Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928514

RESUMO

Macrobrachium rosenbergii is an essential species for freshwater economic aquaculture in China, but in the larval process, their salinity requirement is high, which leads to salinity stress in the water. In order to elucidate the mechanisms regulating the response of M. rosenbergii to acute low-salinity exposure, we conducted a comprehensive study of the response of M. rosenbergii exposed to different salinities' (0‱, 6‱, and 12‱) data for 120 h. The activities of catalase, superoxide dismutase, and glutathione peroxidase were found to be significantly inhibited in the hepatopancreas and muscle following low-salinity exposure, resulting in oxidative damage and immune deficits in M. rosenbergii. Differential gene enrichment in transcriptomics indicated that low-salinity stress induced metabolic differences and immune and inflammatory dysfunction in M. rosenbergii. The differential expressions of MIH, JHEH, and EcR genes indicated the inhibition of growth, development, and molting ability of M. rosenbergii. At the proteomic level, low salinity induced metabolic differences and affected biological and cellular regulation, as well as the immune response. Tyramine, trans-1,2-Cyclohexanediol, sorbitol, acetylcholine chloride, and chloroquine were screened by metabolomics as differential metabolic markers. In addition, combined multi-omics analysis revealed that metabolite chloroquine was highly correlated with low-salt stress.


Assuntos
Larva , Palaemonidae , Estresse Salino , Animais , Palaemonidae/genética , Palaemonidae/metabolismo , Palaemonidae/crescimento & desenvolvimento , Larva/metabolismo , Transcriptoma , Proteômica/métodos , Salinidade , Perfilação da Expressão Gênica , Metabolômica/métodos , Estresse Oxidativo , Multiômica
2.
BMC Plant Biol ; 23(1): 605, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030999

RESUMO

BACKGROUND: Zostera marina L., or eelgrass, is the most widespread seagrass species throughout the temperate northern hemisphere. Unlike the dry seeds of terrestrial plants, eelgrass seeds must survive in water, and salinity is the key factor influencing eelgrass seed germination. In the present study, transcriptome and proteome analysis were combined to investigate the mechanisms via which eelgrass seed germination was stimulated by low salinity, in addition to the dynamics of key metabolic pathways under germination. RESULTS: According to the results, low salinity stimulated the activation of Ca2+ signaling and phosphatidylinositol signaling, and further initiated various germination-related physiological processes through the MAPK transduction cascade. Starch, lipids, and storage proteins were mobilized actively to provide the energy and material basis for germination; abscisic acid synthesis and signal transduction were inhibited whereas gibberellin synthesis and signal transduction were activated, weakening seed dormancy and preparing for germination; cell wall weakening and remodeling processes were activated to provide protection for cotyledon protrusion; in addition, multiple antioxidant systems were activated to alleviate oxidative stress generated during the germination process; ERF transcription factor has the highest number in both stages suggested an active role in eelgrass seed germination. CONCLUSION: In summary, for the first time, the present study investigated the mechanisms by which eelgrass seed germination was stimulated by low salinity and analyzed the transcriptomic and proteomic features during eelgrass seed germination comprehensively. The results of the present study enhanced our understanding of seagrass seed germination, especially the molecular ecology of seagrass seeds.


Assuntos
Germinação , Zosteraceae , Germinação/genética , Sementes/genética , Sementes/metabolismo , Proteoma/metabolismo , Transcriptoma , Zosteraceae/genética , Salinidade , Proteômica
3.
Mol Ecol ; 32(3): 703-723, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36326449

RESUMO

Microbes can modify their hosts' stress tolerance, thus potentially enhancing their ecological range. An example of such interactions is Ectocarpus subulatus, one of the few freshwater-tolerant brown algae. This tolerance is partially due to its (un)cultivated microbiome. We investigated this phenomenon by modifying the microbiome of laboratory-grown E. subulatus using mild antibiotic treatments, which affected its ability to grow in low salinity. Low salinity acclimation of these algal-bacterial associations was then compared. Salinity significantly impacted bacterial and viral gene expression, albeit in different ways across algal-bacterial communities. In contrast, gene expression of the host and metabolite profiles were affected almost exclusively in the freshwater-intolerant algal-bacterial communities. We found no evidence of bacterial protein production that would directly improve algal stress tolerance. However, vitamin K synthesis is one possible bacterial service missing specifically in freshwater-intolerant cultures in low salinity. In this condition, we also observed a relative increase in bacterial transcriptomic activity and the induction of microbial genes involved in the biosynthesis of the autoinducer AI-1, a quorum-sensing regulator. This could have resulted in dysbiosis by causing a shift in bacterial behaviour in the intolerant algal-bacterial community. Together, these results provide two promising hypotheses to be examined by future targeted experiments. Although they apply only to the specific study system, they offer an example of how bacteria may impact their host's stress response.


Assuntos
Interações entre Hospedeiro e Microrganismos , Phaeophyceae , Aclimatação/fisiologia , Simbiose , Água Doce , Phaeophyceae/genética , Phaeophyceae/microbiologia
4.
Br J Nutr ; 130(6): 933-943, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36573369

RESUMO

Se is an essential trace element associated with animal growth and antioxidant and metabolic processes. However, whether Se, especially organic Se with higher bioavailability, can alleviate the adverse effects of low salinity stress on marine economic crustacean species has not been investigated. Accordingly, juvenile Pacific white shrimp (Litopenaeus vannamei) were reared in two culture conditions (low and standard salinity) fed diets supplemented with increasing levels of l-selenomethionine (0·41, 0·84 and 1·14 mg/kg Se) for 56 d, resulting in four treatments: 0·41 mg/kg under standard seawater (salinity 31) and 0·41, 0·84 and 1·14 mg/kg Se under low salinity (salinity 3). The diet containing 0·84 mg/kg Se significantly improved the survival and weight gain of shrimp under low salinity stress and enhanced the antioxidant capacity of the hepatopancreas. The increased numbers of B and R cells may be a passive change in hepatopancreas histology in the 1·14 mg/kg Se group. Transcriptomic analysis found that l-selenomethionine was involved in the regulatory pathways of energy metabolism, retinol metabolism and steroid hormones. In conclusion, dietary supplementation with 0·84 mg/kg Se (twice the recommended level) effectively alleviated the effects of low salinity stress on L. vannamei by regulating antioxidant capacity, hormone regulation and energy metabolism.


Assuntos
Antioxidantes , Selênio , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Selênio/farmacologia , Transcriptoma , Hepatopâncreas/metabolismo , Selenometionina/farmacologia , Estresse Fisiológico , Suplementos Nutricionais/análise , Dieta , Estresse Salino , Ração Animal/análise
5.
BMC Genomics ; 23(1): 392, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606721

RESUMO

BACKGROUND: Transcriptome sequencing is an effective tool to reveal the essential genes and pathways underlying countless biotic and abiotic stress adaptation mechanisms. Although severely challenged by diverse environmental conditions, the Pacific abalone Haliotis discus hannai remains a high-value aquaculture mollusk and a Chinese predominantly cultured abalone species. Salinity is one of such environmental factors whose fluctuation could significantly affect the abalone's cellular and molecular immune responses and result in high mortality and reduced growth rate during prolonged exposure. Meanwhile, hybrids have shown superiority in tolerating diverse environmental stresses over their purebred counterparts and have gained admiration in the Chinese abalone aquaculture industry. The objective of this study was to investigate the molecular and cellular mechanisms of low salinity adaptation in abalone. Therefore, this study used transcriptome analysis of the gill tissues and flow cytometric analysis of hemolymph of H. discus hannai (DD) and interspecific hybrid H. discus hannai ♀ x H. fulgens ♂ (DF) during low salinity exposure. Also, the survival and growth rate of the species under various salinities were assessed. RESULTS: The transcriptome data revealed that the differentially expressed genes (DEGs) were significantly enriched on the fluid shear stress and atherosclerosis (FSS) pathway. Meanwhile, the expression profiles of some essential genes involved in this pathway suggest that abalone significantly up-regulated calmodulin-4 (CaM-4) and heat-shock protein90 (HSP90), and significantly down-regulated tumor necrosis factor (TNF), bone morphogenetic protein-4 (BMP-4), and nuclear factor kappa B (NF-kB). Also, the hybrid DF showed significantly higher and sustained expression of CaM and HSP90, significantly higher phagocytosis, significantly lower hemocyte mortality, and significantly higher survival at low salinity, suggesting a more active molecular and hemocyte-mediated immune response and a more efficient capacity to tolerate low salinity than DD. CONCLUSIONS: Our study argues that the abalone CaM gene might be necessary to maintain ion equilibrium while HSP90 can offset the adverse changes caused by low salinity, thereby preventing damage to gill epithelial cells (ECs). The data reveal a potential molecular mechanism by which abalone responds to low salinity and confirms that hybridization could be a method for breeding more stress-resilient aquatic species.


Assuntos
Aterosclerose , Gastrópodes , Animais , Gastrópodes/genética , Perfilação da Expressão Gênica , Salinidade , Estresse Salino/genética , Transcriptoma
6.
Fish Shellfish Immunol ; 126: 211-216, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35636697

RESUMO

Crassostrea nippona is a kind of oysters with great development value as it can be edible in summer for its late reproductive period. Salinity is one of the important limiting abiotic factors to the survival and distribution of this stenohaline species. To better understand the physiological and immunological response of C. nippona to varying environmental salinities, the effects of low salinity on the hemolymph osmolality and gill transcriptome were investigated in this study. The osmolality of hemolymph in vivo and surrounding water were assessed regularly over one week at five test salinities ranging from 5 psµ to 30 psµ. They reached osmotic equilibrium within hours above 15 psµ but remained hyperosmotic at 10 and 5 psµ for the whole sampling period. Through comparative transcriptome analysis, there were less differentially expressed genes (DEGs) in pairwise comparison of S1 (10 psµ) vs S3 (30 psµ) than in S2 (20 psµ) vs S3. KEGG enrichment analysis identified ubiquitin-mediated proteolysis and mitochondrial apoptosis pathway specifically enriched at 10 psµ. This study gained comprehensive insights on the low salinity response of C. nippona at the molecular level, which provide a theoretical basis for understanding the immune mechanism under low salinity stress.


Assuntos
Crassostrea , Hemolinfa , Salinidade , Transcriptoma , Animais , Crassostrea/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-34863943

RESUMO

Glucocorticoids are steroidal hormones critical to stress responses in vertebrates. To gain further insight into the role of the glucocorticoid receptor (GR) in acute stress responses in teleost fish, the relevant cDNA of large yellow croaker (Larimichthys crocea; LcGR) was cloned using the rapid amplification of cDNA ends (RACE) technique. Multiple alignment of the amino acids (aa) of LcGR and the GR of other teleosts indicated LcGR contained four commonly conserved domains and lacked the 9-aa insert seen in GR1. Phylogenetic analysis of the amino acid sequence revealed that LcGR grouped most closely with the GR2 of other teleosts and can therefore be considered a GR2 subtype. In healthy L. crocea, Lcgr mRNA was found to be expressed at high levels in the gill, brain, and muscle tissue, expressed at intermediate levels in heart and stomach tissue, and expressed at low levels in the kidney, intestine, head kidney, liver, and spleen tissue. The response of L. crocea to acute low-salinity stress was tested, with a significant increase in plasma cortisol concentration after 3 h, peaking after 6 h, and gradually returning to base levels. Regarding changes of Lcgr expression in different body tissues under the stress, there was up-regulation of the Lcgr transcript in the brain, liver, and gill tissues, but not in muscle tissue. Responses to pathogen mimics were also tested. Injection with lipopolysaccharide resulted in Lcgr expression, with an increase-decrease-increase trend in the head kidney. In contrast, a down-regulation of Lcgr expression in the head kidney was observed throughout the experimental period upon injection of polyinosinic:polycytidylic acid, revealing different roles of Lcgr for different types of pathogens. The results offer novel insights about the effects of different stressors on GR gene expression in L. crocea, and can facilitate further investigations into stress responses in other mariculture fish species.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Proteínas de Peixes/metabolismo , Perciformes/genética , Perciformes/metabolismo , Filogenia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Salinidade
8.
Fuel (Lond) ; 3092022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35722593

RESUMO

Surface complexation models (SCM), based mainly on the diffuse double layer (DDL) theory, have been used to predict zeta potential at the crude oil-brine-rock (COBR) interface with limited success. However, DDL is inherently limited in accurately predicting zeta potential by the assumptions that all the brine ions interact with the rock surface at the same plane and by the double layer collapse at higher brine ionic strength (>1M). In this work, a TLM-based SCM captured zeta potential trends at the calcite-brine interface with ionic strength up to 3 M. An extended DDL and TLM-based SCMs were used to predict the electrokinetic properties of a composite carbonate rock showing a different mineralogical composition. The extended TLM-based SCM captured the zeta potential prediction trends and magnitude, highlighting the contribution of the inorganic minerals and organic impurities on the composite carbonate surface. In contrast, the extended DDL-based SCM captured the zeta potential trends but failed to capture the magnitude of the measured zeta potential. Interestingly, the TLM-based SCM predicted a positive SP for the rock-brine interface, which could explain the oil-wet nature of composite carbonate rocks due to electrostatic adsorption of negatively charged carboxylic acids. Conversely, the DDL-based SCM predicted a negative SP, leading to an inaccurate interpretation of the electrokinetic properties at the rock-brine interface. Thus, the use of extended TLM-based SCM was required to accurately predict the zeta potential and account for the adsorption of carboxylic acids on the reservoir composite carbonate surface.

9.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268840

RESUMO

An understanding of clay mineral surface chemistry is becoming critical as deeper levels of control of reservoir rock wettability via fluid-solid interactions are sought. Reservoir rock is composed of many minerals that contact the crude oil and control the wetting state of the rock. Clay minerals are one of the minerals present in reservoir rock, with a high surface area and cation exchange capacity. This is a first-of-its-kind study that presents zeta potential measurements and insights into the surface charge development process of clay minerals (chlorite, illite, kaolinite, and montmorillonite) in a native reservoir environment. Presented in this study as well is the effect of fluid salinity, composition, and oilfield operations on clay mineral surface charge development. Experimental results show that the surface charge of clay minerals is controlled by electrostatic and electrophilic interactions as well as the electrical double layer. Results from this study showed that clay minerals are negatively charged in formation brines as well as in deionized water, except in the case of chlorite, which is positively charged in formation water. In addition, a negative surface charge results from oilfield operations, except for operations at a high alkaline pH range of 10-13. Furthermore, a reduction in the concentrations of Na, Mg, Ca, and bicarbonate ions does not reverse the surface charge of the clay minerals; however, an increase in sulfate ion concentration does. Established in this study as well, is a good correlation between the zeta potential value of the clay minerals and contact angle, as an increase in fluid salinity results in a reduction of the negative charge magnitude and an increase in contact angle from 63 to 102 degree in the case of chlorite. Lastly, findings from this study provide vital information that would enhance the understanding of the role of clay minerals in the improvement of oil recovery.

10.
Fish Physiol Biochem ; 48(6): 1599-1617, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36456863

RESUMO

The black sea bream (Acanthopagrus schlegelii) is an important marine economic fish found on the southeast coast of China. Because of the frequent climate change, the salinity of the waters inhabited by A. schlegelii often decreases, which interferes with the fish's physiological homeostasis. The isotonic salinity of teleosts are usually lower than that of seawater, so maximum economic benefits cannot be obtained from conventional mariculture. This study was performed to preliminarily clarify the osmotic regulation and antioxidant mechanism of juvenile A. schlegelii and find an appropriate culture salinity value. We selected 5 psu, 10 psu, 15 psu, and 25 psu (control) to conduct physiological experiments for 96 h and growth experiments for 60 days. We found that the juvenile A. schlegelii could adjust their osmotic pressure within 12 h. The growth hormone and cortisol were found to be seawater-acclimating hormones, whereas prolactin was freshwater-acclimating hormone. The activity and mRNA expression of Na+/K+-ATPase showed a U-shaped trend with the decrease of in salinity at 12-96 h. Serum ion concentration and osmotic pressure remained at a relatively stable level after being actively adjusted from 6 to 12 h. At 96 h, the osmotic pressure of the serum isotonic point of juvenile A. schlegelii was approximately equal to that of water with 14.94 salinity. The number and volume of Cl--secreting cells in the gills decreased. The glomeruli were more developed and structurally sound, with the renal tubules increasing in diameter and the medial brush border being more developed; this may indicate a decrease in salt secretion and an enhanced reabsorption function in the low salinity groups. The activities of superoxide dismutase and catalase and concentration of malondialdehyde were the lowest in the 15 psu group. In addition, the culture conditions of the 15 psu group improved the feed conversion rate without significant differences in weight gain when compared with the control group. Our results show that 15 psu salinity may be the best parameter for obtaining the maximum economic benefits.


Assuntos
Perciformes , Dourada , Animais , Osmorregulação , Antioxidantes/metabolismo , Dourada/metabolismo , Salinidade , Perciformes/fisiologia , Estresse Salino , Brânquias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Água do Mar
11.
Fuel (Lond) ; 2832021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408422

RESUMO

Glass micromodels have been extensively used to simulate and investigate crude oil, brine, and surface interactions due to their homogeneous wettability, rigidity, and ability to precisely capture a reservoir's areal heterogeneity. Most micromodels are fabricated via two-dimensional patterning, implying that feature depths are constant despite varying width, which sub-optimally describes a three-dimensional porous architecture. We have successfully fabricated micromodels with arbitrary triangular cross sections via femtosecond pulsed laser direct writing resulting in depth-dependent channel width. As such, we have achieved arbitrary geometric control over device fabrication and thus a more accurate recapitulation of a geological porous media. With this fabrication technique, we are now able to directly observe pore-level, depth-dependent multiphase flow phenomena. This platform was used to study the low salinity effect (LSE) by simulating waterflooding processes using various brine solutions that differ in cation type and salinity. Patterned pore-throat structures were created to investigate displacement behavior during waterflooding. Real-time monitoring of the displacement processes, combined with a comparison of the brine chemistry before and after waterflooding provides an insight into realistic interactions occurring between crude oil and brine. The results indicate that produced emulsions were prone to coalesce in the presence of lower salinity brine. Combined with previous work, the LSE was interpreted as favored coalescence and resisted breakup that resulting in a more continuous aqueous phase during waterflooding therefore improving the displacement efficiency.

12.
Fish Physiol Biochem ; 47(5): 1687-1696, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34467468

RESUMO

Three trials were conducted to evaluate the performances of red snapper, Lutjanus campechanus, in low salinities. The median lethal concentration (96 h LC50) of salinity was determined by trimmed Spearman-Karber method using survival data of fish (18.9 ± 0.2 g) collected after 96 h from acclimation to 2, 4, 8, and 32 ppt salinities in 800 L tanks (n = 3), while the serum osmolality of fish (74.1 ± 3.9 g) was determined after 48 h from acclimation to 6, 8, 16, 24, and 32 ppt salinities in 150 L tanks (n = 3). The growth trial was conducted for 6 weeks in 800 L tanks to determine the growth and survival of fish (18.8 ± 0.2 g) at 8 ppt salinity compared to the control (32 ppt salinity). At the conclusion, the isosmotic point of fish was estimated as 357.2 mmol/kg (correspond to 11.0 ppt salinity), while the 96 h LC50 was estimated as 5.65 ppt salinity. No significant differences were noted for survival and FCR of fish reared in 8 and 32 ppt salinities. However, growth was significantly lower in fish reared in 8 ppt salinity compared to the fish reared in 32 ppt salinity. The reduced growth could be, at least partially, due to the increased osmoregulatory energy expenditure at lower salinities.


Assuntos
Osmorregulação , Perciformes , Salinidade , Animais , Peixes , Alimentos Marinhos
13.
Biochem Biophys Res Commun ; 526(4): 913-919, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32279992

RESUMO

Myo-inositol is a major intracellular osmolyte that can be accumulated to protect cells from a variety of stresses, including fluctuations in the osmolality of the environment, and cortisol is thought to be an osmotic hormone in teleost fish. In this study, dietary myo-inositol resulted in increased Na+-K+-ATPase activity and gene expression of partial ion channel genes and prolonged survival time of turbot (Scophthalmus maximus) under low salinity. The cortisol regulated by dietary myo-inositol also was correlated with these outcomes. The optimal concentrations of cortisol stimulated gill Na+-K+-ATPase activity and increased the expression of ion channel genes to enhance low salinity tolerance, as indicated by longer survival time under low salinity. When cortisol level was suppressed, myo-inositol failed to increase the survival time of turbot under low salinity, and strong correlations between cortisol concentration and Na+-K+-ATPase activity, expression of partial ion channel genes, and survival time of turbot were detected. These results showed that myo-inositol enhanced the low salinity tolerance of turbot by modulating cortisol synthesis.


Assuntos
Linguados/fisiologia , Hidrocortisona/biossíntese , Inositol/farmacologia , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Animais , Comportamento Alimentar/efeitos dos fármacos , Metirapona/farmacologia
14.
Fish Shellfish Immunol ; 107(Pt A): 16-25, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32947031

RESUMO

To gain knowledge on the immune response in Scylla paramamosain under low salinity challenge, S. paramamosain we investigated digital gene expression (DEG) in S. paramamosain hemocytes using the deep-sequencing platform Illumina Hiseq XTen. A total of 97,257 high quality unigenes with mean length 786.59 bp were found to be regulated by low salinity challenge, among which 93 unigenes were significantly up regulated, and 71 were significantly down regulated. Functional categorization and pathways analysis of differentially expressed genes revealed that immune signaling pathway including cAMP and cGMP signaling pathway were affected in low salinity stress. Cellular immunity-related genes including low-density lipoprotein receptor-related protein 6 (LRP6) and xanthine dehydrogenase (XDH) were down-regulated, indicating phagocytosis and oxygen dependent mechanism of phagocyte were suppressed in low salinity stress; Humoral immunity-related genes serine proteases and serpins 3 were up- and down-regulated, respectively, suggest that the proPO system was influenced by low salinity significantly; Moreover, processes related to immune response including carbohydrate metabolism, protein synthesis and lipid transport were found differentially regulated, implying the integrity of the immune response in low salinity stress. This study gained comprehensive insights on the immune mechanism of S. paramamosain at low salinity stress at the molecular level. The findings provide a theoretical basis for understanding immune mechanisms of S. paramamosain under low salinity stress, and technical reference for evaluating physiological adaptation in fresh water environment.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Hemócitos/imunologia , Imunidade Inata/genética , Estresse Salino/imunologia , Transcriptoma/imunologia , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Distribuição Aleatória
15.
J Phycol ; 56(3): 719-729, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31965565

RESUMO

In 1995 a strain of Ectocarpus was isolated from Hopkins River Falls, Victoria, Australia, constituting one of few available freshwater or nearly freshwater brown algae, and the only one belonging to the genus Ectocarpus. It has since been used as a model to study acclimation and adaptation to low salinities and the role of its microbiota in these processes. To provide more background information on this model, we assessed if Ectocarpus was still present in the Hopkins river 22 years after the original finding, estimated its present distribution, described its abiotic environment, and determined its in situ microbial composition. We sampled for Ectocarpus at 15 sites along the Hopkins River as well as 10 neighboring sites and found individuals with ITS and cox1 sequences identical to the original isolate at three sites upstream of Hopkins River Falls. The salinity of the water at these sites ranged from 3.1 to 6.9, and it was rich in sulfate (1-5 mM). The diversity of bacteria associated with the algae in situ (1312 operational taxonomic units) was one order of magnitude higher than in previous studies of the original laboratory culture, and 95 alga-associated bacterial strains were isolated from algal filaments on site. In particular, species of Planctomycetes were abundant in situ but rare in laboratory cultures. Our results confirmed that Ectocarpus was still present in the Hopkins River, and the newly isolated algal and bacterial strains offer new possibilities to study the adaptation of Ectocarpus to low salinity and its interactions with its microbiome.


Assuntos
Microbiota , Phaeophyceae , Rios , Salinidade , Vitória
16.
Fish Shellfish Immunol ; 91: 315-324, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31129185

RESUMO

An 8-week trial was conducted to evaluate the effect of dietary ß-glucan supplement (0, 0.01%, 0.02%, or 0.04%) on growth and health of Pacific white shrimp Litopenaeus vannamei at low salinity of 3 practical salinity unit (psu). The L. vannamei fed 0.02% and 0.04% ß-glucan gained more weight and showed higher activities of protease, amylase, superoxide dismutase, and glutathione peroxidase in the intestine than in the control (0% ß-glucan). The L. vannamei fed 0.04% ß-glucan had a higher condition factor than those fed the control diet. Amylase activity in the hepatopancreas of L. vannamei fed 0.02% ß-glucan was higher than those fed the control diet. Dietary ß-glucan supplement increased the mRNA expressions of Toll-like receptor, myostatin, immune deficiency or heat shock protein 70, but decreased the mRNA expressions of tumor necrosis factor-α and C-type lectin 3 in both hepatopancreas and intestine. The response of intestine microbiota in L. vannamei fed 0.04% ß-glucan was further compared to the control. The 0.04% ß-glucan supplement reduced richness and diversity of the intestinal microbial community as indicated by the low values of Chao1 estimator, ACE estimator, Simpson index and Shannon diversity index. Abundances of Bacillus, Chitinibacter, Geobacillus and Vibrio in the intestine increased, while Flavobacterium, Microbacterium and Mycobacterium decreased significantly in L. vannamei fed 0.04% ß-glucan compared to the control. This study indicates that dietary ß-glucan supplement at 0.02%-0.04% can significantly improve digestibility, antioxidant capacity and immunity in L. vannamei, and thus improve growth performance and survival at low salinity. These beneficial effects of ß-glucan probably are related to the dominance of probiotics over potential pathogens in the intestine.


Assuntos
Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Probióticos/farmacologia , Salinidade , beta-Glucanas/farmacologia , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Penaeidae/metabolismo , Probióticos/administração & dosagem , Distribuição Aleatória , beta-Glucanas/administração & dosagem
17.
Fish Shellfish Immunol ; 62: 195-201, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28108342

RESUMO

A 45-day feeding trial followed by an acute stress test of low salinity was done to evaluate effects of Lactobacillus plantarum on growth performance and anti-stress capability of white shrimp (Litopenaeus vannamei). Shrimp were randomly allocated in 15 tanks (100 shrimp per tank) and divided into 5 treatments with 3 replicates. Triplicate tanks were fed with a control diet or diets containing different treatments of L. plantarum (fermentation supernatant (FS), live bacteria (LB), dead bacteria (DB) and cell-free extract (CE) of L. plantarum) as treatment groups. Growth performance including weight gain (WGR), feed conversion ratio (FCR) and specific growth rate (SGR) were determined after feeding 45 days. Anti-stress capacity was evaluated by determining the gene expression of ProPO, SOD and Lys in gut of shrimp at the end of feeding trial and again at 96 h post-stress test. Results indicated that supplementation of L. plantarum into diet had significantly improved growth performance of L. vannamei. On the other hand, L. plantarum supplementation had no significant effects on the gene expression of SOD and Lys in gut of shrimp cultured under normal condition for 45 days. Supplementation of L. plantarum had increased survivability of L. vannamei having higher survival rates compared to the control group. However, statistical analysis showed no significant difference between the control group and treatments. Compared with the control group, supplementation of L. plantarum significantly improved the resistance of L. vannamei against the stress of acute low salinity, as indicated by higher survival rate as well as higher transcript levels of ProPo, SOD and Lys gene. Our findings suggested that L. plantarum, especially cell-free extract of L. plantarum has improved the anti-stress capacity of L. vannamei and could serve as a potential feed additive that helps shrimp to overcome environmental stresses.


Assuntos
Proteínas de Artrópodes/genética , Expressão Gênica/efeitos dos fármacos , Lactobacillus plantarum/química , Penaeidae/fisiologia , Probióticos/farmacologia , Salinidade , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Proteínas de Artrópodes/metabolismo , Dieta , Metabolismo Energético/efeitos dos fármacos , Imunidade Inata , Penaeidae/genética , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Probióticos/administração & dosagem , Estresse Fisiológico
18.
Fish Physiol Biochem ; 43(1): 179-192, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27542150

RESUMO

Environmental stressors caused by inadequate aquaculture management strategies suppress the immune response of fish and make them more susceptible to diseases. Therefore, efforts have been made to relieve stress in fish by using various functional feed additives in the diet, including probiotics. The present work evaluates the effects of Lactobacillus rhamnosus (LR) on physiological stress response, blood chemistry and mucus secretion of red sea bream (Pagrus major) under low salinity stress. Fish were fed four diets supplemented with LR at [0 (LR0), 1 × 102 (LR1), 1 × 104 (LR2) and 1 × 106 (LR3) cells g-1] for 56 days. Before stress, blood cortisol, urea nitrogen (BUN) and total bilirubin (T-BIL) showed no significant difference (P > 0.05), whereas plasma glucose and triglyceride (TG) of fish-fed LR2 and LR3 diets were significantly lower (P < 0.05) than those of the other groups. Plasma total cholesterol (T-CHO) of fish-fed LR3 diet was significantly (P < 0.05) lower than that of the other groups. Furthermore, total plasma protein, mucus myeloperoxidase activity and the amount of mucus secretion were significantly enhanced in LR-supplemented groups when compared with the control group (P < 0.05). After the application of the low salinity stress test, plasma cortisol, glucose, T-CHO and TG contents in all groups showed an increased trend significantly (P < 0.01) compared to the fish before the stress challenge. However, plasma total protein and the amount of secreted mucus showed a decreased trend in all groups. On the other hand, BUN, T-BIL and mucus myeloperoxidase activity showed no significant difference after exposure to the low salinity stress (P > 0.05). In addition, the fish that received LR-supplemented diets showed significantly higher tolerance against low salinity stress than the fish-fed LR-free diet (P < 0.05). The physiological status and the detected immune responses, including total plasma protein and mucus myeloperoxidase activity in red sea bream, will provide a more comprehensive outlook of the effects of probiotics to relieve stress in fish.


Assuntos
Lacticaseibacillus rhamnosus , Probióticos/farmacologia , Salinidade , Dourada/metabolismo , Animais , Bilirrubina/sangue , Glicemia/análise , Proteínas Sanguíneas/metabolismo , Nitrogênio da Ureia Sanguínea , Colesterol/sangue , Proteínas de Peixes/metabolismo , Hidrocortisona/sangue , Muco/enzimologia , Muco/metabolismo , Peroxidase/metabolismo , Dourada/sangue , Estresse Fisiológico , Triglicerídeos/sangue
19.
Fish Shellfish Immunol ; 48: 239-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26679110

RESUMO

Heat shock protein (HSP) 40 proteins are a family of molecular chaperones that bind to HSP70 through their J-domain and regulate the function of HSP70 by stimulating its adenosine triphosphatase activity. In the present study, a HSP40 homolog named PmHSP40 was cloned from the hemocytes of pearl oyster Pinctada martensii using EST and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of PmHSP40 was 1251 bp in length, which included a 5' untranslated region (UTR) of 75 bp, an open reading frame (ORF) of a 663 bp, and a 3' UTR of 513 bp. The deduced amino acid sequence of PmHSP40 contains a J domain in the N-terminus. In response to thermal and low salinity stress challenges, the expression of PmHSP40 in hemocytes and the gill were inducible in a time-dependent manner. After bacterial challenge, PmHSP40 transcripts in hemocytes increased and peaked at 6 h post injection. In the gill, PmHSP40 expression increased, similar to expression in hemocytes; however, transcript expression of PmHSP40 was significantly up-regulated at 12 h post injection. Furthermore, the transcripts of PmHSP70 showed similar kinetics as that of PmHSP40, with highest induction during thermal, low salinity stress and bacterial challenges. Altogether these results demonstrate that PmHSP40 is an inducible protein under thermal, low salinity and bacterial challenges, suggesting its involvement in both environmental and biological stresses, and in the innate immunity of the pearl oyster.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Pinctada , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Brânquias/metabolismo , Proteínas de Choque Térmico HSP40/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Hemócitos/metabolismo , Dados de Sequência Molecular , Pinctada/genética , Pinctada/imunologia , Pinctada/microbiologia , RNA Mensageiro/metabolismo , Salinidade , Análise de Sequência de DNA , Temperatura , Vibrio , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/veterinária
20.
Fish Shellfish Immunol ; 49: 396-406, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26766179

RESUMO

The effects of low salinity (transferred from 31‰ to 26‰, 21‰, and 16‰) on the regulation pathways of neuroendocrine-immunoregulatory network were investigated in Litopenaeus vannamei. The results showed that the hormones (corticotrophin-releasing hormone, adrenocorticotropic hormone) and biogenic amines (dopamine, noradrenaline, 5-hydroxytryptamine) concentrations in lower salinity groups increased significantly within 12 h. The gene expression of biogenic amine receptors showed that dopamine receptor D4 and α2 adrenergic receptor in lower salinity groups decreased significantly within 12 h, whereas the 5-HT7 receptor significantly increased within 1d. The second messenger synthetases (adenylyl cyclase, phospholipase C) and the second messengers (cyclic adenosine monophosphate, cyclic guanosine monophosphate) of lower salinity groups shared a similar trend in which adenylyl cyclase and cyclic adenosine monophosphate reached the maximum at 12 h, whereas phospholipase C and cyclic guanosine monophosphate reached the minimum. The immune parameters (total hemocyte count, phenoloxidase activity, phagocytic activity, crustin expression, antibacterial activity, C-type lectin expression, hemagglutinating activity) in lower salinity groups decreased significantly within 12 h. Except for the total hemocyte count, all the parameters recovered to the control levels afterwards. Therefore, it may be concluded that the neuroendocrine-immunoregulatory network plays a principal role in adapting to salinity changes as the main center for sensing the stress and causes immune response in L. vannamei.


Assuntos
Imunidade Inata/imunologia , Penaeidae/fisiologia , Salinidade , Animais , Imunidade Inata/efeitos dos fármacos , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/imunologia , Sistemas Neurossecretores/fisiologia , Penaeidae/efeitos dos fármacos , Penaeidae/imunologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA