Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Exp Cell Res ; 430(1): 113687, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356748

RESUMO

BACKGROUND: The ability of cancer cells to be invasive and metastasize depend on several factors, of which the action of protease activity takes center stage in disease progression. PURPOSE/OBJECTIVE: To analyze function of new K21 molecule in the invasive process of oral squamous cell carcinoma (OSCC) cell line. MATERIALS & METHODS: The Fusobacterium (ATCC 23726) streaks were made, and pellets were resuspended in Cal27 (ATCC CRL-2095) OSCC cell line spheroid cell microplate. Cells were seeded and Lysotracker staining performed for CathepsinK red channel. Cell and morphology were evaluated using Transmission Electron microscopy. Thiobarbituric acid assay was performed. OSCC was analyzed for Mic60. Raman spectra were collected from the cancer cell line. L929 dermal fibroblast cells were used for Scratch Assay. ELISA muti arrays were used for cytokines and matrix molecules. Internalization ability of fibroblast cells were also analyzed. Structure of K21 as a surfactant molecule with best docked poses were presented. RESULTS: Decrease in lysosomal staining was observed after 15 and 30 min of 0.1% treatment. Tumor clusters were associated with cell membrane destruction in K21 primed cells. There was functional silencing of Mic60 via K21, especially with 1% concentration with reduced cell migration and invasiveness. Raman intensity differences were seen at 700 cm-1, 1200 cm-1 and 1600 cm-1 regions. EVs were detected within presence of fibroblast cells amongst K21 groups. Wound area and wound closure showed the progress of wound healing. CONCLUSION: Over expression of CatK can be reduced by a newly developed targeted K21 based drug delivery system leading to reduced migration and adhesion of oral squamous cell carcinoma cells. The K21 drug formulation can have great potential for cancer therapies due to targeting and cytotoxicity effects.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Proliferação de Células , Catepsina K , Movimento Celular
2.
J Nanobiotechnology ; 20(1): 464, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309696

RESUMO

BACKGROUND: In the field of nanoscience there is an increasing interest to follow dynamics of nanoparticles (NP) in cells with an emphasis on endo-lysosomal pathways and long-term NP fate. During our research on this topic, we encountered several pitfalls, which can bias the experimental outcome. We address some of these pitfalls and suggest possible solutions. The accuracy of fluorescence microscopy methods has an important role in obtaining insights into NP interactions with lysosomes at the single cell level including quantification of NP uptake in a specific cell type. METHODS: Here we use J774A.1 cells as a model for professional phagocytes. We expose them to fluorescently-labelled amorphous silica NP with different sizes and quantify the colocalization of fluorescently-labelled NP with lysosomes over time. We focus on confocal laser scanning microscopy (CLSM) to obtain 3D spatial information and follow live cell imaging to study NP colocalization with lysosomes. RESULTS: We evaluate different experimental parameters that can bias the colocalization coefficients (i.e., Pearson's and Manders'), such as the interference of phenol red in the cell culture medium with the fluorescence intensity and image post-processing (effect of spatial resolution, optical slice thickness, pixel saturation and bit depth). Additionally, we determine the correlation coefficients for NP entering the lysosomes under four different experimental set-ups. First, we found out that not only Pearson's, but also Manders' correlation coefficient should be considered in lysosome-NP colocalization studies; second, there is a difference in NP colocalization when using NP of different sizes and fluorescence dyes and last, the correlation coefficients might change depending on live-cell and fixed-cell imaging set-up. CONCLUSIONS: The results summarize detailed steps and recommendations for the experimental design, staining, sample preparation and imaging to improve the reproducibility of colocalization studies between the NP and lysosomes.


Assuntos
Lisossomos , Nanopartículas , Animais , Camundongos , Reprodutibilidade dos Testes , Microscopia de Fluorescência/métodos , Lisossomos/metabolismo , Macrófagos
3.
Adv Exp Med Biol ; 1185: 389-393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884643

RESUMO

The retinal pigment epithelium (RPE) performs several functions that are crucial for normal retinal function and vision, including the daily phagocytosis of photoreceptor outer segment (POS) membranes. Defects in the motility and degradation of POS phagosomes may be associated with some inherited and age-related retinal degenerations. Given the apical to basal translocation of phagosomes during maturation and degradation, studies of the underlying mechanisms require analyses of the dynamics in 3-D. In this chapter, we report a method for investigating the 3-D motility of POS phagosomes and lysosomes, utilizing high-speed, spinning disk confocal microscopy of live RPE flatmounts.


Assuntos
Lisossomos/fisiologia , Fagossomos/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Humanos , Microscopia Confocal , Fagocitose , Epitélio Pigmentado da Retina/citologia
4.
Traffic ; 17(12): 1313-1321, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27621028

RESUMO

We have characterized cresyl violet as a membrane-permeant fluorophore that localizes to lysosomes and acidic vacuoles of budding yeast, Drosophila, human, murine and canine cells. An acidotropic weak base, cresyl violet is shown to be virtually insensitive to physiological alkali and divalent cations. Because of its unique spectral properties, it can be used in combination with green, red and far-red fluorophores, is less susceptible to photobleaching than alternative acidotropic probes, and does not undergo photoconversion. At concentrations that yield bright labeling of acidic compartments, cresyl violet does not alter the organellar pH nor does it affect the buffering capacity. Its affordability, together with its chemical and spectral properties, make cresyl violet a superior lysosomal marker devoid of many of the negative characteristics associated with other lysosomal probes.


Assuntos
Benzoxazinas/química , Corantes Fluorescentes/química , Lisossomos/química , Animais , Benzoxazinas/metabolismo , Benzoxazinas/toxicidade , Cães , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Células Madin Darby de Rim Canino , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Espectrometria de Fluorescência
5.
J Cell Mol Med ; 22(4): 2131-2141, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377455

RESUMO

LysoTracker and MitoTracker Red are fluorescent probes widely used for viable cell staining of lysosomes and mitochondria, respectively. They are utilized to study organelle localization and their resident proteins, assess organelle functionality and quantification of organelle numbers. The ATP-driven efflux transporter P-glycoprotein (P-gp) is expressed in normal and malignant tissues and extrudes structurally distinct endogenous and exogenous cytotoxic compounds. Thus, once aromatic hydrophobic compounds such as the above-mentioned fluorescent probes are recognized as transport substrates, efflux pumps including P-gp may abolish their ability to reach their cellular target organelles. Herein, we show that LysoTracker and MitoTracker Red are expelled from P-gp-overexpressing cancer cells, thus hindering their ability to fluorescently mark target organelles. We further demonstrate that tariquidar, a potent P-gp transport inhibitor, restores LysoTracker and MitoTracker Red cell entry. We conclude that LysoTracker and MitoTracker Red are P-gp transport substrates, and therefore, P-gp expression must be taken into consideration prior to cellular applications using these probes. Importantly, as MitoTracker was a superior P-gp substrate than LysoTracker Red, we discuss the implications for the future design of chemotherapeutics evading cancer multidrug resistance. Furthermore, restoration of MitoTracker Red fluorescence in P-gp-overexpressing cells may facilitate the identification of potent P-gp transport inhibitors (i.e. chemosensitizers).


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Aminas/metabolismo , Antineoplásicos/farmacologia , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Compostos Orgânicos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Aminas/química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Modelos Biológicos , Compostos Orgânicos/química , Transporte Proteico/efeitos dos fármacos
6.
Glia ; 64(2): 317-29, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26462451

RESUMO

In the brain, astrocytes provide metabolic and trophic support to neurones. Failure in executing astroglial homeostatic functions may contribute to the initiation and propagation of diseases, including Alzheimer disease (AD), characterized by a progressive loss of neurones over years. Here, we examined whether astrocytes from a mice model of AD isolated in the presymptomatic phase of the disease exhibit alterations in vesicle traffic, vesicular peptide release and purinergic calcium signaling. In cultured astrocytes isolated from a newborn wild-type (wt) and 3xTg-AD mouse, secretory vesicles and acidic endosomes/lysosomes were labeled by transfection with plasmid encoding atrial natriuretic peptide tagged with mutant green fluorescent protein (ANP.emd) and by LysoTracker, respectively. The intracellular Ca(2+) concentration ([Ca(2+)]i) was monitored with Fluo-2 and visualized by confocal microscopy. In comparison with controls, spontaneous mobility of ANP- and LysoTracker-labeled vesicles was diminished in 3xTg-AD astrocytes; the track length (TL), maximal displacement (MD) and directionality index (DI) were all reduced in peptidergic vesicles and in endosomes/lysosomes (P < 0.001), as was the ATP-evoked attenuation of vesicle mobility. Similar impairment of peptidergic vesicle trafficking was observed in wt rat astrocytes transfected to express mutated presenilin 1 (PS1M146V). The ATP-evoked ANP discharge from single vesicles was less efficient in 3xTg-AD and PS1M146V-expressing astrocytes than in respective wt controls (P < 0.05). Purinergic stimulation evoked biphasic and oscillatory [Ca(2+)]i responses; the latter were less frequent (P < 0.001) in 3xTg-AD astrocytes. Expression of PS1M146V in astrocytes impairs vesicle dynamics and reduces evoked secretion of the signaling molecule ANP; both may contribute to the development of AD.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Presenilina-1/metabolismo , Vesículas Secretórias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Fator Natriurético Atrial/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cátions Bivalentes/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Ratos Wistar
7.
Adv Exp Med Biol ; 854: 717-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427480

RESUMO

Renewal of rod photoreceptor outer segments in the mammalian eye involves synchronized diurnal shedding after light onset of spent distal outer segment fragments (POS) linked to swift clearance of shed POS from the subretinal space by the adjacent retinal pigment epithelium (RPE). Engulfed POS phagosomes in RPE cells mature to acidified phagolysosomes, which accomplish enzymatic degradation of POS macromolecules. Here, we used an acidophilic fluorophore LysoTracker to label acidic organelles in freshly dissected, live rat RPE tissue flat mounts. We observed that all RPE cells imaged contained numerous acidified POS phagolysosomes whose abundance per cell was dramatically increased 2 h after light onset as compared to either 1 h before or 4 h after light onset. Lack of organelles of similar diameter (of 1-2 µm) in phagocytosis-defective mutant RCS rat RPE confirmed that LysoTracker live imaging detected POS phagolysosomes. Lack of increase in lysosomal membrane protein LAMP-1 in RPE/choroid during the diurnal phagocytic burst suggests that formation of POS phagolysosomes in RPE in situ may not involve extra lysosome membrane biogenesis. Taken together, we report a new imaging approach that directly detects POS phagosome acidification and allows rapid tracking and quantification of POS phagocytosis by live RPE -tissue ex situ.


Assuntos
Rastreamento de Células/métodos , Lisossomos/metabolismo , Fagocitose , Fagossomos/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Células Cultivadas , Ritmo Circadiano , Corantes Fluorescentes , Immunoblotting , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Microscopia Confocal , Mutação , Ratos Sprague-Dawley , Epitélio Pigmentado da Retina/citologia , Fatores de Tempo
8.
Cytometry A ; 85(2): 169-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23847175

RESUMO

The flow cytometric use of LysoTracker dyes was employed to investigate the autophagic process and to compare this with the upregulation of autophagy marker, the microtubule-associated protein LC3B. Although the mechanism of action of LysoTracker dyes is not fully understood, they have been used in microscopy to image acidic spherical organelles, and their use in flow cytometry has not been thoroughly investigated in the study of autophagy. This investigation uses numerous autophagy-inducing agents including chloroquine (CQ), rapamycin, low serum (<1%) RPMI, and nutrient starvation to induce autophagy in Jurkat T-cell leukemia and K562 erythromyeloid cell lines. LC3B showed an increase with CQ treatment although this was different to LysoTracker signals in terms of dose and time. Rapamycin, low serum (<1%) RPMI, and nutrient starvation induction of autophagy also induced an increase in LysoTracker and LC3B signals. CQ also induced apoptosis in cell lines, which was blocked by pan-caspase inhibitor z-VAD resulting in a reduction in cells undergoing apoptosis and a subsequent upregulation of autophagic markers LC3B and lysosomal dye signals. Given that LC3B and LysoTracker are measuring different biological events in the autophagic process, they surprisingly both upregulated during autophagic process. This study, however, shows that although LysoTracker dyes do not specifically label lysosomes or autophagosomes within the cell, they allow the simultaneous measurement of an autophagy-related process and other live-cell functions, which are not possible with the standard LC3B antibody-labeling technique. This method has the advantage of other live-cell LCB-GFP-tagged experiments in that be used to analyze patient cells as well as easier to use and significantly less costly.


Assuntos
Aminas/química , Autofagia/efeitos dos fármacos , Corantes Fluorescentes/química , Lisossomos/metabolismo , Fagossomos/metabolismo , Biomarcadores/metabolismo , Caspases/genética , Caspases/metabolismo , Cloroquina/farmacologia , Meios de Cultura/química , Citometria de Fluxo , Expressão Gênica , Humanos , Células Jurkat , Células K562 , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Oligopeptídeos/farmacologia , Fagossomos/efeitos dos fármacos , Fagossomos/ultraestrutura , Sirolimo/farmacologia
9.
Cytometry A ; 85(8): 729-37, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24953340

RESUMO

Acidic vesicles can be imaged and tracked in live cells after staining with several low molecular weight fluorescent probes, or with fluorescently labeled proteins. Three fluorescent dyes, acridine orange, LysoTracker Red DND-99, and quinacrine, were evaluated as acidic vesicle tracers for confocal fluorescence imaging and quantitative analysis. The stability of fluorescent signals, achievable image contrast, and phototoxicity were taken into consideration. The three tested tracers exhibit different advantages and pose different problems in imaging experiments. Acridine orange makes it possible to distinguish acidic vesicles with different internal pH but is fairly phototoxic and can cause spectacular bursts of the dye-loaded vesicles. LysoTracker Red is less phototoxic but its rapid photobleaching limits the range of useful applications considerably. We demonstrate that quinacrine is most suitable for long-term imaging when a high number of frames is required. This capacity made it possible to trace acidic vesicles for several hours, during a process of drug-induced apoptosis. An ability to record the behavior of acidic vesicles over such long periods opens a possibility to study processes like autophagy or long-term effects of drugs on endocytosis and exocytosis.


Assuntos
Ácidos/metabolismo , Laranja de Acridina/metabolismo , Aminas/metabolismo , Rastreamento de Células/métodos , Vesículas Citoplasmáticas/metabolismo , Corantes Fluorescentes/metabolismo , Quinacrina/metabolismo , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Camptotecina/farmacologia , Linhagem Celular , Vesículas Citoplasmáticas/efeitos dos fármacos , Fluorescência , Humanos , Imageamento Tridimensional , Fatores de Tempo
10.
J Eukaryot Microbiol ; 61(3): 317-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24444111

RESUMO

Most euglyphids, a group of testate amoebae, have a shell that is constructed from numerous siliceous scales. The euglyphid Paulinella chromatophora has photosynthetic organelles (termed cyanelles or chromatophores), allowing it to be cultivated more easily than other euglyphids. Like other euglyphids, P. chromatophora has a siliceous shell made of brick-like scales. These scales are varied in size and shape. How a P. chromatophora cell makes this shell is still a mystery. We examined shell construction process in P. chromatophora in detail using time-lapse video microscopy. The new shell was constructed by a specialized pseudopodium that laid out each scale into correct position, one scale at a time. The present study inferred that the sequence of scale production and secretion was well controlled.


Assuntos
Parede Celular/metabolismo , Cercozoários/citologia , Cercozoários/fisiologia , Cercozoários/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Microscopia de Vídeo , Imagem com Lapso de Tempo
11.
Bio Protoc ; 13(2): e4599, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36789165

RESUMO

Lysosomes play a central role in signaling, nutrient sensing, response to stress, and the degradation and recycling of cellular content. Defects in lysosomal digestive enzymes or structural components can impair lysosomal function with dire consequences to the cell, such as neurodegeneration. A number of methods exist to assess lysosomal stress in the model Drosophila, such as specific driver and reporter strains, transmission electron microscopy, and the investigation of gene expression. These methods, however, can be time consuming and, in some cases, costly. The procedure described here provides a quick, reliable, and low-cost approach to measure lysosomal stress in the Drosophila brain. Using fluorescence confocal microscopy and the LysoTracker staining, this protocol allows for the direct measurement of lysosome size and number. This method can be used to assess lysosomal stress under a number of different genetic and environmental scenarios in the Drosophila brain.

12.
Methods Mol Biol ; 2593: 171-195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36513931

RESUMO

Lysosomes are highly dynamic degradation/recycling organelles that harbor sophisticated molecular sensors and signal transduction machinery through which they control cell adaptation to environmental cues and nutrients. The movements of these signaling hubs comprise persistent, directional runs-active, ATP-dependent transport along the microtubule tracks-interspersed by short, passive movements and pauses imposed by cytoplasmic constraints. The trajectories of individual lysosomes are usually obtained by time-lapse imaging of the acidic organelles labeled with LysoTracker dyes or fluorescently-tagged lysosomal-associated membrane proteins LAMP1 and LAMP2. Subsequent particle tracking generates large data sets comprising thousands of lysosome trajectories and hundreds of thousands of data points. Analyzing such data sets requires unbiased, automated methods to handle large data sets while capturing the temporal heterogeneity of lysosome trajectory data. This chapter describes integrated and largely automated workflow from live cell imaging to lysosome trajectories to computing the parameters of lysosome dynamics. We describe an open-source code for implementing the continuous wavelet transform (CWT) to distinguish trajectory segments corresponding to active transport (i.e., "runs" and "flights") versus passive lysosome movements. Complementary cumulative distribution functions (CDFs) of the "runs/flights" are generated, and Akaike weight comparisons with several competing models (lognormal, power law, truncated power law, stretched exponential, exponential) are performed automatically. Such high-throughput analyses yield useful aggregate/ensemble metrics for lysosome active transport.


Assuntos
Lisossomos , Análise de Ondaletas , Lisossomos/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Transporte Biológico Ativo , Software
13.
Bio Protoc ; 13(6): e4637, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968443

RESUMO

Phagoptosis is a prevalent type of programmed cell death (PCD) in adult tissues in which phagocytes non-autonomously eliminate viable cells. Therefore, phagoptosis can only be studied in the context of the entire tissue that includes both the phagocyte executors and the targeted cells doomed to die. Here, we describe an ex vivo live imaging protocol of Drosophila testis to study the dynamics of phagoptosis of germ cell progenitors that are spontaneously removed by neighboring cyst cells. Using this approach, we followed the pattern of exogenous fluorophores with endogenously expressed fluorescent proteins and revealed the sequence of events in germ cell phagoptosis. Although optimized for Drosophila testis, this easy-to-use protocol can be adapted to a wide variety of organisms, tissues, and probes, thus providing a reliable and simple means to study phagoptosis.

14.
Carbohydr Polym ; 319: 121208, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567726

RESUMO

Inducing lysosomal dysfunction is emerging as a promising means for cancer therapy. Agrocybe cylindracea fucoglucogalactan (ACP) is a bioactive ingredient with anti-tumor activity, while its mechanism remains obscure. Herein, we found that ACP visibly inhibited the proliferation of colorectal cancer cells, and the IC50 value on HCT-116 cells (HT29 cells) was 490 µg/mL (786.4 µg/mL) at 24 h. RNA-seq showed that ACP regulated mitochondria, lysosome and apoptosis-related pathways. Further experiments proved that ACP indeed promoted apoptosis and lysosomal dysfunction of HCT-116 cells. Moreover, ChIP-seq revealed that ACP increased histone-H3-lysine-27 acetylation (H3K27ac) on CTSD (cathepsin D) promoter in HCT-116 cells, thus facilitating the binding of transcription factor EB (TFEB), and resulted in ascension of CTSD expression. Additionally, ACP triggered mitochondrial-mediated apoptosis by decreasing mitochondrial membrane potential and increasing pro-apoptotic protein levels. Notably, Pepstatin A (CTSD inhibitor) availably alleviated ACP-induced apoptosis. Taken together, our results indicated that ACP induced lysosome-mitochondria mediated apoptosis via H3K27ac-regulated CTSD in HCT-116 cells. This study indicates that ACP has anti-cancer potential in the treatment of colorectal cancer.

15.
Anal Chim Acta ; 1205: 339771, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35414392

RESUMO

Lysosomes are important organelles in physiological and pathological processes. It is of great significance to understand the mechanism of lysosome and monitor its movement and action at cellular level. Traditional lysosome trackers include Lyso-Tracker Green and Lyso-Tracker Red. However, both of them are tend to be photobleached easily and affected by pH variation, which is not conducive for long-term and real-time tracing of lysosomes in changeable environment. Herein, we designed a series of meso amide BODIPY based lysosome-targeting fluorescent probes. It was discovered that introduction of methyl group on amide is able to change the fluorescence characteristics of meso amide BODIPY. Among BODIPYs developed, Lyso-Me-1 exhibited outstanding lysosome-targeting ability in comparison with Lyso-Tracker Green confirmed by confocal microscope colocalization experiment. Moreover, continuous scanning of confocal microscope demonstrated that Lyso-Me-1 displayed improved photostability compared with Lyso-Tracker Green and Lyso-Tracker Red.


Assuntos
Amidas , Corantes Fluorescentes , Compostos de Boro , Lisossomos
16.
Methods Mol Biol ; 2431: 429-449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412291

RESUMO

The use of primary neuronal cultures generated from Drosophila tissue provides a powerful model for studies of transport mechanisms. Cultured fly neurons provide similarly detailed subcellular resolution and applicability of pharmacology or fluorescent dyes as mammalian primary neurons. As an experimental advantage for the mechanistic dissection of transport, fly primary neurons can be combined with the fast and highly efficient combinatorial genetics of Drosophila, and genetic tools for the manipulation of virtually every fly gene are readily available. This strategy can be performed in parallel to in vivo transport studies to address relevance of any findings. Here we will describe the generation of primary neuronal cultures from Drosophila embryos and larvae, the use of external fluorescent dyes and genetic tools to label cargo, and the key strategies for live imaging and subsequent analysis.


Assuntos
Transporte Axonal , Drosophila , Animais , Transporte Axonal/fisiologia , Axônios/metabolismo , Drosophila/genética , Corantes Fluorescentes/metabolismo , Cinesinas , Mamíferos , Neurônios
17.
Cells ; 11(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053350

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal degenerative lung disease of unknown etiology. Although in its final stages it implicates, in a reactive manner, all lung cell types, the initial damage involves the alveolar epithelial compartment, in particular the alveolar epithelial type 2 cells (AEC2s). AEC2s serve dual progenitor and surfactant secreting functions, both of which are deeply impacted in IPF. Thus, we hypothesize that the size of the surfactant processing compartment, as measured by LysoTracker incorporation, allows the identification of different epithelial states in the IPF lung. Flow cytometry analysis of epithelial LysoTracker incorporation delineates two populations (Lysohigh and Lysolow) of AEC2s that behave in a compensatory manner during bleomycin injury and in the donor/IPF lung. Employing flow cytometry and transcriptomic analysis of cells isolated from donor and IPF lungs, we demonstrate that the Lysohigh population expresses all classical AEC2 markers and is drastically diminished in IPF. The Lysolow population, which is increased in proportion in IPF, co-expressed AEC2 and basal cell markers, resembling the phenotype of the previously identified intermediate AEC2 population in the IPF lung. In that regard, we provide an in-depth flow-cytometry characterization of LysoTracker uptake, HTII-280, proSP-C, mature SP-B, NGFR, KRT5, and CD24 expression in human lung epithelial cells. Combining functional analysis with extracellular and intracellular marker expression and transcriptomic analysis, we advance the current understanding of epithelial cell behavior and fate in lung fibrosis.


Assuntos
Células Epiteliais Alveolares/metabolismo , Aminas/metabolismo , Fibrose Pulmonar Idiopática/patologia , Animais , Biomarcadores/metabolismo , Bleomicina , Antígeno CD24/metabolismo , Epitélio/patologia , Perfilação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/genética , Queratina-5/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Doadores de Tecidos , Transcrição Gênica , Regulação para Cima
18.
Methods Mol Biol ; 1965: 297-311, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069683

RESUMO

BACKGROUND: After fluorochromes are incorporated into cells, tissues, and organisms, confocal microscopy can be used to observe three-dimensional structures. LysoTracker Red (LT) is a paraformaldehyde-fixable probe that concentrates into acidic compartments of cells and indicates regions of high lysosomal activity and phagocytosis, both of which correlate to apoptotic activity. Thus, LT is a good indicator of apoptosis visualized by confocal microscopy. Results of LT staining of apoptotic cell death correlate well with other whole mount apoptosis vital dyes such as Nile blue sulfate and neutral red, with the added benefit of being fixable in situ. Nile blue sulfate can also be used as a non-vital, nonspecific dye to visualize general morphology. Stains such as acridine orange can be used for surface staining of fixed embryos to yield confocal images that are similar to scanning electron micrographs. METHODS: Mouse embryos were stained with LT, fixed with paraformaldehyde/glutaraldehyde, dehydrated with methanol (MEOH), and cleared with benzyl alcohol/benzyl benzoate (BABB). Following this treatment, the tissues were nearly transparent. Embryos are mounted on depression slides, and serial sections are imaged by confocal microscopy, followed by 3-D reconstruction. RESULTS: Embryos or tissues as thick as 500 microns (µm) can be visualized after clearing with BABB. LysoTracker staining reveals apoptotic regions in organogenesis-stage mouse embryos. Morphological observation of tissue was facilitated by combining autofluorescence with Nile blue sulfate staining of fixed embryos or opaque surface staining with acridine orange staining. CONCLUSIONS: The use of BABB for clearing LT vital-stained and fixed embryos matches the refractive index of the tissue to the suspending medium, allowing increased penetration of laser light in a confocal microscope. Nile blue sulfate used as a non-vital dye provides a nonspecific staining of fixed embryos that can then be cleared with methyl salicylate for confocal observation. Sample preparation and staining procedures described here, with optimization of confocal laser scanning microscopy, allow for the detection and visualization of morphological structure and apoptosis in embryos up to 500 µm thick, and stained specimens can be fixed and mounted on depression slides.


Assuntos
Embrião de Mamíferos/ultraestrutura , Lisossomos/metabolismo , Organogênese , Aminas/metabolismo , Animais , Apoptose , Embrião de Mamíferos/metabolismo , Imageamento Tridimensional , Camundongos , Microscopia Confocal , Fagocitose
19.
Chem Biol Drug Des ; 94(1): 1330-1338, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30805971

RESUMO

The correlation of mycobactericidal property of macrophages with its potential to deliver bacteria to hydrolytic lysosomes, augmented with ubiquitin-derived peptides (Ub2), activates the process of autophagy. This leads to the formation of phagolysosomes supported by factor involving increased cationic charges which regulate the acidic pH causing elimination of Mycobacterium. To better understand this interaction of cationic-rich ubiquitin-derived peptides with mycobacteria and to identify putative mycobacterial intrinsic resistance mechanisms for phagolysosome formation, we have synthesized a new series of Ub2 peptides, wherein the Gly residues are replaced with azaGly with the aim to improve metabolic stability. In addition to that a new methodology is reported for the synthesis of heteroaryl tethered peptides using azaGly as a linker. We have demonstrated that positive puncta (directly proportional to the acidification of lysosome) in cytosol was significantly increased after 6 hours on the treatment of macrophage with Ub2 peptide derivatives (1, 6, 10, and 11) causing the higher intensity of lysosome observed through LysoTracker Red Dye. The circular dichroism spectral studies are carried out in water and water:TFE mixture and demonstrated that the Ub2 peptides have helix-forming tendency in the presence of TFE. The recognizable intracellular killing of Mycobacterium tuberculosis by Ub2 peptides provides a new approach for host-directed therapy.


Assuntos
Antituberculosos/síntese química , Peptídeos/química , Ubiquitina/química , Sequência de Aminoácidos , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Compostos Aza/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Lisossomos/química , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Estrutura Secundária de Proteína
20.
Methods Mol Biol ; 1594: 165-177, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28456982

RESUMO

Following cellular engulfment, nanoparticles end up in the lysosomes, making them an ideal tool for modifying the lysosomal environment. Here, we describe how acidic nanoparticles can be used to lower the pH of lysosomes in cultured, primary astrocytes and thereby increase their degradation capacity. To guarantee that the cell culture is completely devoid of professional phagocytes, we isolate, expand, and differentiate neural stem cells from embryonic mouse cortex to achieve astrocytes for these experiments. Immunostainings with LAMP2-specific antibodies can be performed to verify the lysosomal localization of the nanoparticles, and the effect on lysosomal acidification can easily be followed with LysoTracker dye.


Assuntos
Astrócitos/metabolismo , Lisossomos/metabolismo , Nanopartículas/metabolismo , Animais , Células Cultivadas , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA