
Neurobiol Dis ; 199: 106589, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969232

RESUMO

BACKGROUND: Despite the large body of work on local field potentials (LFPs), a measure of oscillatory activity in patients with Parkinson's disease (PD), the longitudinal evolution of LFPs is less explored. OBJECTIVE: To determine LFP fluctuations collected in clinical settings in patients with PD and STN deep brain stimulation (DBS). METHODS: Twenty-two STN-DBS patients (age: 67.6 ± 8.3 years; 9 females; disease duration: 10.3 ± 4.5 years) completed bilateral LFP recordings over three visits in the OFF-stimulation setting. Peak and band power measures were calculated from each recording. RESULTS: After bilateral LFP recordings, at least one peak was detected in 18 (81.8%), 20 (90.9%), and 22 (100%) patients at visit 1, 2, and 3, respectively. No significant differences were seen in primary peak amplitude (F = 2.91, p = 0.060) over time. Amplitude of the second largest peak (F = 5.49, p = 0.006) and low-beta (F = 6.89, p = 0.002), high-beta (F = 13.23, p < 0.001), and gamma (F = 12.71, p < 0.001) band power demonstrated a significant effect of time. Post hoc comparisons determined low-beta power (Visit 1-Visit 2: t = 3.59, p = 0.002; Visit 1-Visit 3: t = 2.61, p = 0.031), high-beta (Visit 1-Visit 2: t = 4.64, p < 0.001; Visit 1-Visit 3: t = 4.23, p < 0.001) and gamma band power (Visit 1-Visit 2: t = 4.65, p < 0.001; Visit 1-Visit 3: t = 4.00, p < 0.001) were significantly increased from visit 1 recordings to both follow-up visits. CONCLUSION: Our results provide substantial evidence that LFP can reliably be detected across multiple real-world clinical visits in patients with STN-DBS for PD. Moreover, it provides insights on the evolution of these LFPs.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Feminino , Masculino , Núcleo Subtalâmico/fisiopatologia , Idoso , Estimulação Encefálica Profunda/métodos , Pessoa de Meia-Idade
11.
Hippocampus ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949057

RESUMO

Olfactory oscillations may enhance cognitive processing through coupling with beta (ß, 15-30 Hz) and gamma (γ, 30-160 Hz) activity in the hippocampus (HPC). We hypothesize that coupling between olfactory bulb (OB) and HPC oscillations is increased by cholinergic activation in control rats and is reduced in kainic-acid-treated epileptic rats, a model of temporal lobe epilepsy. OB γ2 (63-100 Hz) power was higher during walking and immobility-awake (IMM) compared to sleep, while γ1 (30-57 Hz) power was higher during grooming than other behavioral states. Muscarinic cholinergic agonist pilocarpine (25 mg/kg ip) with peripheral muscarinic blockade increased OB power and OB-HPC coherence at ß and γ1 frequency bands. A similar effect was found after physostigmine (0.5 mg/kg ip) but not scopolamine (10 mg/kg ip). Pilocarpine increased bicoherence and cross-frequency coherence (CFC) between OB slow waves (SW, 1-5 Hz) and hippocampal ß, γ1 and γ2 waves, with stronger coherence at CA1 alveus and CA3c than CA1 stratum radiatum. Bicoherence further revealed a nonlinear interaction of ß waves in OB with ß waves at the CA1-alveus. Beta and γ1 waves in OB or HPC were segregated at one phase of the OB-SW, opposite to the phase of γ2 and γ3 (100-160 Hz) waves, suggesting independent temporal processing of ß/γ1 versus γ2/γ3 waves. At CA1 radiatum, kainic-acid-treated epileptic rats compared to control rats showed decreased theta power, theta-ß and theta-γ2 CFC during baseline walking, decreased CFC of HPC SW with γ2 and γ3 waves during baseline IMM, and decreased coupling of OB SW with ß and γ2 waves at CA1 alveus after pilocarpine. It is concluded that ß and γ waves in the OB and HPC are modulated by a slow respiratory rhythm, in a cholinergic and behavior-dependent manner, and OB-HPC functional connectivity at ß and γ frequencies may enhance cognitive functions.

12.
Mov Disord ; 39(1): 192-197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37888906

RESUMO

BACKGROUND: Excessive subthalamic nucleus (STN) ß-band (13-35 Hz) synchronized oscillations has garnered interest as a biomarker for characterizing disease state and developing adaptive stimulation systems for Parkinson's disease (PD). OBJECTIVES: To report on a patient with abnormal treatment-responsive modulation in the ß-band. METHODS: We examined STN local field potentials from an externalized deep brain stimulation (DBS) lead while assessing PD motor signs in four conditions (OFF, MEDS, DBS, and MEDS+DBS). RESULTS: The patient presented here exhibited a paradoxical increase in ß power following administration of levodopa and pramipexole (MEDS), but an attenuation in ß power during DBS and MEDS+DBS despite clinical improvement of 50% or greater under all three therapeutic conditions. CONCLUSIONS: This case highlights the need for further study on the role of ß oscillations in the pathophysiology of PD and the importance of personalized approaches to the development of ß or other biomarker-based DBS closed loop algorithms. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/fisiologia , Levodopa/uso terapêutico , Biomarcadores
13.
Mov Disord ; 39(4): 684-693, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380765

RESUMO

BACKGROUND: The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES: The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS: We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS: The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS: Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Magnetoencefalografia , Núcleo Subtalâmico , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Magnetoencefalografia/métodos , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Estimulação Encefálica Profunda/métodos , Tremor Essencial/fisiopatologia , Tremor Essencial/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Tálamo/fisiologia , Tálamo/fisiopatologia , Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Núcleos Ventrais do Tálamo/fisiologia , Núcleos Ventrais do Tálamo/fisiopatologia
14.
J Exp Biol ; 227(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197244

RESUMO

Mechanoreceptors in hearing organs transduce sound-induced mechanical responses into neuronal signals, which are further processed and forwarded to the brain along a chain of neurons in the auditory pathway. Bushcrickets (katydids) have their ears in the front leg tibia, and the first synaptic integration of sound-induced neuronal signals takes place in the primary auditory neuropil of the prothoracic ganglion. By combining intracellular recordings of the receptor activity in the ear, extracellular multichannel array recordings on top of the prothoracic ganglion and hook electrode recordings at the neck connective, we mapped the timing of neuronal responses to tonal sound stimuli along the auditory pathway from the ears towards the brain. The use of the multielectrode array allows the observation of spatio-temporal patterns of neuronal responses within the prothoracic ganglion. By eliminating the sensory input from one ear, we investigated the impact of contralateral projecting interneurons in the prothoracic ganglion and added to previous research on the functional importance of contralateral inhibition for binaural processing. Furthermore, our data analysis demonstrates changes in the signal integration processes at the synaptic level indicated by a long-lasting increase in the local field potential amplitude. We hypothesize that this persistent increase of the local field potential amplitude is important for the processing of complex signals, such as the conspecific song.


Assuntos
Audição , Ortópteros , Animais , Audição/fisiologia , Neurônios/fisiologia , Vias Auditivas/fisiologia , Interneurônios/fisiologia , Estimulação Acústica
15.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34934000

RESUMO

Although it is well known that activity-dependent motor cortex (MCX) plasticity produces long-term potentiation (LTP) of local cortical circuits, leading to enhanced muscle function, the effects on the corticospinal projection to spinal neurons has not yet been thoroughly studied. Here, we investigate a spinal locus for corticospinal tract (CST) plasticity in anesthetized rats using multichannel recording of motor-evoked, intraspinal local field potentials (LFPs) at the sixth cervical spinal cord segment. We produced LTP by intermittent theta burst electrical stimulation (iTBS) of the wrist area of MCX. Approximately 3 min of MCX iTBS potentiated the monosynaptic excitatory LFP recorded within the CST termination field in the dorsal horn and intermediate zone for at least 15 min after stimulation. Ventrolaterally, in the spinal cord gray matter, which is outside the CST termination field in rats, iTBS potentiated an oligosynaptic negative LFP that was localized to the wrist muscle motor pool. Spinal LTP remained robust, despite pharmacological blockade of iTBS-induced LTP within MCX using MK801, showing that activity-dependent spinal plasticity can be induced without concurrent MCX LTP. Pyramidal tract iTBS, which preferentially activates the CST, also produced significant spinal LTP, indicating the capacity for plasticity at the CST-spinal interneuron synapse. Our findings show CST monosynaptic LTP in spinal interneurons and demonstrate that spinal premotor circuits are capable of further modifying descending MCX control signals in an activity-dependent manner.


Assuntos
Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Tratos Piramidais/fisiologia , Medula Espinal/fisiologia , Animais , Potencial Evocado Motor/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Ratos
16.
Neuromodulation ; 27(3): 551-556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37768258

RESUMO

BACKGROUND: Novel deep brain stimulation devices can record local field potentials (LFPs), which represent the synchronous synaptic activity of neuronal populations. The clinical relevance of LFPs in patients with dystonia remains unclear. OBJECTIVES: We sought to determine whether chronic LFPs recorded from the globus pallidus internus (GPi) were associated with symptoms of dystonia in children. MATERIALS AND METHODS: Ten patients with heterogeneous forms of dystonia (genetic and acquired) were implanted with neurostimulators that recorded LFP spectral snapshots. Spectra were compared across parent-reported asymptomatic and symptomatic periods, with daily narrowband data superimposed in 24 one-hour bins. RESULTS: Spectral power increased during periods of registered dystonic symptoms: mean increase = 102%, CI: (76.7, 132). Circadian rhythms within the LFP narrowband time series correlated with dystonic symptoms: for delta/theta-waves, correlation = 0.33, CI: (0.18, 0.47) and for alpha waves, correlation = 0.27, CI: (0.14, 0.40). CONCLUSIONS: LFP spectra recorded in the GPi indicate a circadian pattern and are associated with the manifestation of dystonic symptoms.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Criança , Humanos , Globo Pálido , Distonia/diagnóstico , Distonia/terapia , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/terapia , Eletrodos Implantados
17.
Neuromodulation ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878055

RESUMO

OBJECTIVE: Advancements in deep brain stimulation (DBS) devices provide a unique opportunity to record local field potentials longitudinally to improve the efficacy of treatment for intractable facial pain. We aimed to identify potential electrophysiological biomarkers of pain in the ventral posteromedial nucleus (VPM) of the thalamus and periaqueductal gray (PAG) using a long-term sensing DBS system. MATERIALS AND METHODS: We analyzed power spectra of ambulatory pain-related events from one patient implanted with a long-term sensing generator, representing different pain intensities (pain >7, pain >9) and pain qualities (no pain, burning, stabbing, and shocking pain). Power spectra were parametrized to separate oscillatory and aperiodic features and compared across the different pain states. RESULTS: Overall, 96 events were marked during a 16-month follow-up. Parameterization of spectra revealed a total of 62 oscillatory peaks with most in the VPM (77.4%). The pain-free condition did not show any oscillations. In contrast, ß peaks were observed in the VPM during all episodes (100%) associated with pain >9, 56% of episodes with pain >7, and 50% of burning pain events (center frequencies: 28.4 Hz, 17.8 Hz, and 20.7 Hz, respectively). Episodes of pain >9 indicated the highest relative ß band power in the VPM and decreased aperiodic exponents (denoting the slope of the power spectra) in both the VPM and PAG. CONCLUSIONS: For this patient, an increase in ß band activity in the sensory thalamus was associated with severe facial pain, opening the possibility for closed-loop DBS in facial pain.

18.
Neuroimage ; 270: 119938, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775081

RESUMO

Cortical function emerges from the interactions of multi-scale networks that may be studied at a high level using neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a new framework called laminar NMM, or LaNMM for short, where we combine conduction physics with NMMs to simulate electrophysiological measurements. Then, we employ this framework to infer the location of oscillatory generators from laminar-resolved data collected from the prefrontal cortex in the macaque monkey. We define a minimal model capable of generating coupled slow and fast oscillations, and we optimize LaNMM-specific parameters to fit multi-contact recordings. We rank the candidate models using an optimization function that evaluates the match between the functional connectivity (FC) of the model and data, where FC is defined by the covariance between bipolar voltage measurements at different cortical depths. The family of best solutions reproduces the FC of the observed electrophysiology by selecting locations of pyramidal cells and their synapses that result in the generation of fast activity at superficial layers and slow activity across most depths, in line with recent literature proposals. In closing, we discuss how this hybrid modeling framework can be more generally used to infer cortical circuitry.


Assuntos
Macaca , Neurônios , Animais , Neurônios/fisiologia , Fenômenos Eletrofisiológicos
19.
Neuroimage ; 271: 120028, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36925086

RESUMO

The attentional blink (AB) refers to an impaired identification of target stimuli (T2), which are presented shortly after a prior target (T1) within a rapid serial visual presentation (RSVP) stream. It has been suggested that the AB is related to a failed transfer of T2 into working memory and that hippocampus (HC) and entorhinal cortex (EC) are regions crucial for this transfer. Since the event-related P3 component has been linked to inhibitory processes, we hypothesized that the hippocampal P3 elicited by T1 may impact on T2 processing within HC and EC. To test this hypothesis, we reanalyzed microwire data from 21 patients, who performed an RSVP task, during intracranial recordings for epilepsy surgery assessment (Reber et al., 2017). We identified T1-related hippocampal P3 components in the local field potentials (LFPs) and determined the temporal onset of T2 processing in HC/EC based on single-unit response onset activity. In accordance with our hypothesis, T1-related single-trial P3 amplitudes at the onset of T2 processing were clearly larger for unseen compared to seen T2-stimuli. Moreover, increased T1-related single-trial P3 peak latencies were found for T2[unseen] versus T2[seen] trials in case of lags 1 to 3, which was in line with our predictions. In conclusion, our findings support inhibition models of the AB and indicate that the hippocampal P3 elicited by T1 plays a central role in the AB.


Assuntos
Intermitência na Atenção Visual , Humanos , Intermitência na Atenção Visual/fisiologia , Atenção/fisiologia , Memória de Curto Prazo/fisiologia , Quimiocina CCL4 , Hipocampo
20.
Neurobiol Dis ; 185: 106239, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499882

RESUMO

BACKGROUND: Speech impairment is commonly reported in Parkinson's disease and is not consistently improved by available therapies - including deep brain stimulation of the subthalamic nucleus (STN-DBS), which can worsen communication performance in some patients. Improving the outcome of STN-DBS on speech is difficult due to our incomplete understanding of the contribution of the STN to fluent speaking. OBJECTIVE: To assess the relationship between subthalamic neural activity and speech production and intelligibility. METHODS: We investigated bilateral STN local field potentials (LFPs) in nine parkinsonian patients chronically implanted with DBS during overt reading. LFP spectral features were correlated with clinical scores and measures of speech intelligibility. RESULTS: Overt reading was associated with increased beta-low ([1220) Hz) power in the left STN, whereas speech intelligibility correlated positively with beta-high ([2030) Hz) power in the right STN. CONCLUSION: We identified separate contributions from frequency and brain lateralization of the STN in the execution of an overt reading motor task and its intelligibility. This subcortical organization could be exploited for new adaptive stimulation strategies capable of identifying the occurrence of speaking behavior and facilitating its functional execution.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Fala/fisiologia , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA