Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mol Pharm ; 21(4): 1768-1776, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381374

RESUMO

A better molecular understanding of the temperature-triggered drug release from lysolipid-based thermosensitive liposomes (LTSLs) is needed to overcome the recent setbacks in developing this important drug delivery system. Enhanced drug release was previously rationalized in terms of detergent-like effects of the lysolipid monostearyl lysophosphatidylcholine (MSPC), stabilizing local membrane defects upon LTSL lipid melting. This is highly surprising and here referred to as the 'lysolipid paradox,' because detergents usually induce the opposite effect─they cause leakage upon freezing, not melting. Here, we aim at better answers to (i) why lysolipid does not compromise drug retention upon storage of LTSLs in the gel phase, (ii) how lysolipids can enhance drug release from LTSLs upon lipid melting, and (iii) why LTSLs typically anneal after some time so that not all drug gets released. To this end, we studied the phase transitions of mixtures of dipalmitoylphosphatidylcholine (DPPC) and MSPC by a combination of differential scanning and pressure perturbation calorimetry and identified the phase structures with small- and wide-angle X-ray scattering (SAXS and WAXS). The key result is that LTSLs, which contain the standard amount of 10 mol % MSPC, are at a eutectic point when they release their cargo upon melting at about 41 °C. The eutectic present below 41 °C consists of a MSPC-depleted gel phase as well as small domains of a hydrocarbon chain interdigitated gel phase containing some 30 mol % MSPC. In these interdigitated domains, the lysolipid is stored safely without compromising membrane integrity. At the eutectic temperature, both the MSPC-depleted bilayer and interdigitated MSPC-rich domains melt at once to fluid bilayers, respectively. Intact, fluid membranes tolerate much less MSPC than interdigitated domains─where the latter have melted, the high local MSPC content causes transient pores. These pores allow for fast drug release. However, these pores disappear, and the membrane seals again as the MSPC distributes more evenly over the membrane so that its local concentration decreases below the pore-stabilizing threshold. We provide a pseudobinary phase diagram of the DPPC-MSPC system and structural and volumetric data for the interdigitated phase.


Assuntos
Bicamadas Lipídicas , Lipossomos , Lipossomos/química , Bicamadas Lipídicas/química , Espalhamento a Baixo Ângulo , Varredura Diferencial de Calorimetria , Difração de Raios X , 1,2-Dipalmitoilfosfatidilcolina/química
2.
Trop Anim Health Prod ; 56(8): 271, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312028

RESUMO

This study examined the effect of dietary lysolecithin on growth performance, nutrient digestibility, haematobiochemistry, and oxidative status in finisher broiler chickens. In a completely randomized design (CRD), 300 21-day-old Chikun strain chicks were randomly allocated to 30 pens in which they were allotted to 5 dietary treatments as follows TI (0 g /100kg), T2 (100 g /100kg), T3 (200 g /100kg), T4 (300 g /100kg), T5 (400 g /100kg) of feed with 6 replicates pens of 10 during the finisher phase (28 days). Results showed that dietary supplementation with lysolecithin increased the final body weight (FBW) (quadratic P = 0.0178), body weight gain (BWG) (quadratic P = 0.0232), whilst it decreased the total feed intake (TFI) (linear P = 0.0104). Similarly, it linearly increased the retention of dry matter (P = 0.0324); crude protein (P = 0.0029), crude fibre (P = 0.0147), and crude fat (P = 0.0002). Furthermore, it increased the superoxide dismutase (linear P < 0.001), glutathione peroxidase (quadratic P < 0.001), glutathione (linear P < 0.001), whilst it decreased malondialdehyde (linear P = 0.003), without affecting (P > 0.05) the haematobiochemistry parameters. Therefore, dietary lysolecithin could be supplemented up to 400 g /100 kg without compromising performance, nutrient retention, haemato-biochemistry, and oxidative status in finisher broiler diets.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Suplementos Nutricionais , Digestão , Lisofosfatidilcolinas , Estresse Oxidativo , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Galinhas/metabolismo , Ração Animal/análise , Digestão/efeitos dos fármacos , Suplementos Nutricionais/análise , Dieta/veterinária , Estresse Oxidativo/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Lisofosfatidilcolinas/administração & dosagem , Lisofosfatidilcolinas/metabolismo , Distribuição Aleatória , Masculino , Nutrientes/metabolismo
3.
Neurobiol Dis ; 184: 106230, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37453561

RESUMO

Multiple sclerosis (MS) is a complex chronic disease with an unknown etiology. It is considered an inflammatory demyelinating and neurodegenerative disorder of the central nervous system (CNS) characterized, in most cases, by an unpredictable onset of relapse and remission phases. The disease generally starts in subjects under 40; it has a higher incidence in women and is described as a multifactorial disorder due to the interaction between genetic and environmental risk factors. Unfortunately, there is currently no definitive cure for MS. Still, therapies can modify the disease's natural history, reducing the relapse rate and slowing the progression of the disease or managing symptoms. The limited access to human CNS tissue slows down. It limits the progression of research on MS. This limit has been partially overcome over the years by developing various experimental models to study this disease. Animal models of autoimmune demyelination, such as experimental autoimmune encephalomyelitis (EAE) and viral and toxin or transgenic MS models, represent the most significant part of MS research approaches. These models have now been complemented by ex vivo studies, using organotypic brain slice cultures and in vitro, through induced Pluripotent Stem cells (iPSCs). We will discuss which clinical features of the disorders might be reproduced and investigated in vivo, ex vivo, and in vitro in models commonly used in MS research to understand the processes behind the neuropathological events occurring in the CNS of MS patients. The primary purpose of this review is to give the reader a global view of the main paradigms used in MS research, spacing from the classical animal models to transgenic mice and 2D and 3D cultures.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Feminino , Esclerose Múltipla/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Sistema Nervoso Central/patologia , Camundongos Transgênicos
4.
Artigo em Inglês | MEDLINE | ID: mdl-36775342

RESUMO

Intravenous immunoglobulin (IVIg) has been used to treat inflammatory demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barré syndrome, and multifocal motor neuropathy. Despite studies demonstrating the clinical effectiveness of IVIg, the mechanisms underlying its effects remain to be elucidated in detail. Herein, we examined the effects of IVIg on lysolecithin-induced demyelination of the sciatic nerve in a mouse model. Mice -administered with IVIg 1 and 3 days post-injection (dpi) of lysolecithin -exhibited a significantly decreased demyelination area at 7 dpi. Immunoblotting analysis using two different preparations revealed that IVIg reacted with a 36-kDa membrane glycoprotein in the sciatic nerve. Subsequent analyses of peptide absorption identified the protein as a myelin protein in the peripheral nervous system (PNS) known as large myelin protein zero (L-MPZ). Moreover, injected IVIg penetrated the demyelinating lesion, leading to deposition on L-MPZ in the myelin debris. These results indicate that IVIg may modulate PNS demyelination, possibly by binding to L-MPZ on myelin debris.


Assuntos
Doenças Desmielinizantes , Imunoglobulinas Intravenosas , Camundongos , Animais , Imunoglobulinas Intravenosas/farmacologia , Imunoglobulinas Intravenosas/uso terapêutico , Proteína P0 da Mielina/metabolismo , Lisofosfatidilcolinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo
5.
Br Poult Sci ; 64(6): 718-725, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37610322

RESUMO

1. This study investigated the effects of lysolecithins (LL) on performance, egg quality, blood profiles, relative organ weight and liver histopathology in laying hens.2. A total of 480 healthy 65-week-old Lohmann laying hens were randomly allocated into four treatments in a 2 × 2 factorial arrangement design with two levels of energy (AMEn, 11.08 MJ/kg and 12.94 MJ/kg) and two levels of LL (0 and 0.05%).3. Birds fed high energy diets had lower (P < 0.05) average daily intake and feed conversion rate during weeks 0-4, 5-8 and 0-8, but higher (P < 0.05) average egg weight (AEW) during trial weeks 0-4. There was an interaction in (P < 0.05) AEW during trial weeks 0-14 and 0-8 for energy and LL. The high energy diets increased yolk colour at the end of weeks 2 and 4, while addition of LL increased albumen height at the end of week 2. There was an interaction (P < 0.05) in yolk colour between energy and LL at the end of week 2. There was an interaction (P < 0.05) in serum superoxide dismutase and LDL-C throughout the experiment.4. The high energy diets increased (P < 0.05) the relative weight of abdominal fat compared with low energy diets. The high energy diets increased (P < 0.05) liver ether extract content and liver pathological injury score compared with low energy diets at the end of week 8, while the addition of LL decreased (P < 0.05) liver pathological injury score.5. The supplementation of LL in high energy diets could alleviate some negative effects on liver injury in late laying hens.


Assuntos
Dieta , Lisofosfatidilcolinas , Animais , Feminino , Dieta/veterinária , Galinhas , Fígado , Superóxido Dismutase , Ração Animal/análise
6.
Artigo em Inglês | MEDLINE | ID: mdl-38091274

RESUMO

This study aimed at investigating the effect of hydrolyzed soya lecithin; also called lysolecithin or lysophosphatidylcholine, on growth performance, caecal microbiota and fat depots in pre-breeding primiparous rabbits does. For this, 60 V-Line primiparous rabbits does (5-6 months) were used in a 30-day experiment. Does were allotted into three iso-nitrogenous iso-caloric dietary treatments (n = 20/group) as follows: (1) CON received 0% soya lecithin, (2) LECL group was fed a basal diet supplemented with 0.5% soya lecithin and (3) LECH group was fed a basal diet supplemented with 1% soya lecithin. Growth performance indices were measured, caecum samples were collected for measurement of specific bacteria via qPCR, and several fat depots including periovarian fat were sampled for adipocyte morphometry and fatty acid profiling. Statistical analysis was performed using GLM procedures of SAS v9.4. Soya lecithin increased feed intake (p < 0.05). The abundance of caecal Bifidobacteria species, Ruminococcus species and phylum Butryvibrio-specific genes increased (p < 0.05) in rabbits receiving soya lecithin in their diet, soya lecithin increased the level of polyunsaturated fatty acids in subcutaneous and perirenal fat (p < 0.05) and increased the level of monounsaturated fatty acids in periovarian fat (p < 0.05); additionally, the adipocyte area increased in periovarian and perirenal fat (p < 0.05). In conclusion, soya lecithin at a dose of 0.5% increased feed intake and energy storage in adipocytes and improved the fatty acid profile of periovarian fat.

7.
Fish Shellfish Immunol ; 128: 50-59, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35843522

RESUMO

A 70-day feeding trial was conducted to investigate effects of dietary lysolecithin on growth performance, serum biochemical indexes, antioxidant capacity, lipid metabolism and inflammation-related genes expression of juvenile large yellow croaker (Larimichthys crocea) with initial weight of 6.04 ± 0.08 g. A formulated diet containing approximately 42% crude protein and 12.5% crude lipid was used as the control diet (CON). The other three experimental diets were formulated with supplementation of 0.2%, 0.4% and 0.6% lysolecithin based on the control diet, respectively. Results showed that weight gain rate (WGR) and specific growth rate (SGR) significantly increased in fish fed diets with lysolecithin compared with those in the control diet (P < 0.05). Fish fed diets with 0.4% and 0.6% lysolecithin had notably higher lipid content in muscle than that in the control diet (P < 0.05). When fish were fed diets with lysolecithin, serum high-density lipoprotein cholesterol (HDL-c) content was notably higher than that in the control diet (P < 0.05), while fish fed the diet with 0.6% lysolecithin had a significant lower serum low-density lipoprotein cholesterol (LDL-c) content than that in the control diet (P < 0.05). Meanwhile, serum aspartate transaminase (AST) and alanine transaminase (ALT) activities in fish fed diets with lysolecithin were remarkably lower than those in the control diet (P < 0.05). With the increase of dietary lysolecithin from 0.2% to 0.6%, mRNA expression of stearoyl-coenzyme A desaturase 1 (scd1), diacylglycerol acyltransferase 2 (dgat2) and sterol-regulatory element binding protein 1 (srebp1) showed decreasing trends. Furthermore, mRNA expression of carnitine palmitoyl transferase 1 (cpt1) and lipoprotein lipase (lpl) among each dietary lysolecithin treatment were significantly higher than those in the control diet (P < 0.05). In terms of inflammation, mRNA expression of tumor necrosis factor α (tnf-α) and interleukin-1 ß (il-1ß) were significantly down-regulated in fish fed diets with lysolecithin compared with those in the control diet (P < 0.05), while the mRNA expression of interleukin-10 (il-10) was significantly higher than that in the control diet (P < 0.05). In conclusion, dietary lysolecithin could promote the growth performance, improve hepatic lipid metabolism and regulate inflammation response in juvenile large yellow croaker, and the optimal supplement level of lysolecithin was approximately 0.4% in this study.


Assuntos
Metabolismo dos Lipídeos , Perciformes , Alanina Transaminase/metabolismo , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/metabolismo , Carnitina/metabolismo , LDL-Colesterol/metabolismo , Diacilglicerol O-Aciltransferase/genética , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos Dessaturases/metabolismo , Inflamação/veterinária , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Lipase Lipoproteica , Lipoproteínas HDL , Lisofosfatidilcolinas/metabolismo , Perciformes/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Can J Physiol Pharmacol ; 100(2): 107-116, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935529

RESUMO

Demyelination disorder is an unusual pathologic event, which occurs in the central nervous system (CNS). Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects the CNS, and it is the leading cause of disability in young adults. Lysolecithin (LPC) is one of the best toxin-induced demyelination models. In this study, a suitable model is created, and the effect of fluoxetine treatment is examined on this model. In this case, it was assumed that daily fluoxetine treatment had increased the endogenous remyelination in the LPC model. This study was focused on investigating the influence of the fluoxetine dose of 5 or 10 mg/kg per day for 1 and 4 weeks on LPC-induced neurotoxicity in the corpus callosum region. It was performed as a demyelinating model in male Wistar rats. After 3 days, fluoxetine was injected intraperitoneally (5 or 10 mg/kg per day) for 1 and 4 weeks in each group. After completing the treatment course, the corpus callosum was removed to examine the gene expression and histological analysis was performed. The results of the histopathological study of hematoxylin and eosin staining of the corpus callosum showed that in 1 and 4-week treatment groups, fluoxetine has reduced the level of inflammation at the LPC injection site (5 and 10 mg/kg per day). Fluoxetine treatment in the luxol fast blue (LFB) staining of the corpus callosum has been led to an increase in myelination capacity in all doses and times. The results of the genetic study showed that the fluoxetine has significantly reduced the expression level of tumor necrosis factor-α, nuclear factor κß, and induced nitric oxide synthase in comparison with the untreated LPC group. Also, the fluoxetine treatment has enhanced the expression level of the forkhead box P3 (FOXP3) gene in comparison with the untreated group. Fluoxetine has increased the expression level of myelination and neurotrophic genes such as myelin basic protein (MBP), oligodendrocyte transcription factor 2 (OLIG2), and brain-derived neurotrophic factor (BDNF). The outcomes demonstrated that fluoxetine reduces inflammation and strengthens the endogenous myelination in the LPC-induced demyelination model; however, supplementary studies are required for specifying the details of its mechanisms.


Assuntos
Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Fluoxetina/uso terapêutico , Lisofosfatidilcolinas/efeitos adversos , Lisofosfatidilcolinas/toxicidade , Ratos Wistar , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Fluoxetina/administração & dosagem , Fluoxetina/farmacologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/efeitos dos fármacos , Masculino , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
J Neurosci Res ; 99(3): 793-805, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33368634

RESUMO

Demyelinating pathology is common in many neurological diseases such as multiple sclerosis, stroke, and Alzheimer's disease and results in axonal energy deficiency, dysfunctional axonal propagation, and neurodegeneration. During myelin repair and also during myelin homeostasis, mutual regulative processes between axons and myelin sheaths are known to be essential. However, proficient tools are lacking to characterize axon-myelin interdependence during (re)myelination. Thus, we herein investigated adaptions in myelin sheath g-ratio as a proxy for myelin thickness and axon metabolic status during homeostasis and myelin repair, by using axonal mitochondrial size as a proxy for axonal metabolic status. We found that axons with thinner myelin sheaths had larger axonal mitochondria; this was true for across different central nervous system tracts as well as across species, including humans. The link between myelin sheath thickness and mitochondrial size was temporarily absent during demyelination but reestablished during advanced remyelination, as shown in two commonly used animal models of toxic demyelination. By further exploring this association in mice with either genetically induced mitochondrial or myelin dysfunction, we show that axonal mitochondrial size adjusts in response to the thickness of the myelin sheath but not vice versa. This pinpoints the relevance of mitochondrial adaptation upon myelin repair and might open a new therapeutic window for remyelinating therapies.


Assuntos
Axônios/patologia , Doenças Desmielinizantes/fisiopatologia , Mitocôndrias/metabolismo , Bainha de Mielina/patologia , Remielinização/fisiologia , Animais , Axônios/fisiologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiologia , Modelos Animais de Doenças , Feminino , Homeostase , Humanos , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos
10.
Glia ; 68(6): 1201-1212, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868275

RESUMO

As the most abundant gap junction protein in the central nervous system (CNS), astrocytic connexin 43 (Cx43) maintains astrocyte network homeostasis, affects oligodendroglial development and participates in CNS pathologies as well as injury progression. However, its role in remyelination is not yet fully understood. To address this issue, we used astrocyte-specific Cx43 conditional knockout (Cx43 cKO) mice generated through the use of a hGFAP-cre promoter, in combination with mice carrying a floxed Cx43 allele that were subjected to lysolecithin so as to induce demyelination. We found no significant difference in the demyelination of the corpus callosum between Cx43 cKO mice and their non-cre littermate controls, while the remyelination process in Cx43 cKO mice was accelerated. Moreover, an increased number of mature oligodendrocytes and an unaltered number of oligodendroglial lineage cells were found in Cx43 cKO mouse lesions. This indicates that oligodendrocyte precursor cell (OPC) differentiation was facilitated by astroglial Cx43 depletion as remyelination progressed. Underlying the latter, there was a down-regulated glial activation and modulated local inflammation as well as a reduction of myelin debris in Cx43 cKO mice. Importantly, 2 weeks of orally administrating boldine, a natural alkaloid that blocks Cx hemichannel activity in astrocytes without affecting gap junctional communication, obviously modulated local inflammation and promoted remyelination. Together, the data suggest that the astrocytic Cx43 hemichannel is negatively involved in the remyelination process by favoring local inflammation. Consequently, inhibiting Cx43 hemichannel functionality may be a potential therapeutic approach for demyelinating diseases in the CNS.


Assuntos
Astrócitos/metabolismo , Conexina 43/metabolismo , Inflamação/metabolismo , Remielinização/fisiologia , Animais , Diferenciação Celular/fisiologia , Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/patologia , Junções Comunicantes/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo
11.
Br Poult Sci ; 61(1): 51-56, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31571492

RESUMO

1. This study aimed to quantify the effect of fat type (including unsaturated to saturated ratio (U:S)) and increasing doses of lysolecithin-based products on nutrient availability and growth performance in broiler chickens.2. A total of 33 separate experimental reports were collated according to predetermined selection criteria to provide 16 performance trials with 'on top' application, and 17 performance trials using reformulated diets, where the contribution of the lysolecithin was taken into account. Data on average daily gain (ADG) and body weight corrected FCR (FCRc) were analysed using the REML method with trial as a random effect.3. Across the constituent trials, average added dietary fat and oil inclusion was 4.42% (min 1.15%, max 7.00%), with varied U:S ratio (min 0.94, avg 2.50, max 7.65), reflecting diverse fat sources. Overall, neither bird growth performance nor response to lysolecithin supplementation were significantly affected by the U:S ratio of the diets.4. In performance trials where lysolecithin was added 'on top' of existing formulations, FCRc was significantly reduced by lysolecithin at 250 g/t inclusion compared to the control, with 125 g/t returning an intermediate value. In reformulated trials, FCRc was not significantly affected, suggesting lysolecithin supplementation at 125 and 250 g/t could recover average dietary energy reductions of 57.88 and 73.11 kcal/kg feed, respectively.5. In conclusion, this study showed that the addition of lysolecithin at levels of 125 g/t and above to broiler diets consistently improved feed efficiency across a range of basal dietary ingredients and fat sources.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Lisofosfatidilcolinas , Ração Animal/análise , Animais , Galinhas , Dieta , Suplementos Nutricionais
12.
Br Poult Sci ; 61(4): 414-423, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32178525

RESUMO

1. The potential of lecithin and lysolecithin to improve lipid digestion and growth performance was investigated in three experiments: 1. an in vitro model that mimics the intestinal conditions of the chick, 2. a digestibility trial with chicks (5-7 days of age), and 3. a performance trial until 21 days of age. 2. In experiment 1, palm oil (PO), palm oil with lecithin (PO+L), and palm oil with lysolecithin (PO+LY) were subjected to in vitro hydrolysis and applied to Caco-2 monolayers to assess lipid absorption. 3. The in vitro hydrolysis rate of triglycerides was higher in PO+LY (k = 11.76 × 103/min) than in either PO (k = 9.73 × 103/min) or PO+L (k = 8.41 × 103/min), and the absorption of monoglycerides and free fatty acids was highest (P < 0.01) for PO+LY. In experiment 2, 90 broilers were assigned to three dietary treatments: a basal diet with 4% palm oil, and the basal diet supplemented with either 250 ppm lecithin or lysolecithin. 4. ATTD of crude fat was higher in broilers supplemented with lysolecithin, but was lower in broilers supplemented with lecithin. DM digestibility and AMEn in birds supplemented with lysolecithin were significantly higher (3.03% and 0.47 MJ/kg, respectively). 5. In experiment 3, 480 broilers were randomly allocated to four dietary treatments: basal diet with soybean oil (2%), basal diet with lecithin (2%), soybean oil diet with 250 ppm lysolecithin, or lecithin oil diet with 250 ppm lysolecithin. 6. Lecithin diets significantly reduced weight at day 10 and 21 compared with soybean oil. However, the addition of lysolecithin to lecithin-containing diets significantly improved bird performance. 7. The results of these studies showed that, in contrast to lecithin, lysolecithin was able to significantly improve the digestibility and energy values of feed in young broilers.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Lecitinas , Animais , Ração Animal/análise , Células CACO-2 , Dieta , Suplementos Nutricionais , Digestão , Lisofosfatidilcolinas , Nutrientes
13.
Neurobiol Dis ; 124: 189-201, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30468865

RESUMO

Multiple sclerosis is an inflammatory disease of the central nervous system (CNS) in which multiple sites of blood-brain barrier (BBB) disruption, focal inflammation, demyelination and tissue destruction are the hallmarks. Here we show that sphingosine-1-phosphate receptor 2 (S1PR2) has a negative role in myelin repair as well as an important role in demyelination by modulating BBB permeability. In lysolecithin-induced demyelination of adult mouse spinal cord, S1PR2 inactivation by either the pharmacological inhibitor JTE-013 or S1PR2 gene knockout led to enhanced myelin repair as determined by higher numbers of differentiated oligodendrocytes and increased numbers of remyelinated axons at the lesion sites. S1PR2 inactivation in lysolecithin-induced demyelination of the optic chiasm, enhanced oligodendrogenesis and improved the behavioral outcome in an optokinetic reflex test. In order to see the effect of S1PR2 inactivation on demyelination, experimental autoimmune encephalitis (EAE) was induced by MOG-peptide. S1PR2 inhibition or knockout decreased the extent of demyelinated areas as well as the clinical disability in this EAE model. Both toxin induced and EAE models showed decreased BBB leakage and reduced numbers of Iba1+ macrophages following S1PR2 inactivation. Our results suggest that S1PR2 activity impairs remyelination and also enhances BBB leakage and demyelination. The former effect could be mediated by Nogo-A, as antagonism of this factor enhances remyelination and S1PR2 can act as a Nogo-A receptor.


Assuntos
Esclerose Múltipla/fisiopatologia , Remielinização , Receptores de Esfingosina-1-Fosfato/fisiologia , Animais , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/fisiologia , Esclerose Múltipla/patologia , Bainha de Mielina/ultraestrutura , Receptores de Esfingosina-1-Fosfato/genética , Medula Espinal/patologia , Medula Espinal/fisiopatologia
14.
Mol Biol Rep ; 46(1): 997-1011, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30569390

RESUMO

Neuroinflammation affects millions of people around the world as a result of injury or stress. Neuroinflammation represents almost all types of neurological diseases such as multiple sclerosis and Alzheimer's disease. Neurodegenerative diseases comprise demyelination and synaptic loss. The inflammatory response is further propagated by the activation of glial cells and modulation of constitutively expressed extracellular matrix proteins. The aim of the present study was to identify the anti-inflammatory effects of purified compounds gallic acid (GA, 1.0 µM) and vanillic acid (VA, 0.2 µM) on the lysolecithin (LPC, 0.003%)-induced model of inflammation. Hippocampal neurons were co-cultured with glial cells, and LPC was added to induce inflammation. Neurite outgrowth was measured by morphometry software. The level of myelination and demyelination was identified by immunostaining and sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting techniques using different antibodies. Whole-cell patch clamp recordings were used to observe the sustained repetitive firing pattern. The data showed that GA and VA significantly increased the neurite outgrowth after 48 h in culture. Both compounds significantly reduced the expression of cyclooxygenase-2, NFκB, tenascin-C, chondroitin sulfate proteoglycans and glial fibrillary acidic protein in astrocytes in the LPC-induced model of inflammation. The level of myelin protein in neurites and oligodendrocyte cell bodies was significantly upregulated by GA and VA treatment. The reduction in sustained repetitive firing in the LPC-induced model of inflammation was reversed by both GA and VA treatment. This study supports the hypothesis that VA and GA have anti-inflammatory activities and could be regarded as potential treatments for neurodegenerative disease.


Assuntos
Ácido Gálico/farmacologia , Inflamação/patologia , Bainha de Mielina/patologia , Degeneração Neural/patologia , Ácido Vanílico/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Doenças Desmielinizantes , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Lisofosfatidilcolinas/farmacologia , Camundongos Endogâmicos BALB C , Bainha de Mielina/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos
15.
Glia ; 66(2): 327-347, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29068088

RESUMO

For decades lysophosphatidylcholine (LPC, lysolecithin) has been used to induce demyelination, without a clear understanding of its mechanisms. LPC is an endogenous lysophospholipid so it may cause demyelination in certain diseases. We investigated whether known receptor systems, inflammation or nonspecific lipid disruption mediates LPC-demyelination in mice. We found that LPC nonspecifically disrupted myelin lipids. LPC integrated into cellular membranes and rapidly induced cell membrane permeability; in mice, LPC injury was phenocopied by other lipid disrupting agents. Interestingly, following its injection into white matter, LPC was cleared within 24 hr but by five days there was an elevation of endogenous LPC that was not associated with damage. This elevation of LPC in the absence of injury raises the possibility that the brain has mechanisms to buffer LPC. In support, LPC injury in culture was significantly ameliorated by albumin buffering. These results shed light on the mechanisms of LPC injury and homeostasis.


Assuntos
Doenças Desmielinizantes/metabolismo , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/toxicidade , Lipídeos de Membrana/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Animais , Células Cultivadas , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Feminino , Injeções Intraventriculares , Lisofosfatidilcolinas/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
16.
Glia ; 66(3): 538-561, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29148104

RESUMO

Oligodendroglial cell death and demyelination are hallmarks of neurotrauma and multiple sclerosis that cause axonal damage and functional impairments. Remyelination remains a challenge as the ability of endogenous precursor cells for oligodendrocyte replacement is hindered in the unfavorable milieu of demyelinating conditions. Here, in a rat model of lysolecithin lysophosphatidyl-choline (LPC)-induced focal demyelination, we report that Neuregulin-1 (Nrg-1), an important factor for oligodendrocytes and myelination, is dysregulated in demyelinating lesions and its bio-availability can promote oligodendrogenesis and remyelination. We delivered recombinant human Nrg-1ß1 (rhNrg-1ß1) intraspinally in the vicinity of LPC demyelinating lesion in a sustained manner using poly lactic-co-glycolic acid microcarriers. Availability of Nrg-1 promoted generation and maturation of new oligodendrocytes, and accelerated endogenous remyelination by both oligodendrocyte and Schwann cell populations in demyelinating foci. Importantly, Nrg-1 enhanced myelin thickness in newly remyelinated spinal cord axons. Our complementary in vitro studies also provided direct evidence that Nrg-1 significantly promotes maturation of new oligodendrocytes and facilitates their transition to a myelinating phenotype. Nrg-1 therapy remarkably attenuated the upregulated expression chondroitin sulfate proteoglycans (CSPGs) specific glycosaminoglycans in the extracellular matrix of demyelinating foci and promoted interleukin-10 (IL-10) production by immune cells. CSPGs and IL-10 are known to negatively and positively regulate remyelination, respectively. We found that Nrg-1 effects are mediated through ErbB2 and ErbB4 receptor activation. Our work provides novel evidence that dysregulated levels of Nrg-1 in demyelinating lesions of the spinal cord pose a challenge to endogenous remyelination, and appear to be an underlying cause of myelin thinning in newly remyelinated axons.


Assuntos
Doenças Desmielinizantes/terapia , Imunomodulação , Neuregulina-1/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Remielinização/fisiologia , Medula Espinal/imunologia , Animais , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Portadores de Fármacos , Matriz Extracelular/imunologia , Matriz Extracelular/patologia , Feminino , Gânglios Espinais/imunologia , Gânglios Espinais/patologia , Humanos , Ácido Láctico , Masculino , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/patologia , Oligodendroglia/imunologia , Oligodendroglia/patologia , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Medula Espinal/patologia , Doenças da Medula Espinal/imunologia , Doenças da Medula Espinal/patologia , Doenças da Medula Espinal/terapia
17.
J Neurosci Res ; 96(6): 1021-1042, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446144

RESUMO

Multiple sclerosis (MS) is a chronic, progressive disorder of the central nervous system (CNS) that affects more than two million people worldwide. Several animal models resemble MS pathology; the most employed are experimental autoimmune encephalomyelitis (EAE) and toxin- and/or virus-induced demyelination. In this review we will summarize our knowledge on the utility of different animal models in MS research. Although animal models cannot replicate the complexity and heterogeneity of the MS pathology, they have proved to be useful for the development of several drugs approved for treatment of MS patients. This review focuses on EAE because it represents both clinical and pathological features of MS. During the past decades, EAE has been effective in illuminating various pathological processes that occur during MS, including inflammation, CNS penetration, demyelination, axonopathy, and neuron loss mediated by immune cells.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/etiologia , Esclerose Múltipla/etiologia , Animais , Encefalomielite Autoimune Experimental/patologia , Humanos , Esclerose Múltipla/patologia
18.
Br Poult Sci ; 59(2): 232-239, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29293022

RESUMO

1. The study aimed to investigate the effect of lysolecithin supplementation in low-energy diets on growth, nutrient digestibility and intestinal mucosa characteristics of broilers. 2. A total of 800 one-d-old Ross 308 broiler chickens were assigned to 4 dietary treatments consisting of 10 replicates of 20 broilers each. Broilers were fed with 4 different diets: (i) HE: positive control group broilers received a diet with unaltered energy; (ii) LE: negative control group broilers received a diet with lower energy of about 0.27 MJ/kg; (iii) LElys500: broilers received a diet similar to LE supplemented with 500 g/tn lysolecithin product (Lysoforte Booster DryTM); and (iv) LElys300: broilers received a diet similar to LE supplemented with 300 g/tn lysolecithin product. The experimental period was 42 d. 3. Body weight gain in treatments HE was higher than LE during the overall experimental period, while LElys500 and LElys300 had intermediate values. Feed conversion ratio was lower in HE and LElys500 than LE group, while the LElys300 had intermediate values. Fat digestibility was improved in both LElys 500 and LElys300 compared to the HE group. Apparent metabolisable energy (AMEn) was higher in HE, LElys500 and LElys300 than LE. Ileum viscosity at 42 d was also affected, being higher in LE group compared to HE. At 28 d mucosal thickness was lower both in LElys500 and LElys300 compared to HE and LE, while no difference occurred between treatment proliferation patterns of duodenal epithelial cells. 4. These findings indicated that lysolecithin supplementation at 500 g/tn of feed in low-energy diets maintained broiler performance. Supplementation of reformulated low-energy diets induced an increase in digesta viscosity. Lysolecithin supplementation resulted in variable alterations in the duodenum mucosal morphology.


Assuntos
Galinhas/fisiologia , Digestão/efeitos dos fármacos , Metabolismo Energético , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Lisofosfatidilcolinas/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Mucosa Intestinal/fisiologia , Intestinos/química , Lisofosfatidilcolinas/administração & dosagem , Viscosidade
19.
Neuropathol Appl Neurobiol ; 43(3): 242-251, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28009439

RESUMO

AIMS: The search for novel drugs that enhance myelin repair in entities such as multiple sclerosis has top priority in neurological research, not least because remyelination can hinder further neurodegeneration in neuro-inflammatory conditions. Recently, several new compounds with the potential to boost remyelination have been identified using high-throughput in vitro screening methods. However, assessing their potential to enhance remyelination in vivo using plastic embedded semi-thin sections or electron microscopy, even though being the gold standard for assessing remyelination, is toxic, extremely time-consuming and expensive. METHODS: We screened available myelin dyes for a staining candidate which offers a faster and easier alternative to visualize remyelination in cryo-sections. RESULTS: We identified sudan black as a candidate with excellent myelin resolution and we show that our adapted sudan black staining can demonstrate myelin repair in rodent spinal cord cryosections as reliable as in semithin sections, but much faster, easier, less toxic and less expensive. Besides that, it can resolve the small myelinated axons in the corpus callosum. The staining can yet readily be combined with immunostainings which can be challenging in semithin sections. We validated the method in human spinal cord tissue as well as in experimental demyelination of the rat spinal cord by a lysolecithin time course experiment. As proof-of-principle, we demonstrate that sudan black is able to reliably detect the remyelination enhancing properties of benztropine. CONCLUSION: Our adapted sudan black staining can be used to rapidly and non-toxically screen for remyelinating therapies in demyelinating diseases.


Assuntos
Compostos Azo , Naftalenos , Remielinização , Medula Espinal/patologia , Coloração e Rotulagem/métodos , Animais , Doenças Desmielinizantes/patologia , Feminino , Humanos , Ratos , Ratos Long-Evans
20.
Acta Neuropathol ; 134(3): 423-440, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28646336

RESUMO

Two hallmarks of chronic multiple sclerosis lesions are the absence of significant spontaneous remyelination and primary as well as secondary neurodegeneration. Both characteristics may be influenced by the presence of inhibitory factors preventing myelin and neuronal repair. We investigated the potential of antibodies against Nogo-A, a well-known inhibitory protein for neuronal growth and plasticity, to enhance neuronal regeneration and remyelination in two animal models of multiple sclerosis. We induced a targeted experimental autoimmune encephalomyelitis (EAE) lesion in the dorsal funiculus of the cervical spinal cord of adult rats resulting in a large drop of skilled forelimb motor functions. We subsequently observed improved recovery of forelimb function after anti-Nogo-A treatment. Anterograde tracing of the corticospinal tract revealed enhanced axonal sprouting and arborisation within the spinal cord gray matter preferentially targeting pre-motor and motor spinal cord laminae on lesion level and above in the anti-Nogo-A-treated animals. An important additional effect of Nogo-A-neutralization was enhanced remyelination observed after lysolecithin-induced demyelination of spinal tracts. Whereas remyelinated fiber numbers in the lesion site were increased several fold, no effect of Nogo-A-inhibition was observed on oligodendrocyte precursor proliferation, migration, or differentiation. Enhancing remyelination and promoting axonal regeneration and plasticity represent important unmet medical needs in multiple sclerosis. Anti-Nogo-A antibodies hold promise as a potential new therapy for multiple sclerosis, in particular during the chronic phase of the disease when neurodegeneration and remyelination failure determine disability evolution.


Assuntos
Axônios/imunologia , Encéfalo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Proteínas Nogo/imunologia , Remielinização/imunologia , Animais , Anticorpos/farmacologia , Axônios/efeitos dos fármacos , Axônios/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/imunologia , Inflamação/patologia , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica/fisiologia , Remielinização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA