RESUMO
Lithium metal batteries utilizing lithium metal as the anode can achieve a greater energy density. However, it remains challenging to improve low-temperature performance and fast-charging features. Herein, we introduce an electrolyte solvation chemistry strategy to regulate the properties of ethylene carbonate (EC)-based electrolytes through intermolecular interactions, utilizing weakly solvated fluoroethylene carbonate (FEC) to replace EC, and incorporating the low-melting-point solvent 1,2-difluorobenzene (2FB) as a diluent. We identified that the intermolecular interaction between 2FB and solvent can facilitate Li+ desolvation and lower the freezing point of the electrolyte effectively. The resulting electrolyte enables the LiNi0.8Co0.1Mn0.1O2||Li cell to operate at -30 °C for more than 100 cycles while delivering a high capacity of 154 mAh g-1 at 5.0C. We present a solvation structure and interfacial model to analyze the behavior of the formulated electrolyte composition, establishing a relationship with cell performance and also providing insights for the electrolyte design under extreme conditions.
RESUMO
Low temperature has been a major challenge for lithium-ion batteries to maintain satisfied electrochemical performance, as it leads to poor rechargeability and low capacity retention. Traditional carbonate solvents, vinyl carbonate and dimethyl carbonate are indispensable components of commercial electrolytes. However, the higher melting point of these carbonate solvents causes their electrical conductivity to be easily reduced when temperatures drop below zero, limiting their ability to facilitate lithium ion transport. In this work, we demonstrate that the use of methyl propionate (MP) carboxylate and fluorocarbonate vinyl (FEC) electrolytes can overcome the limitations of low temperature cycling. Compared with carbonate electrolyte, MP has the characteristics of low melting point, low viscosity and low binding energy with Li+, which is crucial to improve the low temperature performance of the battery, while FEC is an effective component to inhibit the side reaction between MP and lithium metal. The carefully formulated MP-based electrolyte can generate a solid electrolyte interface with low resistance and rich in inorganic substances, which is conducive to the smooth diffusion of Li+, allowing the battery to successfully cycle at a high rate of 0.5 C at -20 °C, and giving it a reversible capacity retention rate of 65.3% at -40oC. This work designs a promising advanced electrolyte and holds the potential to overcome limitations of lithium-ion batteries in harsh conditions.
RESUMO
Aqueous zinc metal batteries are emerging as a promising alternative for energy storage due to their high safety and low cost. However, their development is hindered by the formation of Zn dendrites and side reactions. Herein, a macromolecular crowding electrolyte (MCE40) is prepared by incorporating polyvinylpyrrolidone (PVP) into the aqueous solutions, exhibiting an enlarged electrochemical stability window and anti-freezing properties. Notably, through electrochemical measurements and characterizations, it is discovered that the mass transfer limitation near the electrode surface within the MCE40 electrolyte inhibits the (002) facets. This leads to the crystallographic reorientation of Zn deposition to expose the (100) and (101) textures, which undergo a "nucleation-merge-growth" process to form a uniform and compact Zn deposition. Consequently, the MCE40 enables highly reversible and stable Zn plating/stripping in Zn/Cu half cells over 600â cycles and in Zn/Zn symmetric cells for over 3000â hours at 1.0â mA cm-2. Furthermore, Na0.33V2O5/Zn and α-MnO2/Zn full cells display promising capacity and sustained stability over 500â cycles at room and sub-zero temperatures. This study highlights a novel electrochemical mechanism for achieving preferential Zn deposition, introducing a unique strategy for fabricating dendrite-free zinc metal batteries.
RESUMO
In overcoming the Li+ desolvation barrier for low-temperature battery operation, a weakly-solvated electrolyte based on carboxylate solvent has shown promises. In case of an organic-anion-enriched primary solvation sheath (PSS), we found that the electrolyte tends to form a highly swollen, unstable solid electrolyte interphase (SEI) that shows a high permeability to the electrolyte components, accounting for quickly declined electrochemical performance of graphite-based anode. Here we proposed a facile strategy to tune the swelling property of SEI by introducing an inorganic anion switch into the PSS, via LiDFP co-solute method. By forming a low-swelling, Li3 PO4 -rich SEI, the electrolyte-consuming parasitic reactions and solvent co-intercalation at graphite-electrolyte interface are suppressed, which contributes to efficient Li+ transport, reversible Li+ (de)intercalation and stable structural evolution of graphite anode in high-energy Li-ion batteries at a low temperature of -20 °C.
RESUMO
Cyclic ether, such as 1,3-dioxolane (DOL), are promising solvent for low-temperature electrolytes because of the low freezing point. Their use in electrolytes, however, is severely limited since it easily polymerizes in the presence of lithium inorganic salts. The trace water plays a key role via providing the source (proton) for chain initiation, which has, unfortunately, been neglected in most cases. In this work, we present an electrophile, trimethylsilyl isocyanate (Si-NCO), as the water scavenger, which eliminates moisture by a nucleophilic addition reaction. Si-NCO allows DOL to maintain liquid over a wide temperature range even in high-concentration electrolyte. Electrolyte with Si-NCO additive shows promising low-temperature performance. Our finding expands the use of cyclic ether solvents in the presence of inorganic salts and highlights a large space for unexplored design of water scavenger with electrophilic feature for low-temperature electrolytes.
RESUMO
For lithium (Li) metal batteries, the decrease in operating temperature brings severe safety issues by more disordered Li deposition. Here, we demonstrate that the solvating power of solvent is closely related to the reversibility of the Li deposition/stripping process under low-temperature conditions. The electrolyte with weakly solvating power solvent shows lower desolvation energy, allowing for a uniform Li deposition morphology, as well as a high deposition/stripping efficiency (97.87 % at -40 °C). Based on a weakly solvating electrolyte, we further built a full cell by coupling the Li metal anode with a sulfurized polyacrylonitrile electrode at a low anode-to-cathode capacity ratio for steady cycling at -40 °C. Our results clarified the relationship between solvating power of solvent and Li deposition behavior at low temperatures.
RESUMO
LiNix Coy Mnz O2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ -20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct ) which dominates low-temperature LIBs performance. Herein, we propose a strategy of using low-polarity-solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct , achieving facile Li+ transport at sub-zero temperatures. The exemplary electrolyte enables LiNi0.8 Mn0.1 Co0.1 O2 ||graphite cells to deliver a capacity of ≈113â mAh g-1 (98 % full-cell capacity) at 25 °C and to remain 82 % of their room-temperature capacity at -20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at -30 °C and 78 % of their capacity at -40 °C and show stable cycling at 50 °C.
RESUMO
Lithium-ion batteries have dominated the energy market from portable electronic devices to electric vehicles. However, the LIBs applications are limited seriously when they were operated in the cold regions and seasons if there is no thermal protection. This is because the Li+ transportation capability within the electrode and particularly in the electrolyte dropped significantly due to the decreased electrolyte liquidity, leading to a sudden decline in performance and short cycle-life. Thus, design a low-temperature electrolyte becomes ever more important to enable the further applications of LIBs. Herein, we summarize the low-temperature electrolyte development from the aspects of solvent, salt, additives, electrolyte analysis, and performance in the different battery systems. Then, we also introduce the recent new insight about the cation solvation structure, which is significant to understand the interfacial behaviors at the low temperature, aiming to guide the design of a low-temperature electrolyte more effectively.
RESUMO
The most successful lithium-ion batteries (LIBs) based on ethylene carbonate electrolytes and graphite anodes still suffer from severe energy and power loss at temperatures below -20 °C, which is because of high viscosity or even solidification of electrolytes, sluggish de-solvation of Li+ at the electrode surface, and slow Li+ transportation in solid electrolyte interphase (SEI). Here, a coherent lithium phosphide (Li3P) coating firmly bonding to the graphite surface to effectively address these challenges is engineered. The dense, continuous, and robust Li3P interphase with high ionic conductivity enhances Li+ transportation across the SEI. Plus, it promotes Li+ de-solvation through an electron transfer mechanism, which simultaneously accelerates the charge transport kinetics and stands against the co-intercalation of low-melting-point solvent molecules, such as propylene carbonate (PC), 1,3-dioxolane, and 1,2-dimethoxyethane. Consequently, an unprecedented combination of high-capacity retention and fast-charging ability for LIBs at low temperatures is achieved. In full-cells encompassing the Li3P-coated graphite anode and PC electrolytes, an impressive 70% of their room-temperature capacity is attained at -20 °C with a 4 C charging rate and a 65% capacity retention is achieved at -40 °C with a 0.05 C charging rate. This research pioneers a transformative trajectory in fortifying LIB performance in cryogenic environments.
RESUMO
A novel electrolyte system with an excellent low-temperature performance for lithium-ion batteries (LIBs) has been developed and studied. It was discovered for the first time, in this work, that when isoxazole (IZ) was used as the main solvent, the ionic conductivity of the electrolyte for LIBs is more than doubled in a temperature range between -20 and 20 °C compared to the baseline electrolyte using ethylene carbonate-ethyl methyl carbonate as solvents. To solve the problem of solvent co-intercalation into the graphite anode and/or electrolyte decomposition, the lithium difluoro(oxalato)borate (LiDFOB) salt and fluoroethylene carbonate (FEC) additive were used to form a stable solid electrolyte interphase on the surface of the graphite anode. Benefitting from the high ionic conductivity at low temperature, cells using a new electrolyte with 1 M LiDFOB in FEC/IZ (1:10, vol %) solvents demonstrated a very high reversible capacity of 187.5 mAh g-1 at -20 °C, while the baseline electrolyte only delivered a reversible capacity of 23.1 mAh g-1.
RESUMO
Lithium-ion batteries (LIBs) are nowadays widely used in many energy storage devices, which have certain requirements on size, weight, and performance. State-of-the-art LIBs operate very reliably and with good performance under restricted and controlled conditions but lack in efficiency and safety when these conditions are exceeded. In this work, the influence of outranging conditions in terms of charging rate and operating temperature on electrochemical characteristics was studied on the example of lithium titanate (Li4Ti5O12, LTO) electrodes. Structural processes in the electrode, cycled with ultrafast charge and discharge, were evaluated by operando synchrotron powder diffraction and ex situ X-ray absorption spectroscopy. On the basis of the Rietveld refinement, it was shown that the electrochemical storage mechanism is based on the Li-intercalation process at least up to current rates of 5C, meaning full battery charge within 12 min. For applications at temperatures between -30 and 60 °C, four carbonate-based electrolyte systems with different additives were tested for cycling performance in half-cells with LTO and metallic lithium as electrodes. It was shown that the addition of 30 wt % [PYR14][PF6] to the conventional LP30 electrolyte, usually used in LIBs, significantly decreases its melting point, which enables the successful low-temperature application at least down to -30 °C, in contrast to LP30, which freezes below -10 °C, making battery operation impossible. Moreover, at elevated temperatures up to 60 °C, batteries with the LP30/[PYR14][PF6] electrolyte exhibit stable long-term cycling behavior very close to LP30. Our findings provide a guideline for the application of LTO in LIBs beyond conventional conditions and show how to overcome limitations by designing appropriate electrolytes.