Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(12): 5394-5404, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38463002

RESUMO

Conventional microalgal-bacterial consortia have limited capacity to treat low-C/N wastewater due to carbon limitation and single nitrogen (N) removal mode. In this work, indigenous synergetic microalgal-bacterial consortia with high N removal performance and bidirectional interaction were successful in treating rare earth tailing wastewaters with low-C/N. Ammonia removal reached 0.89 mg N L-1 h-1, 1.84-fold more efficient than a common microalgal-bacterial system. Metagenomics-based metabolic reconstruction revealed bidirectional microalgal-bacterial interactions. The presence of microalgae increased the abundance of bacterial N-related genes by 1.5- to 57-fold. Similarly, the presence of bacteria increased the abundance of microalgal N assimilation by 2.5- to 15.8-fold. Furthermore, nine bacterial species were isolated, and the bidirectional promotion of N removal by the microalgal-bacterial system was verified. The mechanism of microalgal N assimilation enhanced by indole-3-acetic acid was revealed. In addition, the bidirectional mode of the system ensured the scavenging of toxic byproducts from nitrate metabolism to maintain the stability of the system. Collectively, the bidirectional enhancement system of synergetic microalgae-bacteria was established as an effective N removal strategy to broaden the stable application of this system for the effective treatment of low C/N ratio wastewater.


Assuntos
Microalgas , Águas Residuárias , Microalgas/metabolismo , Desnitrificação , Nitrogênio/metabolismo , Bactérias/metabolismo , Biomassa
2.
Environ Res ; 212(Pt D): 113464, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35623442

RESUMO

The rapid start-up and advanced nutrient removal of simultaneous nitrification, endogenous denitrification, and phosphorus (P) removal aerobic granular sequence batch reactor (SNEDPR-AGSBR) is a challenge in the treatment of low carbon/nitrogen (C/N) domestic sewage. In this study, the feasibility of the SNEDPR-AGSBR process was examined in an exceedingly single-stage anaerobic/aerobic/anoxic sequencing batch reactor for treating low C/N ratio (3.3-5.0) domestic sewage. The initial results showed that accompanied by the rapid formation of the mature aerobic granular sludge based on the selection for slow-growing organisms, the rapid start-up (38 d) of the SNEDPR-AGSBR process was successfully realized. The formed mature aerobic granules had a dense structure with an average diameter of 667.7 µm and SVI30 of 30.0 mL/g. Two conditions for achieving the competitive balance between phosphorus-accumulating organisms/denitrifying phosphorus-accumulating organisms (PAOs/DPAOs) and glycogen accumulating organisms/denitrifying glycogen accumulating organisms (GAOs/DGAOs) were revealed by the long-term operation results. First, the dissolved oxygen (DO) concentration needed to be decreased to 3.0 mg/L in the aerobic phase, and then, the aerobic and anoxic phase hydraulic retention time (HRT) should be increased to 3.0 h. Notably, high removal efficiencies for NH4+-N (100%), total nitrogen (84.3%), and P (91.8%) of the SNEDPR-AGSBR process were stably obtained with a low C/N ratio of 3.9 domestic sewage. Simultaneous nitrification and endogenous denitrification (SNED) efficiency of 61.6% was achieved during a long-term operation of 142 days. Finally, microbial community analysis confirmed that GAOs (Defluviicoccus)/DGAOs (Candidatus_Competibacter) were responsible for the removal N, and PAOs (Acinetobacter, Candidatus_Accumulibacter, Hypomicrobinm)/DPAOs (Pseudomonas and Dechloromonas) ensured P removal.


Assuntos
Nitrificação , Fósforo , Reatores Biológicos , Carbono , Desnitrificação , Glicogênio , Nitrogênio , Nutrientes , Esgotos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
3.
Bioprocess Biosyst Eng ; 44(8): 1741-1753, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33792778

RESUMO

This study aims to explore the feasibility of biochar as a carrier to improve the simultaneous removal of nitrogen and phosphorus in biological aerated filters (BAFs) for treating low C/N digested swine wastewater (DSW). Two similar BAFs (BAF-A with hydrophobic polypropylene resin as fillers and BAF-B with bamboo biochar as carrier) were developed for DSW treatment. Results showed that the NH4+-N, TN, and TP removal performances in BAF-B were higher than those in BAF-A. Carrier type had an obvious influence on the structures and diversity of the microbial population. The biochar carrier in BAF-B was conducive to the enrichment of the functional microorganisms and the increase of microbial diversity under high NH4+-N conditions. Microbial analysis showed that the genera Rhodanobacter (10.64%), JGI_0001001-h003 (14.24%), RBG-13-54-9 (8.87%), Chujaibacter (11.27%), and Ottowia were the predominant populations involved in nitrogen and phosphorus removal in the later stage of phase III in BAF-B. BAF with biochar as carrier was highly promising for TN and TP removal in low C/N and high NH4+-N DSW treatment.


Assuntos
Carvão Vegetal/química , Nitrogênio/isolamento & purificação , Oxigênio/química , Fósforo/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Amônia , Animais , Reatores Biológicos , Análise por Conglomerados , Filtração , Concentração de Íons de Hidrogênio , Microbiota , Análise de Componente Principal , Esgotos , Suínos , Temperatura , Águas Residuárias
4.
Bioresour Technol ; 399: 130629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552858

RESUMO

The pilot-scale simultaneous denitrification and methanation (SDM)-partial nitrification (PN)-anaerobic ammonia oxidation (Anammox) system was designed to treat anaerobic digestion effluent of kitchen waste (ADE-KW). The SDM-PN was first started to avoid the inhibition of high-concentration pollutants. Subsequently, Anammox was coupled to realize autotrophic nitrogen removal. Shortcut nitrification-denitrification achieved by the SDM-PN. The NO2--N accumulation (92 %) and NH4+-N conversion (60 %) were achieved by PN, and the removal of TN and COD from the SDM-PN was 70 % and 73 %, respectively. After coupling Anammox, the TN (95 %) was removed with a TN removal rate of 0.51 kg·m-3·d-1. Microbiological analyses showed a shift from dominance by Methanothermobacter to co-dominance by Methanothermobacter, Thermomonas, and Flavobacterium in SDM during the SDM-PN. While after coupling Anammox, Candidatus kuenenia was enriched in the Anammox zone, the SDM zone shifted back to being dominated by Methanothermobacter. Overall, this study provides new ideas for the treatment of ADE-KW.


Assuntos
Oxidação Anaeróbia da Amônia , Desnitrificação , Nitrogênio , Anaerobiose , Oxirredução , Reatores Biológicos/microbiologia , Nitrificação , Esgotos
5.
Sci Total Environ ; 945: 174042, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908573

RESUMO

Selecting an appropriate electron donor to enhance nitrogen removal for treating low C/N wastewater in ecological floating beds (EFBs) is controversy. In this study, a systematic and comprehensive evaluation of sodium acetate (EFB-C), sodium thiosulfate (EFB-S) and iron scraps (EFB-Fe) was performed in a 2-year experiment on long-term viability including nitrogen removal and greenhouse gas emissions associated with key molecular biological mechanisms. The results showed that EFB-C (43-85 %) and EFB-S (40-88 %) exhibited superior total nitrogen (TN) removal. Temperature and hydraulic retention time (HRT) have significant impacts on TN removal of EFB-Fe, however, it could reach 86 % under high temperature (30-35 °C) and a long HRT (3 days), and it has lowest N2O (0-6.2 mg m-2 d-1) and CH4 (0-5.3 mg m-2 d-1) fluxes. Microbial network analysis revealed that the microbes changed from competing to cooperating after adding electron donors. A higher abundance of anammox genera was enriched in EFB-Fe. The Mantel's test and structural equation model provided proof of the differences, which showed that acetate and thiosulfate were similar, whereas Fe0 was different in the nitrogen removal mechanism. Molecular biology analyses further verified that heterotrophic, autotrophic, and mixotrophic coupled with anammox were the main TN removal pathways for EFB-C, EFB-S, and EFB-Fe, respectively. These findings provide a better understanding of the biological mechanisms for selecting appropriate electron donors for treating low C/N wastewater.


Assuntos
Gases de Efeito Estufa , Nitrogênio , Tiossulfatos , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Gases de Efeito Estufa/análise , Ferro , Acetatos , Carbono
6.
Bioresour Technol ; 386: 129507, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37468003

RESUMO

Heterotrophic nitrification-aerobic denitrification (HN-AD) process was achieved in a moving bed biofilm reactor after 180-days acclimation using PCL as carbon source for low C/N wastewater treatment. A novel HN-AD strain, JQ-H3, with ability of PCL degradation was augmented to improve nitrogen removal. TN removal efficiencies of 82.31%, 90.05%, and 93.16% were achieved in the augmented reactor (R2), at different HRTs of 24 h, 20 h, and 16 h, while in the control reactor (R1), the TN removal efficiencies were 59.24%, 74.61%, and 76.68%. The effluent COD in R2 was 10.17 mg/L, much lower than that of 42.45 mg/L in R1. Microbial community analysis revealed that JQ-H3 has successfully proliferated with a relative abundance of 4.79%. Relative abundances of functional enzymes of nitrogen cycling remarkably increased due to bioaugmentation based on the analysis of PICRUSt2. This study provides a new approach for enhancing nitrogen removal in low C/N sewage treatment via the HN-AD process.


Assuntos
Desnitrificação , Águas Residuárias , Pseudomonas , Nitrogênio/análise , Carbono , Reatores Biológicos , Nitrificação , Biofilmes , Aceleração
7.
Polymers (Basel) ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36987290

RESUMO

Although the role of extracellular polymeric substances (EPSs) as a viscous high-molecular polymer in biological wastewater treatment has been recognized, in-depth knowledge of how EPSs affect nitrogen removal remains limited in biofilm-based reactors. Herein, we explored EPS characteristics associated with nitrogen removal from high-ammonia (NH4+-N: 300 mg/L) and low carbon-to-nitrogen ratio (C/N: 2-3) wastewater in a sequencing batch packed-bed biofilm reactor (SBPBBR) under four different operating scenarios for a total of 112 cycles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared (FTIR) analysis revealed that the distinct physicochemical properties, interface microstructure, and chemical composition of the bio-carrier were conducive to biofilm formation and microbial immobilization and enrichment. Under the optimal conditions (C/N: 3, dissolved oxygen: 1.3 mg/L, and cycle time: 12 h), 88.9% ammonia removal efficiency (ARE) and 81.9% nitrogen removal efficiency (NRE) could be achieved in the SBPBBR. Based on visual and SEM observations of the bio-carriers, biofilm development, biomass concentration, and microbial morphology were closely linked with nitrogen removal performance. Moreover, FTIR and three-dimensional excitation-emission matrix (3D-EEM) spectroscopy demonstrated that tightly bound EPSs (TB-EPSs) play a more important role in maintaining the stability of the biofilm. Significant shifts in the number, intensity, and position of fluorescence peaks of EPSs determined different nitrogen removal. More importantly, the high presence of tryptophan proteins and humic acids might promote advanced nitrogen removal. These findings uncover intrinsic correlations between EPSs and nitrogen removal for better controlling and optimizing biofilm reactors.

8.
Chemosphere ; 308(Pt 1): 136172, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36037949

RESUMO

Coupled solid carbon source biofilm carriers (CCBs) was usually utilized to enhance the treatment efficiency of low carbon/nitrogen (C/N) wastewater. However, current CCBs have low carbon release capacity because of its small inner mass transfer coefficient. Therefore, this study innovatively applied pore-forming methods to modify CCBs. After orthogonal selections, two porous CCBs, which were respectively prepared through circulating freezing pore-forming method (CCB2) and ammonium bicarbonate pore-forming method (CCB3), were proposed and further applied in sequencing batch moving bed biofilm reactors (SBMBBRs). The results indicated that circulating freezing pore-forming method could improve the mechanical strength and carbon source release rate of CCBs. In addition, CCB2 could significantly enhance the total nitrogen (TN) removal efficiency of SBMBBRs, when compared with the non-porous CCBs (i.e., CCB1). Further biofilm and simultaneous nitrification and denitrification (SND) rate calculation attributed this enhancement to the higher biofilm amount (i.e., 0.06 g g-1 CCB) and the higher SND rate (i.e., 33.60%). Microbial community analysis reiterated these observations that CCB2 and CCB3 could accumulate Proteobacteria, Actinobacteriota and Nitrospirota, and also stimulate nitrification and denitrification associated pathways. More importantly, the cost calculation indicated CCB2 cost only 47.37% of CCB1 and 31.34% of CCB3, showing highly economic applicability. Overall, our results collectively proved that CCBs manufactured by circulating freezing pore-forming method could provide more carbon releasing points and microorganisms attaching positions, exhibiting effectively nitrogen removal when treating low C/N wastewater.


Assuntos
Desnitrificação , Águas Residuárias , Bactérias/metabolismo , Biofilmes , Reatores Biológicos/microbiologia , Carbono/metabolismo , Nitrificação , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos
9.
Sci Total Environ ; 838(Pt 3): 156488, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35671857

RESUMO

Advanced denitrogenation of wastewater is now facing major challenges brought by low C/N ratio and low temperature. The development of sustained-release materials with good and stable carbon release properties was an effective countermeasure. FeNi-Layered double-metal hydroxides (LDH)- sodium carboxymethyl cellulose (CMC) filter media and its potential use in heterotrophic and sulfur-based mixotrophic denitrification biological filter (DNBF), was firstly reported. It demonstrated stable structure and good carbon release performance with a mass transfer coefficient (K) of 4.40 mg·L-1·s-1. When the influent NO3--N of 50 mg/L with the C/N ratio of 3 at 10 °C, the maximum nitrogen loading rate of 0.22 kg·N/(m3·d) and effluent TN close to 5 mg/L (nitrogen removal of almost 90 %) could be achieved. The slowly released carbon source and the leached iron increased the abundance of denitrifying bacteria and functional genes, and the augmentation of Sulfuritalea and the secretion of biofilm protein stimulated by sulfur also played a synergistic role. This study provided a new potentially effective strategy to enhance advanced denitrification of wastewater of low C/N wastewater at low temperature.


Assuntos
Carbono , Águas Residuárias , Reatores Biológicos , Carbono/química , Preparações de Ação Retardada , Desnitrificação , Hidróxidos , Nitrogênio/metabolismo , Enxofre , Temperatura
10.
Sci Total Environ ; 750: 141665, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182169

RESUMO

Reusing microplastics and zeolite waste as free ammonia (FA)-mitigating carrier particle was proven a value-added step towards promoting the serviceability of fluidized bed bioreactor (FBBR) in treating wastewater with a low carbon to nitrogen ratio (i.e. C/N <3.0) in this study. Ammonia (NH4+) adsorption property capacitates zeolite as an FA mitigator. The microplastics and reused zeolite were processed into reused-zeolite/microplastic composite particle (RZ), whose merit of FA mitigation was fully developed via an optimally thermal modification to process modified-zeolite/microplastic particle (MZ). The 171-day biological nutrient removal (BNR) performance in a single integrated fluidized bed bioreactor (SIFBBR) shows that the bioreactor with MZ particle (SIFBBR-MZ) achieved nitrogen removal efficiency 10.0% higher than the bioreactor with RZ particle (SIFBBR-RZ) over the enhanced short-cut nitrification and denitrification. Analysis of microbial community structure unveils that the long-term lower FA inhibition favored more significant ammonia-oxidizing bacteria (AOB) enrichment and acclimated specific MZ biofilm predominant by nitrite (NO2-) denitrifier, contributing to the outperformance in nitrogen removal. Apart from fluidization energy conservation, the techno-economic analysis confirms that using MZ as an FA-mitigating carrier could be of great benefit for FBBR system: realizing waste utilization, reducing carbon addition and alleviating sludge treatment.


Assuntos
Nitrogênio , Águas Residuárias , Amônia , Reatores Biológicos , Carbono , Desnitrificação , Nitrificação , Plásticos , Eliminação de Resíduos Líquidos
11.
Chemosphere ; 263: 128003, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297037

RESUMO

In this study, a novel high-frequency micro-aeration/anoxic (HMOA) mode with a high aeration frequency (15 times/h) and short aeration duration (Taer = 1 h/cycle) was proposed. Compared with continuous aeration modes, the highest nitrogen and phosphorus removal efficiencies were achieved in the sequencing batch reactor (SBR) under HMOA mode when treating wastewater with carbon/nitrogen (C/N) ratios of 4.5 (85% and 97%, respectively) and 3 (77% and 75%, respectively). Metagenomic analysis was utilized to analyse the microbial metabolic mechanism under the HMOA mode. The results showed that under the HMOA mode, the enhanced transduction and metabolism pathways of nitrate, nitrite, oxygen, phosphorus and acetate provided favourable nutritional conditions for the proliferation of denitrifiers and phosphorus accumulating organisms (PAOs), and simultaneously strengthened the survival capacity of nitrifiers under low dissolved oxygen (DO) conditions. In addition, genes involved in carbon metabolism were upregulated by the HMOA mode, which further increased the utility of carbon sources for denitrifier and PAO metabolism. Consequently, the limited carbon source could be fully utilized in nitrogen and phosphorus removal, which improved the efficiency of treating low C/N wastewater. This study proposed a potential aeration mode for microbial metabolism regulation to enhance nutrient removal in biological wastewater treatment processes.


Assuntos
Nitrogênio , Águas Residuárias , Reatores Biológicos , Carbono , Nutrientes , Fósforo , Esgotos , Eliminação de Resíduos Líquidos
12.
Bioresour Technol ; 301: 122731, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31927457

RESUMO

Nitrate removal from low carbon-to-nitrogen ratio (C/N) wastewater has always been a knotty problem due to the deficiency of organics. Here, a novel iron-based chemical reduction and autotrophic denitrification (ICAD) system was developed. ICAD system could maintain average nitrate removal efficiency of 97.2% for 131 days with feeding 20.3 mg NO3--N/L at hydraulic retention time (HRT) of 24 h. The optimal operational conditions was further explored, and results demonstrated that average nitrate removal efficiency of 85.5% and 98.4% could be achieved at HRT of 12 h and 24 h (influent 20.3 mg NO3--N/L), while average nitrate removal efficiency could reach 96.3% at optimal HRT of 12 h (influent 10.3 mg NO3--N/L). Hydrogenophaga, which can carry out hydrogenotrophic denitrification, showed a positive correlation with nitrate removal efficiency of the ICAD system. Low cost and simple operation make the ICAD system suitable for large-scale application.


Assuntos
Desnitrificação , Águas Residuárias , Processos Autotróficos , Reatores Biológicos , Carbono , Ferro , Nitratos , Nitrogênio , Eliminação de Resíduos Líquidos
13.
Chemosphere ; 239: 124726, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31494322

RESUMO

A novel start-up strategy for sulfur-based mixotrophic denitrification biofilters (mDNBFs) by rhamnolipid was investigated for the first time. Rhamnolipid with gradient concentrations (0-120 mg/L) was added into five lab-scale mDNBFs. Results showed that rhamnolipid could promote biomass yield and nitrogen removal rate (NRR) by 71.7% and 68.7%, respectively, while its effect on EPS and adhesion force was concentration-dependent. The spatial distribution characteristics of microbial communities demonstrated the enrichment of main heterotrophic denitrifying bacteria outcompeted that of the autotrophs, with a more pronounced difference in high concentration rhamnolipid-treated mDNBFs. Furthermore, highest abundance of napA, narG, nirK and nosZ genes was observed in 80 mg/L rhamnolipid-treated mDNBF. Interfacial processes including solubilizing effect and hydration repulse and variations of organics were discussed to explicate the underlying mechanism. The study enlightened that an appropriate concentration (∼80 mg/L) of rhamnolipid may be a good solution for accelerating biofilm formation and enriching denitrifying bacteria to promote denitrification performance of mDNBFs treating low C/N wastewater.


Assuntos
Glicolipídeos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Desnitrificação , Genes Bacterianos , Processos Heterotróficos , Microbiota , Nitrogênio/metabolismo , Enxofre/metabolismo , Eliminação de Resíduos Líquidos/instrumentação
14.
Huan Jing Ke Xue ; 39(3): 1342-1349, 2018 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965482

RESUMO

In this study, a CEM-UF composite membrane with ammonia nitrogen enrichment and separation characteristics was combined with nitrification/denitrification to treat low C/N wastewater. The denitrification characteristics of low C/N wastewater at different flow ratios were investigated, and the structural characteristics of functional microbial communities in nitrifying and denitrifying activated sludge were analyzed by 16Sr DNA high-throughput sequencing. The results showed that influent TN was 60 mg·L-1, COD/TN was 2.65, the nitrification effect of each flow rate was good, and the average ammonia nitrogen removal rate was 98.7%. When the flow ratio increased from 1:2 to 1:6, the m(COD)/m(NO3--N) of denitrification was increased, and the removal of average nitrate nitrogen reached its highest level at 1:6, which was 86.28%, and the removal of total nitrogen increased from 22.56% to 46.8%. An analysis of Illumina sequencing showed that nitrogen fixing bacteria Proteobacteria accounted for 30.9%, and the important nitrite oxidizing bacteria, Nitrospirae, accounted for 3.06%. At the genus level, Nitrosomonas and Nitrosospira, belonging to the ammonia oxidizing bacteria (AOB) category and Nitrospira and Nitrobacter, belonging to the nitrite oxidizing bacteria (NOB) category were detected. The ratio of AOB and NOB bacteria was high, which is consistent with good nitrification in the nitrification reactor. The dominant bacteria in denitrification sludge were Proteobacteria (53.13%), followed by Bacteroidetes (10.93%). A variety of bacteria related to denitrification were detected at the genus level, such as Dechloromonas, Thauera, Castellaniella, Alicycliphilus, Azospira, Comamonas, Caldilinea, and Saccharibacteria. The proportion of denitrifying bacteria was 25.91% as denitrifying bacteria microbial species were rich in the denitrifying sludge, giving a good denitrification effect.


Assuntos
Reatores Biológicos , Desnitrificação , Nitrificação , Águas Residuárias/química , Purificação da Água , Amônia , Bactérias , Carbono/química , Nitrogênio/química
15.
Bioresour Technol ; 260: 44-52, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29614450

RESUMO

The feasibility of a continuous feed and intermittent discharge airlift bioreactor for simultaneous carbon and nitrogen removal from a low COD/N wastewater was evaluated. The effect of two independent variables, HRT (10-20 h) and NH4+/(NH4++NO3-) ratio (0.25-0.75), on the bioreactor performance was studied. The relatively high anaerobic to aerobic time ratio made an effective contribution to NH4+, NO3-, and TN removal. TN removal was enhanced with increase in HRT and decrease in NH4+/NH4++NO3- and at the optimum condition, 616 mg/L (88%) and 213 mg/L (76%) of sCOD and TN were removed, respectively. The results suggested that the nitrogen removal process was based on a combination of anaerobic ammonium oxidation (Anammox), simultaneous nitrification-denitrification (SND), and presumable dissimilatory nitrate reduction to ammonium (DNRA) mechanisms.


Assuntos
Reatores Biológicos , Desnitrificação , Águas Residuárias , Carbono , Nitrogênio , Eliminação de Resíduos Líquidos
16.
Bioresour Technol ; 258: 177-186, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29525592

RESUMO

This study proposed a periodic reversal bio-electrocoagulation system (PRBES) with Fe-C electrodes and three other control systems and explored their denitrification mechanism. The experimental results illustrated that iron ions contributed to increasing biomass and denitrifying bacteria and that the electric field may enhance the nitrogen transfer rate and enzyme activities. The dominant bacterial genera in the four systems were the Enterobacter (32.75%), Thauera (9.29%), Paracoccus (8.54%), Hyphomicrobium (5.01%) and Saccharibacteria_genera (10.57%). The sum of the relative abundance of the first four bacteria, which were the major microorganisms in the denitrification process in this study, was 64.61%, 55.40%, 61.19% and 47.08%, respectively, in PRBES and the three other control systems at 10 °C. Additionally, compared to the conventional SBR, there was a 65.48% decrease in N2O in PRBES at 10 °C. This study provided a meaningful and significant understanding of denitrification in PRBES when treating nitrogen-rich wastewater.


Assuntos
Desnitrificação , Eletrocoagulação , Águas Residuárias , Reatores Biológicos , Ferro , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA