Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Nanobiotechnology ; 22(1): 251, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750597

RESUMO

BACKGROUND: Hypothermia is a promising therapy for traumatic brain injury (TBI) in the clinic. However, the neuroprotective outcomes of hypothermia-treated TBI patients in clinical studies are inconsistent due to several severe side effects. Here, an injectable refrigerated hydrogel was designed to deliver 3-iodothyronamine (T1AM) to achieve a longer period of local hypothermia for TBI treatment. Hydrogel has four advantages: (1) It can be injected into injured sites after TBI, where it forms a hydrogel and avoids the side effects of whole-body cooling. (2) Hydrogels can biodegrade and be used for controlled drug release. (3) Released T1AM can induce hypothermia. (4) This hydrogel has increased medical value given its simple operation and ability to achieve timely treatment. METHODS: Pol/T hydrogels were prepared by a low-temperature mixing method and characterized. The effect of the Pol/T hydrogel on traumatic brain injury in mice was studied. The degradation of the hydrogel at the body level was observed with a small animal imager. Brain temperature and body temperature were measured by brain thermometer and body thermometer, respectively. The apoptosis of peripheral nerve cells was detected by immunohistochemical staining. The protective effect of the hydrogels on the blood-brain barrier (BBB) after TBI was evaluated by the Evans blue penetration test. The protective effect of hydrogel on brain edema after injury in mice was detected by Magnetic resonance (MR) in small animals. The enzyme linked immunosorbent assay (ELISA) method was used to measure the levels of inflammatory factors. The effects of behavioral tests on the learning ability and exercise ability of mice after injury were evaluated. RESULTS: This hydrogel was able to cool the brain to hypothermia for 12 h while maintaining body temperature within the normal range after TBI in mice. More importantly, hypothermia induced by this hydrogel leads to the maintenance of BBB integrity, the prevention of cell death, the reduction of the inflammatory response and brain edema, and the promotion of functional recovery after TBI in mice. This cooling method could be developed as a new approach for hypothermia treatment in TBI patients. CONCLUSION: Our study showed that injectable and biodegradable frozen Pol/T hydrogels to induce local hypothermia in TBI mice can be used for the treatment of traumatic brain injury.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Hidrogéis , Hipotermia Induzida , Animais , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Camundongos , Hidrogéis/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Masculino , Hipotermia Induzida/métodos , Neuroproteção/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Temperatura Corporal , Camundongos Endogâmicos C57BL
2.
J Neurochem ; 160(1): 128-144, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496050

RESUMO

Therapeutic hypothermia (TH) has applications dating back millennia. In modern history, however, TH saw its importation into medical practice where investigations have demonstrated that TH is efficacious in ischemic insults, notably cardiac arrest and hypoxic-ischemic encephalopathy. As well, studies have been undertaken to investigate whether TH can provide benefit in focal stroke (i.e., focal ischemia and intracerebral hemorrhage). However, clinical studies have encountered various challenges with induction and maintenance of post-stroke TH. Most clinical studies have attempted to use body-wide cooling protocols, commonly hindered by side effects that can worsen post-stroke outcomes. Some of the complications and difficulties with systemic TH can be circumvented by using local hypothermia (LH) methods. Additional advantages include the potential for lower target temperatures to be achieved and faster TH induction rates with LH. This systematic review summarizes the body of clinical and preclinical LH focal stroke studies and raises key points to consider for future LH research. We conclude with an overview of LH neuroprotective mechanisms and a comparison of LH mechanisms with those observed with systemic TH. Overall, whereas many LH studies have been conducted preclinically in the context of focal ischemia, insufficient work has been done in intracerebral hemorrhage. Furthermore, key translational studies have yet to be done in either stroke subtype (e.g., varied models and time-to-treat, studies considering aged animals or animals with co-morbidities). Few clinical LH investigations have been performed and the optimal LH parameters to achieve neuroprotection are unknown.


Assuntos
Hipotermia Induzida/métodos , Acidente Vascular Cerebral/terapia , Animais , Humanos
3.
Rev Cardiovasc Med ; 23(1): 21, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35092213

RESUMO

After reading with great interest the article entitled: "Exploring the impact of the COVID-19 pandemic on provision of cardiology services: a scoping review" redacted by Farah Yasmin et al., published by Reviews in Cardiovascular Medicine, we would like to add the following thoughts. Acute respiratory distress syndrome (ARDS) in Coronavirus disease 2019 (COVID-19) and pulmonary insufficiency reduces blood oxygen saturation and results in hypoxia. Therefore, the determining factor in the survival of patients with COVID-19 is their resistance to hypoxia. At the same time, it is the cardiovascular system that is an important and very sensitive link in the human adaptation to hypoxia. That is why it is necessary to carefully study the relationship between diseases of the heart, blood vessels, the reactivity of the cardiovascular system to hypoxia, and mortality in patients who develop ARDS with COVID-19.


Assuntos
COVID-19 , Cardiologia , Sistema Cardiovascular , Insuficiência Respiratória , Humanos , Hipóxia/diagnóstico , Hipóxia/epidemiologia , Hipóxia/terapia , Pandemias , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/epidemiologia , Insuficiência Respiratória/terapia , SARS-CoV-2
4.
Rev Cardiovasc Med ; 23(5): 174, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-39077621

RESUMO

Background: Since changes in the tone and size of the lumen of peripheral blood vessels with massive blood loss are part of the mechanism of adaptation to hypoxia, which automatically changes the flow of warm blood to the fingertips, it was assumed that infrared thermography of the fingertips can reveal the dynamics of heat release in them, reflecting the reactivity of peripheral blood vessels and adaptation to hypoxia. It was assumed that the cuff occlusion test (COT) would assess the available reserves of adaptation to hypoxia and improve the accuracy of resistance to hypoxia and the prognosis of survival in massive blood loss. Methods: The temperature change in the fingertips before and after the application of COT in the corresponding hand was studied in healthy adult volunteers, donors after donating 400 mL of blood and in victims with blood loss of less than or more than 35%. Results: During COT, the temperature in the fingers of the ischemic hand decreased in all the subjects. After COT the temperature in the fingers rose above the baseline level in healthy volunteers and in donors who donated 400 mL of blood, but did not increase in most patients with massive blood loss, of which some patients died despite the treatment. Conclusions: We report the dynamics of local temperature in the finger pads after the COT in healthy adult volunteers, in donors after they donated 400 mL of venous blood each, and in victims with massive blood loss less than or greater than 35%. It is shown that the detection of local hyperthermia in the finger pads after occlusion is a sign of good adaptation to hypoxia and the probability of survivability of the victim with massive blood loss.

5.
J Biophotonics ; : e202400318, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301808

RESUMO

While cryotherapy is one of the traditional ways to reduce postoperative complications in maxillofacial surgery, the cooling degree is not regulated in most cases and the achieved effect is not properly controlled. Therefore, to develop optimal cooling modes, we propose to study the buccal vascular response to cooling, which has not been previously shown. To evaluate the effect of cooling, we analyzed vessel networks using optical coherence tomography angiography (OCT-A). The cheek vessels were OCT-A monitored using cooling by an ice bag/cooling mask. We found the advantages of using a cooling mask over an ice bag consist of a statistically significant decrease in the perfused vessel density (PVD) of the papillary layer at the oral mucosa. The absence of the reticular layer vessel reaction to any type of cooling was noted. We argue for the necessity to develop optimal modes of cryotherapy, which will contribute to blood perfusion reduction and reduction of PVD recovery.

6.
Biomedicines ; 10(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35052784

RESUMO

Even nowadays, the question of whether hypothermia can genuinely be considered therapeutic care for patients with traumatic spinal cord injury (SCI) remains unanswered. Although the mechanisms of hypothermia action are yet to be fully explored, early hypothermia for patients suffering from acute SCI has already been implemented in clinical settings. This article discusses measures for inducing various forms of hypothermia and summarizes several hypotheses describing the likelihood of hypothermia mechanisms of action. We present our objective neuro-electrophysiological results and demonstrate that early hypothermia manifests neuroprotective effects mainly during the first- and second-month post-SCI, depending on the severity of the injury, time of intervening, duration, degree, and modality of inducing hypothermia. Nevertheless, eventually, its beneficial effects gradually but consistently diminish. In addition, we report potential complications and side effects for the administration of general hypothermia with a unique referment to the local hypothermia. We also provide evidence that instead of considering early hypothermia post-SCI a therapeutic approach, it is more a neuroprotective strategy in acute and sub-acute phases of SCI that mostly delay, but not entirely avoid, the natural history of the pathophysiological events. Indeed, the most crucial rationale for inducing early hypothermia is to halt these devastating inflammatory and apoptotic events as early and as much as possible. This, in turn, creates a larger time-window of opportunity for physicians to formulate and administer a well-designed personalized treatment for patients suffering from acute traumatic SCI.

7.
Front Neurol ; 11: 620691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505351

RESUMO

Introduction: Cochlea implants can cause severe trauma leading to intracochlear apoptosis, fibrosis, and eventually to loss of residual hearing. Mild hypothermia has been shown to reduce toxic or mechanical noxious effects, which can result in inflammation and subsequent hearing loss. This paper evaluates the usability of standard surgical otologic rinsing as cooling medium during cochlea implantation as a potential hearing preservation technique. Material and Methods: Three human temporal bones were prepared following standard mastoidectomy and posterior tympanotomy. Applying a retrocochlear approach leaving the mastoidectomy side intact, temperature probes were placed into the basal turn (n = 4), the middle turn (n = 2), the helicotrema, and the modiolus. Temperature probe positions were visualized by microcomputed tomography (µCT) imaging and manually segmented using Amira® 7.6. Through the posterior tympanotomy, the tympanic cavity was rinsed at 37°C in the control group, at room temperature (in the range between 22 and 24°C), and at iced water conditions. Temperature changes were measured in the preheated temporal bone. In each temperature model, rinsing was done for 20 min at the pre-specified temperatures measured in 0.5-s intervals. At least five repetitions were performed. Data were statistically analyzed using pairwise t-tests with Bonferroni correction. Results: Steady-state conditions achieved in all three different temperature ranges were compared in periods between 150 and 300 s. Temperature in the inner ear started dropping within the initial 150 s. Temperature probes placed at basal turn, the helicotrema, and middle turn detected statistically significant fall in temperature levels following body temperature rinses. Irrigation at iced conditions lead to the most significant temperature drops. The curves during all measurements remained stable with 37°C rinses. Conclusion: Therapeutic hypothermia is achieved with standard surgical irrigation fluid, and temperature gradients are seen along the cochlea. Rinsing of 120 s duration results in a therapeutic local hypothermia throughout the cochlea. This otoprotective procedure can be easily realized in clinical practice.

8.
Brain Circ ; 5(2): 68-73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31334359

RESUMO

Ischemic stroke is a leading cause of death and disability worldwide, but there are no effective, widely applicable stroke therapies. Systemic hypothermia is an international mainstay of postcardiac arrest care, and the neuroprotective benefits of systemic hypothermia following cerebral ischemia have been proven in clinical trials, but logistical issues hinder clinical acceptance. As a novel solution to these logistical issues, the application of local endovascular infusion of cold saline directly to the infarct site using a microcatheter has been put forth. In small animal models, the procedure has shown incredible neuroprotective promise on the biochemical, structural, and functional levels, and preliminary trials in large animals and humans have been similarly encouraging. In addition, the procedure would be relatively cost-effective and widely applicable. The administration of local endovascular hypothermia in humans is relatively simple, as this is a normal part of endovascular intervention for neuroendovascular surgeons. Therefore, it is expected that this new therapy could easily be added to an angiography suite. However, the neuroprotective efficacy in humans has yet to be determined, which is an end goal of researchers in the field. Given the potentially massive benefits, ease of induction, and cost-effective nature, it is likely that local endovascular hypothermia will become an integral part of endovascular treatment following ischemic stroke. This review outlines relevant research, discusses neuroprotective mechanisms, and discusses possibilities for future directions.

9.
Ther Hypothermia Temp Manag ; 8(1): 30-35, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29236577

RESUMO

For the treatment of acute cervical spinal cord injuries, a local epidural cooling system using a percutaneous technique was proposed. In this animal study, regional low temperature was obtained stably in the cervical epidural space (CED) without decreasing temperatures at the rectum and the thoracic epidural space. Three stainless steel tubes were inserted percutaneously using the lateral approach into 3 serial interspinous spaces of the neck of 12 beagles under radiographic guidance. Two temperature probes were inserted into the CEDs at the level of the middle cooling tube. A third temperature probe was inserted into the epidural space at the Th13 level. A fourth temperature probe was placed in the rectum as a control. Iced water was circulated in the cooling tubes for 60 minutes. Temperatures were monitored every 10 seconds for 90 minutes, with the minimum temperatures during the period being recorded. The mean minimum temperatures recorded in the dorsal CED (min-CED-dorsal), the lateral CED (min-CED-lateral), the Th13 epidural space (min-T13ED), and the rectum (min-rectum), were 16.0 ± 0.6°C, 22.6 ± 1.6°C, 35.4 ± 0.2°C, and 35.5 ± 0.2°C, respectively. There was a statistically significant difference between the mean min-CED-dorsal and min-rectum temperatures (p < 0.0001). The method introduced above was effective in reducing cervical epidural temperature selectively.


Assuntos
Hipotermia Induzida/métodos , Traumatismos da Medula Espinal/terapia , Animais , Vértebras Cervicais , Cães , Espaço Epidural , Feminino
10.
Exp Ther Med ; 16(6): 4927-4942, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30542449

RESUMO

The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group). Minipigs treated with post-SCI durotomy demonstrated slower development of spontaneous neurological improvement at the early postinjury time points, although the outcome at 9 weeks of survival did not differ significantly between the two SCI groups. Hypothermia with saline (t≈15°C) applied after SCI-durotomy improved white matter integrity in the dorsal and lateral columns in almost all rostro-caudal segments, whereas treatment with medium/enriched medium affected white matter integrity only in the rostral segments. Furthermore, regeneration of neurofilaments in the spinal cord after SCI-durotomy and hypothermic treatments indicated an important role of local saline hypothermia in the functional outcome. Although saline hypothermia (24°C) in the SCI-only group exhibited a profound histological outcome (regarding the gray and white matter integrity and the number of motoneurons) and neurofilament protection in general, none of the tested treatments resulted in significant improvement of neurological status. The findings suggest that clinically-proven medical treatments for SCI combined with early 5 h-long saline hypothermia treatment without opening the dural sac could be more beneficial for tissue preservation and neurological outcome compared with hypothermia applied after durotomy.

11.
Exp Ther Med ; 15(1): 254-270, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29399061

RESUMO

This study investigated the neuroprotective efficacy of local hypothermia in a minipig model of spinal cord injury (SCI) induced by a computer-controlled impactor device. The tissue integrity observed at the injury epicenter, and up to 3 cm cranially and caudally from the lesion site correlated with motor function. A computer-controlled device produced contusion lesions at L3 level with two different degrees of tissue sparing, depending upon pre-set impact parameters (8N- and 15N-force impact). Hypothermia with cold (4°C) saline or Dulbecco's modified Eagle's medium (DMEM)/F12 culture medium was applied 30 min after SCI (for 5 h) via a perfusion chamber (flow 2 ml/min). After saline hypothermia, the 8N-SCI group achieved faster recovery of hind limb function and the ability to walk from one to three steps at nine weeks in comparison with non-treated animals. Such improvements were not observed in saline-treated animals subjected to more severe 15N-SCI or in the group treated with DMEM/F12 medium. It was demonstrated that the tissue preservation in the cranial and caudal segments immediately adjacent to the lesion, and neurofilament protection in the lateral columns may be essential for modulation of the key spinal microcircuits leading to a functional outcome. Tissue sparing observed only in the caudal sections, even though significant, was not sufficient for functional improvement in the 15N-SCI model.

12.
Spine J ; 18(3): 507-514, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29074466

RESUMO

BACKGROUND CONTEXT: Although general hypothermia is recognized as a clinically applicable neuroprotective intervention, acute moderate local hypothermia post contusive spinal cord injury (SCI) is being considered a more effective approach. Previously, we have investigated the feasibility and safety of inducing prolonged local hypothermia in the central nervous system of a rodent model. PURPOSE: Here, we aimed to verify the efficacy and neuroprotective effects of 5 and 8 hours of local moderate hypothermia (30±0.5°C) induced 2 hours after moderate thoracic contusive SCI in rats. STUDY DESIGN: Rats were induced with moderate SCI (12.5 mm) at its T8 section. Local hypothermia (30±0.5°C) was induced 2 hours after injury induction with an M-shaped copper tube with flow of cold water (12°C), from the T6 to the T10 region. Experiment groups were divided into 5-hour and 8-hour hypothermia treatment groups, respectively, whereas the normothermia control group underwent no hypothermia treatment. METHODS: The neuroprotective effects were assessed through objective weekly somatosensory evoked potential (SSEP) and motor behavior (basso, beattie and bresnahan Basso, Beattie and Bresnahan (BBB) scoring) monitoring. Histology on spinal cord was performed until at the end of day 56. All authors declared no conflict of interest. This work was supported by the Singapore Institute for Neurotechnology Seed Fund (R-175-000-121-733), National University of Singapore, Ministry of Education, Tier 1 (R-172-000-414-112.). RESULTS: Our results show significant SSEP amplitudes recovery in local hypothermia groups starting from day 14 post-injury onward for the 8-hour treatment group, which persisted up to days 28 and 42, whereas the 5-hour group showed significant improvement only at day 42. The functional improvement plateaued after day 42 as compared with control group of SCI with normothermia. This was supported by both 5-hour and 8-hour improvement in locomotion as measured by BBB scores. Local hypothermia also observed insignificant changes in its SSEP latency, as compared with the control. In addition, 5- and 8-hour hypothermia rats' spinal cord showed higher percentage of parenchyma preservation. CONCLUSIONS: Early local moderate hypothermia can be induced for extended periods of time post SCI in the rodent model. Such intervention improves functional electrophysiological outcome and motor behavior recovery for a long time, lasting until 8 weeks.


Assuntos
Contusões/terapia , Hipotermia Induzida/métodos , Traumatismos da Medula Espinal/terapia , Animais , Contusões/fisiopatologia , Potenciais Somatossensoriais Evocados , Feminino , Locomoção , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia
13.
Iran J Basic Med Sci ; 17(7): 476-82, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25429337

RESUMO

OBJECTIVES: Hypothermia and decompressive craniectomy (DC) have been shown to be neuroprotective. This study was designed to evaluate neuroprotective effects of delayed singular or combination of DC and local hypothermia on stroke. MATERIALS AND METHODS: Cerebral ischemia was induced in 48 Wistar rats assigned to 4 groups: control, decompressive craniectomy (DC), local hypothermia (LH), combination of hypothermia and craniectomy (HC). Infarct size and BBB disruption were measured 48 hr after ischemia insult. Neurological deficits were assessed at 24 and 48 hr after stroke by using sticky tape test, hanging-wire test and Bederson's scoring system. BBB disruption was measured by Evans blue dye leakage. RESULTS: Although infarct size was significantly reduced in LH, DC and HC groups (P<0.001), combination therapy was more neuroprotective compared to craniectomy alone (P<0.01). BBB disruption was significantly reduced in DC (P< 0.05) and LH and HC (P< 0.01).While sticky tape test (P<0.05 at 24 hr; P<0.001 at 48 hr) and hanging-wire test (P<0.05) showed better behavioral performance only in HC, Bederson test showed improved behavioral functions of both LH (P<0.05 at 24 hr and P<0.01 at 48 hr) and HC animals (P<0.01). Neurological deficits were also decreased in LH (P<0.05) or HC (P<0.05 at 24 hr; P<0.01 at 48 hr) groups compared to the DC group at the same time. CONCLUSION: Based on our data, although both delayed local hypothermia and craniectomy are protective after stoke, combination therapy of them is more neuroprotective than given alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA