Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(13): 38185-38201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36576635

RESUMO

Solidification/stabilization (S/S) is the prevalent remediation technology for the treatment of heavy metal contaminated soils (HMCS). However, under the stress of complex surrounding environments, S/S effectiveness tends to deteriorate and freezing-thawing is one of the most influential natural forcings. The different proportions of cement, lime, and fly ash were used as the compound curing agents to treat solidified/stabilized HMCS with varying levels of lead contamination. The resulting samples were subjected to up to 180 freeze-thaw cycles (F-T) (1 day per cycle). Unconfined compressive strength (UCS) tests and semi-dynamic leaching tests were performed after F-T to explore the strength evolution of compound solidified/stabilized lead-contaminated soils (Pb-CSCS) and the chemical stability of the lead within. The results show that the F-T duration changes the strength deterioration mechanism of Pb-CSCS under F-T. There has been a shift in the main influencing factor from the promoted curing agent hydration by short-term F-T to the structural damage of the specimen induced by prolonged F-T. The variations in leachate pH, lead leachability, and diffusion ability with progressing F-T revealed a degradation effect of the changes in the physical states of water and crack propagation brought by F-T. These unfavorable changes in soil structure and chemistry reduce the acid resistance of Pb-CSCS. Notably, fly ash and cement facilitate the strength maintenance of Pb-CSCS under long-term F-T conditions. Curing formulations that included both cement and fly ash significantly increased the UCS of treated soils by up to 80.5% (3 F-T) under short-term F-T. In contrast, the curing formulation without fly ash lost 51.8% of its strength after 180 F-T conditions. For lead stabilization, cement and especially lime are favored. The results showed a 25% increase in the total proportion of lime and cement in the curing agent formulation, leading to a 41.4% reduction of lead leaching risk.


Assuntos
Metais Pesados , Poluentes do Solo , Cinza de Carvão/química , Chumbo , Congelamento , Poluentes do Solo/análise , Metais Pesados/análise , Solo/química , Materiais de Construção
2.
Environ Sci Pollut Res Int ; 28(28): 37413-37423, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33715119

RESUMO

The solidification/stabilization (S/S) method is a common technique for the remediation of soils polluted by heavy metal. This study, thus, evaluated the long-term effectiveness, in term of the stabilization of lead in the solidified/stabilized soils, under freeze-thaw cycles, which are important physical processes that lead to material weathering. Three types of compound binders were obtained by mixing the three most commonly used binders (cement, quicklime, and fly ash) in varying proportions for the remediation of lead-contaminated soils. The leachability, chemical forms, and microstructure characteristics of the solidified/stabilized samples after various numbers freeze-thaw cycles (i.e., 0, 30, 90, and 180 times) were examined by utilizing the toxicity characteristic leaching procedure (TCLP) test, chemical speciation analysis, and scanning electron microscopy (SEM). The results showed that the long-term freeze-thaw cycles lead to decreased leachate pH and increased lead concentration in the leachate. The larger the total mix quantities of cement and quicklime, the lower the concentration of lead was presented in the leachate, however, indicating that cement and quicklime are more effective in immobilizing lead ions than fly ash. Chemical speciation analysis revealed that the long-term freeze-thaw cycles did, however, reduce the content of carbonate-bound form lead while the quantity of the ion-exchange forms. SEM further confirmed the observed leaching characteristics and chemical speciation characteristics. In addition, it indicated that, at the same number of freeze-thaw cycles, high initial lead concentrations substantially delayed the hydration process of cement in solidified lead-contaminated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Cinza de Carvão , Chumbo , Metais Pesados/análise , Solo , Poluentes do Solo/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-32164256

RESUMO

The effects of long-term repeated freeze-thaw cycles and pollution levels on the engineering properties (qu, E50, φ, c, and k) of Pb-contaminated soils were investigated in various laboratory tests. These soils were solidified/stabilized (S/S) with three types of cement-based combined binders (C2.5S5F5, C5S2.5F2.5, and C5S5, cement, lime, and fly ash, mixed in different proportions; these materials are widely used in S/S technology). The strength and permeability coefficient of compound solidified/stabilized Pb-contaminated soils (Pb-CSCSs) were determined based on measurements of unconfined compressive strength (UCS), direct shear, and permeability. CT scanning, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) tests were employed to analyse the deterioration mechanisms under various repetitions of freeze-thaw cycles. The results showed that, under repeated freeze-thaw cycles, the engineering properties of Pb-CSCSs all degraded to varying degrees, though degradation tended to stabilise after 30 days of freeze-thaw cycles. The study also found that the pollutants obstruct hydration and other favourable reactions within the soil structure (such as ion exchanges and agglomerations and pozzolanic reactions). The activation of hydration reactions and the rearrangement of soil particles by freeze-thaw cycles thus caused the engineering properties to fluctuate, and soils exhibited different deterioration characteristics with changes in Pb2+ content.


Assuntos
Chumbo , Poluentes do Solo , Solo , Temperatura , Cinza de Carvão , Congelamento , Chumbo/química , Solo/química , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA