Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Brain ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739753

RESUMO

Human brain organoids represent a remarkable platform for modeling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses reveal that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays reveal that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.

2.
Environ Res ; 261: 119637, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032620

RESUMO

Low-intensity ultrasound, as a form of biological enhancement technology, holds significant importance in the field of biological nitrogen removal. This study utilized low-intensity ultrasound (200 W, 6 min) to enhance partial nitrification and investigated its impact on sludge structure, as well as the internal relationship between structure and properties. The results demonstrated that ultrasound induced a higher concentration of nitrite in the effluent (40.16 > 24.48 mg/L), accompanied by a 67.76% increase in the activity of ammonia monooxygenase (AMO) and a 41.12% increase in the activity of hydroxylamine oxidoreductase (HAO), benefiting the partial nitrification. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theoretical analysis, ultrasonic treatment enhanced the electrostatic interaction energy (WR) between sludge flocs, raising the total interaction energy from 46.26 kT to 185.54 kT, thereby causing sludge dispersion. This structural alteration was primarily attributed to the fact that the tightly bonded extracellular polymer (TB-EPS) after ultrasound was found to increase hydrophilicity and negative charge, weakening the adsorption between sludge cells. In summary, this study elucidated that the change in sludge structure caused by ultrasonic treatment has the potential to enhance the nitrogen removal performance by partial nitrification.


Assuntos
Nitrificação , Nitrogênio , Esgotos , Esgotos/química , Nitrogênio/química , Eliminação de Resíduos Líquidos/métodos , Oxirredutases/metabolismo , Nitritos/química , Ondas Ultrassônicas , Poluentes Químicos da Água/química
3.
J Ultrasound Med ; 43(1): 127-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37842972

RESUMO

OBJECTIVES: Topically applied macromolecules have the potential to provide vision-saving treatments for many of the leading causes of blindness in the United States. The aim of this study was to determine if ultrasound can be applied to increase transcorneal drug delivery of macromolecules without dangerously overheating surrounding ocular tissues. METHODS: Dissected corneas of adult rabbits were placed in a diffusion cell between a donor compartment filled with a solution of macromolecules (40, 70 kDa, or 150 kDa) and a receiver compartment. Each cornea was exposed to the drug solution for 60 minutes, with the experimental group receiving 5 minutes of continuous ultrasound or 10 minutes of pulsed ultrasound at a 50% duty cycle (pulse repetition frequency of 500 ms on, 500 ms off) at the beginning of treatment. Unfocused circular ultrasound transducers were operated at 0.5 to 1 W/cm2 intensity and at 600 kHz frequency. RESULTS: The greatest increase in transcorneal drug delivery seen was 1.2 times (P < .05) with the application of pulsed ultrasound at 0.5 W/cm2 and 600 kHz for 10 minutes with 40 kDa macromolecules. Histological analysis revealed structural damage mostly in the corneal epithelium, with most damage occurring at the epithelial surface. CONCLUSIONS: This study suggests that ultrasound may be used for enhancing transcorneal delivery of macromolecules of lower molecular weights. Further research is needed on the long-term effects of ultrasound parameters used in this study on human ocular tissues.


Assuntos
Córnea , Terapia por Ultrassom , Animais , Humanos , Coelhos , Córnea/diagnóstico por imagem , Córnea/metabolismo , Ultrassonografia , Ondas Ultrassônicas , Permeabilidade
4.
Neuromodulation ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39078346

RESUMO

BACKGROUND AND OBJECTIVE: Noninvasive neuromodulation, particularly through low-intensity ultrasound, holds promise in the fields of neuroscience and neuro-engineering. Ultrasound can stimulate the central nervous system to treat neurologic disorders of the brain and activate peripheral nerve activity. The aim of this study is to investigate the inhibitory effect of low-intensity ultrasonic tibial nerve stimulation on both the physiological state and the overactive bladder (OAB) model in rats. MATERIALS AND METHODS: A total of 28 female Sprague-Dawley rats were used in this study. Continuous transurethral instillation of 0.9% normal saline into the bladder was initially performed to stimulate physiological bladder activity. Subsequently, a solution containing 0.3% acetic acid dissolved in saline was instilled to induce rat models of OAB. The study comprised two phases: initial observation of bladder response to low-intensity ultrasound (1 MHz, 1 W/cm2, 50% duty cycle) in seven rats; subsequent exploration of ultrasound frequency (3 MHz) and intensity (2 W/cm2 and 3 W/cm2) effects in 21 rats. The intercontraction intervals (ICIs) were the primary outcome measure. Histologic analysis of tibial nerves and surrounding muscle tissues determined safe ultrasound parameters. RESULTS: Low-intensity ultrasound tibial nerve stimulation significantly inhibited normal and OAB activity. Ultrasound stimulation at 1 MHz, 1 W/cm2, with a 50% duty cycle significantly prolonged the ICI in both normal (p < 0.0001) and OAB rats (p < 0.01), as did transitioning to a 3 MHz frequency (p = 0.001 for normal rats; p < 0.01 for OAB rats). Similarly, at an intensity of 2 W/cm2 and 1 MHz frequency with a 50% duty cycle, ultrasound stimulation significantly prolonged the ICI in both normal (p < 0.01) and OAB rats (p < 0.005). Furthermore, switching to a 3 W/cm2 ultrasound intensity also significantly extended the ICI in both normal (p < 0.05) and OAB rats (p = 0.01). However, after different ultrasound intensities and frequencies, there was no statistical difference in ICI ratios (preultrasound stimulation vs postultrasound stimulation/preultrasound stimulation ∗ 100%) in all rats (p > 0.05). Low-intensity ultrasound tibial nerve stimulation did not influence baseline pressure, threshold pressure, or maximum pressure. In addition, a latency period in bladder reflex inhibition was induced by low-intensity ultrasound tibial nerve stimulation in some rats. Histologic analysis indicated no evident nerve or muscle tissue damage or abnormalities. CONCLUSIONS: This study confirmed the potential of transcutaneous ultrasound tibial nerve stimulation to improve bladder function. According to the findings, the ultrasonic intensities ranging from 1 to 3 W/cm2 and frequencies of 1 MHz and 3 MHz are both feasible and safe treatment parameters. This study portended the promise of low-intensity ultrasound tibial nerve stimulation as a treatment for OAB and provides a basis and reference for future clinical applications.

5.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000401

RESUMO

Cancer development is related to genetic mutations in primary cells, where 5-10% of all cancers are derived from acquired genetic defects, most of which are a consequence of the environment and lifestyle. As it turns out, over half of cancer deaths are due to the generation of drug resistance. The local delivery of chemotherapeutic drugs may reduce their toxicity by increasing their therapeutic dose at targeted sites and by decreasing the plasma levels of circulating drugs. Nanobubbles have attracted much attention as an effective drug distribution system due to their non-invasiveness and targetability. This review aims to present the characteristics of nanobubble systems and their efficacy within the biomedical field with special emphasis on cancer treatment. In vivo and in vitro studies on cancer confirm nanobubbles' ability and good blood capillary perfusion; however, there is a need to define their safety and side effects in clinical trials.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Animais , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas
6.
J Environ Sci (China) ; 139: 446-459, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105067

RESUMO

Partial nitrification is a key aspect of efficient nitrogen removal, although practically it suffers from long start-up cycles and unstable long-term operational performance. To address these drawbacks, this study investigated the effect of low intensity ultrasound treatment combined with hydroxylamine (NH2OH) on the performance of partial nitrification. Results show that compared with the control group, low-intensity ultrasound treatment (0.10 W/mL, 15 min) combined with NH2OH (5 mg/L) reduced the time required for partial nitrification initiation by 6 days, increasing the nitrite accumulation rate (NAR) and ammonia nitrogen removal rate (NRR) by 20.4% and 6.7%, respectively, achieving 96.48% NRR. Mechanistic analysis showed that NH2OH enhanced ammonia oxidation, inhibited nitrite-oxidizing bacteria (NOB) activity and shortened the time required for partial nitrification initiation. Furthermore, ultrasonication combined with NH2OH dosing stimulated EPS (extracellular polymeric substances) secretion, increased carbonyl, hydroxyl and amine functional group abundances and enhanced mass transfer. In addition, 16S rRNA gene sequencing results showed that ultrasonication-sensitive Nitrospira disappeared from the ultrasound + NH2OH system, while Nitrosomonas gradually became the dominant group. Collectively, the results of this study provide valuable insight into the enhancement of partial nitrification start-up during the process of wastewater nitrogen removal.


Assuntos
Amônia , Nitrificação , Hidroxilamina , Nitritos , Estudos de Viabilidade , RNA Ribossômico 16S , Oxirredução , Reatores Biológicos/microbiologia , Hidroxilaminas , Bactérias/genética , Nitrogênio , Esgotos
7.
J Nanobiotechnology ; 21(1): 53, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782198

RESUMO

PURPOSE: Vulvovaginal candidiasis (VVC) is a mucosal infection of the female lower genital tract for which treatment using conventional antifungal drugs shows limited effectiveness. Herein, amphotericin B-loaded poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) nanoparticles (AmB-NPs) were fabricated and combined with low intensity ultrasound (US) to mediate AmB-NPs intravaginal drug delivery to achieve productive synergistic antifungal activity in a rabbit model of VVC. METHODS: Polymeric AmB-NPs were fabricated by a double emulsion method and the physical characteristics and biosafety of nanoparticles were analyzed. The distribution and tissue permeability of nanoparticles after intravaginal ultrasound irradiation (1.0 MHz, 1.0 W/cm2, 5 min, 50% duty ratio) were observed in the vagina. The synergistic therapeutic activity of US-mediated AmB-NPs treatment was evaluated using an experimental rabbit model of VVC. Vaginal C. albicans colony counts, the pathological structure of the vagina epithelium, and Th1/Th2/Th17-type cytokine and oxidative stress levels were analyzed to investigate the therapeutic effect in vivo. RESULTS: The prepared AmB-NPs showed an obvious shell and core structure with uniform size and good dispersion and displayed high biosafety and US-sensitive slow drug release. Ultrasound significantly enhanced nanoparticle transport through the mucus and promoted permeability in the vaginal tissue. US-mediated AmB-NPs treatment effectively increased drug sensitivity, even in the presence of the vaginal mucus barrier in vitro. On the seventh day after treatment in vivo, the combination treatment of AmB-NPs and US significantly reduced the fungal load in the vagina, achieving over 95% clearance rates, and also improved the pathological epithelium structural damage and glycogen secretion function. The expression of Th1 (IFN-γ, IL-2) and Th17 (IL-17) cytokines were significantly increased and Th2 (IL-6, IL-10) cytokines significantly decreased in the US + AmB-NP group. Furthermore, US-mediated AmB-NPs treatment effectively increased C. albicans intracellular reactive oxygen species (ROS) levels and promoted vaginal oxidation and antioxidants to normal levels. CONCLUSION: US-mediated drug-loaded nanoparticles with intravaginal drug delivery exhibited a productive synergistic antifungal effect, which may provide a new non-invasive, safe, and effective therapy for acute or recurrent fungal vaginitis.


Assuntos
Candidíase Vulvovaginal , Nanopartículas , Humanos , Animais , Feminino , Coelhos , Antifúngicos/química , Candidíase Vulvovaginal/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Citocinas , Candida albicans
8.
J Biomech Eng ; 145(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37043237

RESUMO

The presence of stem cells in cancer may increase the chances of drug resistance and invasiveness. Low-intensity ultrasound (LIUS) can regulate the biological and mechanical properties of cells and participate in cellular migration and differentiation. Although LIUS has shown significant potential in cancer treatment, the effects of LIUS on migration and drug resistance of cancer stem cells (CSCs) are unclear from a biomechanical perspective. Hence, the objective of this work is to analyze the biomechanical response of LIUS to CSCs. In this study, we selected human ovarian cancer cell line A2780 and ovarian cancer stem cells (OCSCs) were enriched from A2780 cells and observed that OCSCs had higher drug sensitivity and lower invasiveness than A2780 cells after LIUS exposure. Furthermore, we further analyzed the changes in cell morphology, cytoskeleton, and membrane stiffness of A2780 cells and OCSCs at various intensities of LIUS, these results showed that LIUS could induce morphological changes, F-actin formation and increase membrane stiffness, which could help to suppress migration and reduce the drug resistance of OCSCs. Our findings will help establish a better understanding of the biomechanical response to LIUS in CSCs, and future studies on cancer will benefit from the careful consideration of the cellular response of CSCs to LIUS stimulation, ultimately allowing for the development of more effective therapies.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/metabolismo , Ultrassonografia , Células-Tronco Neoplásicas/metabolismo
9.
J Ultrasound Med ; 42(10): 2215-2232, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37129170

RESUMO

Low-intensity ultrasound (LI-US) is a non-invasive stimulation technique that has emerged in recent years and has been shown to have positive effects on neuromodulation, fracture healing, inflammation improvement, and metabolic regulation. This study reports the conclusions of a bibliometric analysis of LI-US. Input data for the period between 1995 and 2022, including 7209 related articles in the field of LI-US, were collected from the core library of the Web of Science (WOS) database. Using these data, a set of bibliometric indicators was obtained to gain knowledge on different aspects: global production, research areas, and sources analysis, contributions of countries and institutions, author analysis, citation analysis, and keyword analysis. This study combined the data analysis capabilities provided by the WOS database, making use of two bibliometric software tools: R software and VOS viewer to achieve analysis and data exploration visualization, and predicted the further development trends of LI-US. It turns out that the United States and China are co-leaders while Zhang ZG is the most significant author in LI-US. In the future, the hot spots of LI-US will continue to focus on parameter research, mechanism discussion, safety regulations, and neuromodulation applications.


Assuntos
Bibliometria , Consolidação da Fratura , Humanos , Ultrassonografia , China , Bases de Dados Factuais
10.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674582

RESUMO

As-prepared mesoporous silicon nanoparticles, which were synthesized by electrochemical etching of crystalline silicon wafers followed by high-energy milling in water, were explored as a sonosensitizer in aqueous media under irradiation with low-intensity ultrasound at 0.88 MHz. Due to the mixed oxide-hydride coating of the nanoparticles' surfaces, they showed both acceptable colloidal stability and sonosensitization of the acoustic cavitation. The latter was directly measured and quantified as a cavitation energy index, i.e., time integral of the magnitude of ultrasound subharmonics. The index turned out to be several times greater for nanoparticle suspensions as compared to pure water, and it depended nonmonotonically on nanoparticle concentration. In vitro tests with Lactobacillus casei revealed a dramatic drop of the bacterial viability and damage of the cells after ultrasonic irradiation with intensity of about 1 W/cm2 in the presence of nanoparticles, which themselves are almost non-toxic at the studied concentrations of about 1 mg/mL. The experimental results prove that nanoparticle-sensitized cavitation bubbles nearby bacteria can cause bacterial lysis and death. The sonosensitizing properties of freshly prepared mesoporous silicon nanoparticles are beneficial for their application in mild antibacterial therapy and treatment of liquid media.


Assuntos
Nanopartículas , Silício , Silício/farmacologia , Nanopartículas/química , Acústica , Antibacterianos/farmacologia , Ultrassonografia
11.
Small ; 18(31): e2202921, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801484

RESUMO

Sonosensitizers-assisted sonodynamic therapy (SDT) has been emerging as a promising treatment for cancers, and yet few specific regulations of band structure of sonosensitizers have been reported in relation to oxygen in tissues. Herein, by a gradient doping technique to modulate the band structure of hetero-semiconductor nanorods, it is found that the reduction potential of band-edge is very critical to reactive oxygen species (ROS) production under low-intensity ultrasound (US) irradiation and particularly, when aligned with the reduction of oxygen, ROS generation is found to be most significantly enhanced. Withal, US-generated oxidation holes are found to be effective in consuming overexpressed glutathione in tumor lesions, which amplifies cellular oxidative stress and finally induces tumor cell death. Moreover, the intrinsic fluorescence property of semiconductors provides imaging capability to illumine tumor area and guide the SDT process. This study demonstrates that the reduction potential state of sonosensitizers is of crucial importance in ROS generation and the proposed reduction potential-tailored hetero-semiconductor nanorods materialize low-intensity US irradiation yet highly effective SDT and synergetic hole therapy of tumors with imaging guidance and reduced radiation injury.


Assuntos
Nanotubos , Neoplasias , Terapia por Ultrassom , Linhagem Celular Tumoral , Humanos , Neoplasias/terapia , Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Semicondutores , Terapia por Ultrassom/métodos
12.
Intervirology ; 65(2): 110-118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34510042

RESUMO

BACKGROUND: Colorectal cancer is the third most common cancer all over the world, so in the battle to fight this hurdle, new therapeutic approaches such as oncolytic viruses (OV) have attracted much attention because of the fact that they can inherently kill cancer cells. Oncolytic reovirus is one of the candidates for treatment as a nonpathogenic species specially reovirus type 3 Dearing (T3D), which can induce apoptosis. To speed up the entry and function of the reovirus, low-intensity ultrasound, which is a safe system for damage to the cells and tissues, is a promising approach to be used in combination with other therapeutic approach. METHODS: L929 and CT26 cells were infected with reovirus T3D and were exposed to ultrasonic irradiation (1 MHz, 1 W/cm2, and 20% duty factor) for 10 s. The viruses' titer level of both groups was calculated in 2 types of cells by using the CCID50 method and compared with each other. Apoptosis, after 24 h, was measured by the flow cytometry method. RESULT: The results of CCID50 in infected cells were exposed to low-intensity ultrasound showed an increased virus titer compared with unexposed infected cells. Moreover, according to the results of the flow cytometry test, it was found that the amount of apoptosis in infected cells that are exposed to low-intensity ultrasound waves is higher than those infected cells. CONCLUSION: Due to the results of CCID50 and flow cytometry tests, low-intensity ultrasound increases the cytotoxicity level of reovirus in CT26 cells of the cellular colorectal cancer model.


Assuntos
Neoplasias Colorretais , Terapia Viral Oncolítica , Vírus Oncolíticos , Reoviridae , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Humanos , Terapia Viral Oncolítica/métodos
13.
Curr Pain Headache Rep ; 26(1): 57-63, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35133560

RESUMO

PURPOSE OF REVIEW: Chronic pain management therapies have expanded quickly over the past decade. In particular, the use of laser therapy and ultrasound in the management of chronic pain has risen in recent years. Understanding the uses of these types of therapies can better equip chronic pain specialists for managing complicated chronic pain syndromes. The purpose of this review was to summarize the current literature regarding laser radiation and ultrasound therapy used for managing chronic pain syndromes. RECENT FINDINGS: In summary, there is stronger evidence supporting the usage of laser therapy for managing chronic pain states compared to low-intensity ultrasound therapies. As a monotherapy, laser therapy has proven to be beneficial in managing chronic pain in patients with a variety of pain syndromes. On the other hand, LIUS has less clear benefits as a monotherapy with an uncertain, optimal delivery method established. Both laser therapy and low-intensity ultrasound have proven beneficial in managing various pain syndromes and can be effective interventions, in particular, when utilized in combination therapy.


Assuntos
Dor Crônica , Terapia a Laser , Terapia por Ultrassom , Dor Crônica/terapia , Humanos , Manejo da Dor , Ultrassonografia
14.
Biotechnol Lett ; 44(8): 1001-1010, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35767163

RESUMO

Intermittent ultrasound with an intensity of 0.2 W/ml was applied during simultaneous nitrification/iron-based autotrophic denitrification to evaluate its impacts on total nitrogen (TN) removal efficiency and microbial characteristics during low carbon/nitrogen ratio (C/N) wastewater treatment. At an optimal dissolved oxygen (DO) concentration of 1.2 mg/L, the TN removal rate was 91 ± 4%, and the TN concentration in the effluent decreased by 31% owing to the ultrasound treatment. In addition, the number of iron-compounds that formed in the sludge and wastewater increased by 55% and 37%, respectively. Low-intensity ultrasound caused a substantial increase in ammonia monooxygenase activity. Moreover, when the DO concentration increased to 1.2 mg/L, the activities of nitrate reductase and nitrite reductase, both of which are associated with denitrification, were effectively maintained. High-throughput sequencing indicated that low-intensity ultrasound enriched ammonium oxidising bacteria (Nitrosomonas) and suppressed the growth of heterotrophic denitrifying bacteria (Zoogloea and Simplicispira). These changes benefited simultaneous nitrification and autotrophic denitrification. Thus, low-intensity ultrasound promoted the simultaneous nitrification/iron-based autotrophic denitrification process during low C/N wastewater treatment.


Assuntos
Desnitrificação , Nitrificação , Reatores Biológicos/microbiologia , Carbono , Ferro , Nitrogênio , Esgotos , Águas Residuárias
15.
Biotechnol Bioeng ; 118(1): 319-328, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949158

RESUMO

Schizochytrium sp. is a microalga that is known for its high content of oils or lipids. It has a high percentage of polyunsaturated fatty acids in the accumulated oil, especially docosahexaenoic acid (DHA). DHA is an important additive for the human diet. Large-scale production of Schizochytrium sp. can serve as an alternative source of DHA for humans as well as for fish feed, decreasing the burden on aqua systems. Therefore, research on improving the productivity of Schizochytrium attracts a lot of attention. We studied the potential of using low-intensity pulsed ultrasound (LIPUS) in the growth cycle of Schizochytrium sp. in shake flasks. Different intensities and treatment durations were tested. A positive effect of LIPUS on biomass accumulation was observed in the Schizochytrium sp. culture. Specifically, LIPUS stimulation at the ultrasound intensity of 400 mW/cm2 with 20 min per treatment 10 times a day with equal intervals of 2.4 h between the treatments was found to enhance the growth of Schizochytrium biomass most effectively (by up to 20%). Due to the nature of cell division in Schizochytrium sp. which occurs via zoospore formation, LIPUS stimulation was inefficient if applied continuously during all 5 days of the growth cycle. Using microscopy, we studied the interval between zoospore formation in the culture and selected the optimal LIPUS application days (Days 0-1 and Days 4-5 of the 5-day growth cycle). Microscopic images have also shown that LIPUS stimulation enhances zoospore formation in Schizochytrium sp., leading to more active cell division in the culture. This study shows that LIPUS can serve as an additional tool for cost-efficiency improvement in the large-scale production of Schizochytrium as a sustainable and environmentally friendly source of omega-3 (DHA).


Assuntos
Biomassa , Ácidos Graxos Ômega-3/biossíntese , Estramenópilas/crescimento & desenvolvimento , Ondas Ultrassônicas
16.
Biochem Biophys Res Commun ; 526(3): 820-826, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32273089

RESUMO

Ovarian carcinoma is the key cause of cancer death from gynecological malignancy of women. Chemotherapy-resistance, metastasis and relapse contribute to the high mortality in ovarian cancer patients. Cancer stem cells (CSCs) stand for the root of kinds of cancer types such as ovarian cancer, are the key driver of tumor initiation, cancer metastasis, and resistance to conventional chemotherapy as well as genomic targeted therapy. Thus, the approach to eliminate CSCs and uncovering the mechanism will have substantial impact on cancer therapy. However, targeting CSC remains unfeasible in clinical practice in ovarian cancer therapy. In this study, we first found that Low-intensity ultrasound (LIUS) was capable of reducing the CSC populations in the xenograft model with ovarian cancer, with blocking survival, anti-apoptosis, self-renewal, and downregulating the cancer stemness genes in ovarian CSCs. Moreover, LIUS ameliorated IL-6/STAT3 inflammatory pathway via inhibiting IL-6-induced STAT3 phosphorylation, DNA binding activity and, the expressions of its downstream effectors in ovarian CSCs while no explicit effect was found in the corresponding bulk cancer cells. Additional approaches in molecular studies showed that LIUS disrupts CSC features via inhibiting IL-6/STAT3 inflammatory pathway. Collectively, our data for the first time elucidate IL-6/STAT3 inflammatory loop as the key CSC or cancer stemness pathway in ovarian cancer by LIUS treatment, providing a novel and potential therapy and a promising target in ovarian cancer.


Assuntos
Interleucina-6/antagonistas & inibidores , Neoplasias Ovarianas/metabolismo , Fator de Transcrição STAT3/metabolismo , Terapia por Ultrassom/métodos , Ondas Ultrassônicas , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , DNA/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Neoplasias Experimentais , Células-Tronco Neoplásicas/metabolismo , Oncogenes , Fosforilação/efeitos da radiação , Ligação Proteica/efeitos da radiação , Transdução de Sinais
17.
Pain Med ; 21(7): 1494-1506, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-32626904

RESUMO

OBJECTIVES: Low-intensity ultrasound (LIU)/low-intensity pulsed ultrasound (LIPUS) may influence nerve tissue regeneration and axonal changes in the context of carpal tunnel syndrome (CTS) and in the animal model. The purpose of this pragmatic review is to understand the current knowledge for the effects of low-intensity therapeutic ultrasound in the animal and human model and determine the future directions of this novel field. DESIGN: Pragmatic review. METHODS: We performed a literature search of available material using OVID, EmBase, and PubMed for LIU/LIPUS, all of which were preclinical trials, case reports, and case series using animal models. For CTS, a literature search was performed on PubMed (1954 to 2019), CENTRAL (the Cochrane Library, 1970 to 2018), Web of Science (1954 to 2019), and SCOPUS (1954 to 2019) to retrieve randomized controlled trials. RESULTS: Eight articles were discussed showing the potential effects of LIU on nerve regeneration in the animal model. Each of these trials demonstrated evidence of nerve regeneration in the animal model using LIPUS or LIU. Seven randomized controlled trials were reviewed for ultrasound effects for the treatment of carpal tunnel syndrome, each showing clinical efficacy comparable to other treatment modalities. CONCLUSIONS: LIU/LIPUS is a promising and noninvasive means of facilitating nerve regeneration in the animal model and in the treatment of carpal tunnel syndrome. Although many of the trials included in this review are preclinical, each demonstrates promising outcomes that could eventually be extrapolated into human studies.


Assuntos
Síndrome do Túnel Carpal , Terapia por Ultrassom , Síndrome do Túnel Carpal/terapia , Humanos , Resultado do Tratamento , Ondas Ultrassônicas
18.
J Nanobiotechnology ; 18(1): 107, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727616

RESUMO

PURPOSE: Tuberculosis (TB) is a highly infectious disease caused by Mycobacterium tuberculosis (Mtb), which often parasites in macrophages. This study is performed to investigate the bactericidal effect and underlying mechanisms of low-frequency and low-intensity ultrasound (LFLIU) combined with levofloxacin-loaded PLGA nanoparticles (LEV-NPs) on M. smegmatis (a surrogate of Mtb) in macrophages. METHODS AND RESULTS: The LEV-NPs were prepared using a double emulsification method. The average diameter, zeta potential, polydispersity index, morphology, and drug release efficiency in vitro of the LEV-NPs were investigated. M. smegmatis in macrophages was treated using the LEV-NPs combined with 42 kHz ultrasound irradiation at an intensity of 0.13 W/cm2 for 10 min. The results showed that ultrasound significantly promoted the phagocytosis of nanoparticles by macrophages (P < 0.05). In addition, further ultrasound combined with the LEV-NPs promoted the production of reactive oxygen species (ROS) in macrophage, and the apoptosis rate of the macrophages was significantly higher than that of the control (P < 0.05). The transmission electronic microscope showed that the cell wall of M. smegmatis was ruptured, the cell structure was incomplete, and the bacteria received severe damage in the ultrasound combined with the LEV-NPs group. Activity assays showed that ultrasound combined with the LEV-NPs exhibited a tenfold higher antibacterial activity against M. smegmatis residing inside macrophages compared with the free drug. CONCLUSION: These data demonstrated that ultrasound combined with LEV-NPs has great potential as a therapeutic agent for TB.


Assuntos
Antibacterianos , Levofloxacino , Macrófagos/microbiologia , Mycobacterium smegmatis , Nanopartículas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Levofloxacino/química , Levofloxacino/farmacologia , Camundongos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/efeitos da radiação , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células RAW 264.7 , Ondas Ultrassônicas
19.
BMC Musculoskelet Disord ; 21(1): 33, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941483

RESUMO

BACKGROUND: Human adipose-derived Mesenchymal stem cells (HADMSCs) have proven their efficacy in treating osteoarthritis (OA), in earlier preclinical and clinical studies. As the tissue repairers are under the control of mechanical and biochemical signals, improving regeneration outcomes using such signals has of late been the focus of attention. Among mechanical stimuli, low-intensity pulsed ultrasound (LIPUS) has recently shown promise both in vitro and in vivo. This study will investigate the potential of LIPUS in enhancing the regeneration process of an osteoarthritic knee joint. METHODS: This study involves a prospective, randomized, placebo-controlled, and single-blind trial based on the SPIRIT guidelines, and aims to recruit 96 patients initially diagnosed with knee osteoarthritis, following American College of Rheumatology criteria. Patients will be randomized in a 1:1:1 ratio to receive Intraarticular HADMSCs injection with LIPUS, Intraarticular HADMSCs injection with shame LIPUS, or Normal saline with LIPUS. The primary outcome is Western Ontario and McMaster Universities Index of OA (WOMAC) score, while the secondary outcomes will be other knee structural changes, and lower limb muscle strength such as the knee cartilage thickness measured by MRI. Blinded assessments will be performed at baseline (1 month prior to treatment), 1 month, 3 months, and 6 months following the interventions. DISCUSSION: This trial will be the first clinical study to comprehensively investigate the safety and efficacy of LIPUS on stem cell therapy in OA patients. The results may provide evidence of the effectiveness of LIPUS in improving stem cell therapy and deliver valuable information for the design of subsequent trials. TRIAL REGISTRATION: This study had been prospectively registered with the Chinese Clinical Trials Registry. registration number: ChiCTR1900025907 at September 14, 2019.


Assuntos
Transplante de Células-Tronco Mesenquimais , Osteoartrite do Joelho/terapia , Ondas Ultrassônicas , Tecido Adiposo/citologia , Adolescente , Adulto , Idoso , Diferenciação Celular , Separação Celular , Células Cultivadas , Terapia Combinada , Feminino , Citometria de Fluxo , Humanos , Injeções Intra-Articulares , Imageamento por Ressonância Magnética , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Seleção de Pacientes , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Tamanho da Amostra , Método Simples-Cego , Resultado do Tratamento , Adulto Jovem
20.
Can J Neurol Sci ; 45(6): 675-681, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30430968

RESUMO

BACKGROUND: We have previously shown that low-intensity ultrasound (LIUS), a noninvasive mechanical stimulus, inhibits brain edema formation induced by oxygen and glucose deprivation (OGD) or treatment with glutamate, a mediator of OGD-induced edema, in acute rat hippocampal slice model in vitro. METHODS: In this study, we treated the rat hippocampal slices with N-methyl-d-aspartic acid (NMDA) or (S)-3,5-dihydroxyphenylglycine (DHPG) to determine whether these different glutamate receptor agonists induce edema. The hippocampal slices were then either sonicated with LIUS or treated with N-methyl-d-aspartic acid receptor (NMDAR) antagonists, namely, MK-801 and ketamine, and observed their effects on edema formation. RESULTS: We observed that treatment with NMDA, an agonist of ionotropic glutamate receptors, induced brain edema at similar degrees compared with that induced by OGD. However, treatment with DHPG, an agonist of metabotropic glutamate receptors, did not significantly induce brain edema. Treatment with the NMDAR antagonists MK-801 or ketamine efficiently prevented brain edema formation by both OGD and NMDA in a concentration-dependent manner. N-Methyl-d-aspartic acid-induced brain edema was alleviated by LIUS in an intensity-dependent manner when ultrasound was administered at 30, 50, or 100 mW/cm2 for 20 minutes before the induction of the edema. Furthermore, LIUS reduced OGD- and NMDA-induced phosphorylation of NMDARs at Y1325. CONCLUSION: These results suggest that LIUS can inhibit OGD- or NMDA-induced NMDAR activation by preventing NMDAR phosphorylation, thereby reducing a subsequent brain edema formation. The mechanisms by which LIUS inhibits NMDAR phosphorylation need further investigation.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , N-Metilaspartato/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Ultrassonografia , Animais , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Ratos Sprague-Dawley , Receptores de Aminoácido/efeitos dos fármacos , Receptores de Aminoácido/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Ultrassonografia/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA